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Quantum phase distributions of amplified Schrodinger-cat states of light
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We study the phase properties of unantum superpositions of two coherent states (Schrodinger-cat
states) amplified by phase-sensitive (squeezed) amplifiers. We show that a phase-sensitive amplifier with
a properly chosen phase can preserve the phase distribution of the Schrédinger-cat-state input.
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Quantum interference in the phase space between com-
ponent states of a superposition state leads to appearance
of various nonclassical effects such as quadrature squeez-
ing or sub-Poissonian photon statistics [1]. The character
of the quantum interference (and consequently the char-
acter of nonclassical behavior of the superposition state
under consideration) depends on a relative phase between
component states [2]. This phase dependence of nonclas-
sical effects has stimulated a considerable effort directed
towards better understanding of a concept of the phase
operator and the phase probability distribution in quan-
tum mechanics and quantum optics [3]. ]

Recently, Garraway and Knight [4] (also see papers by
Tanas and co-workers [5] and by Agarwal and co-

workers [6]) have investigated the relation between two
" conceptually different approaches to phase distributions.
One approach is based upon a phase dependence of quasi-
distributions (such as the Wigner function or the Husimi
Q function [7]) that describe states of quantum-
mechanical systems (such as light fields). The other ap-
proach is based on a definition of phase states and the
Hermitian phase operator introduced by Pegg and Bar-
nett [3]. Garraway and Knight [4] have shown that the
two approaches give almost the same phase probability
distributions for field states dominated by Fock states
within a narrow distribution, but the phase distributions
can differ for cases involving widely separated photon-
number contributions. In particular, dominance by even
Fock states can result in the Wigner phase quasiprobabil-
ity distribution (PQD) with negative values (actually, this
is a reason why we call the phase distribution emerging
from the Wigner function the phase quasiprobability dis-
tribution). The fact that the Wigner PQD takes negative
values can serve as a signature of a nonclassical behavior
of the state under consideration [4]. In this Brief Report
we concentrate our attention on nonclassical properties
of quantum-mechanical superposition of coherent states,
and therefore we will use the Wigner PDW for descrip-
tion of phase properties of these states.

A pure state of the quantum-mechanical harmonic os-
cillator corresponding to a single mode of a quantized
electromagnetic field |¥ ), which in the Fock basis has a
form

WY=3 Q,ln), p=1¥)(¥I= 3 0,08n¥(ml, )
n=0 n,m=0 .
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__ _arbitrarily quadrature-squeezed

can be uniquely described in terms of quasiprobability
distribution functions such as the Wigner function or the
Husimi function. The Wigner function is defined as [7]

W= [ dBexplaB* ~a*BTrlpesplfa’—p*a)],

where 2 and 2" are the bosonic annihilation and creation
operators ([a,a’f]= 1; in what follows we use units such
that #=1). Using the phase dependence of the Wigner
function (& is a complex parameter), we can define the
Wigner PQD as [4-6]

PIO)= [ " rwr,0)dr @)

where W(r,0) is the Wigner function expressed in polar
coordinates (i.e., ¢==re ‘"),

Recently, Garraway and Knight [4] have proved that
the Wigner PQD corresponding to a superposition of
even Fock states can take negative values. One particular
example of a state for which the Wigner PQD takes nega-
tive values is the even coherent state (CS). This state can
be represented as a superposition of two coherent states,

|£) and | —¢), which are 180° out of phase with respect
to each other:

O evea=A"21EY+1=8)), A '=2[1+exp(—2|¢])],
: @)

where |£) is the coherent state defined in the usual way
lie, 1£)=exp(¢a’™—£*2)|0)]. In the Fock basis the
even CS is represented as a superposition of only even-
number states, which means that the photon-number dis-
tribution of the even CS exhibits significant oscillations
[2]. Besides this nonclassical effect, the even CS also ex-
hibits quadrature squeezing as well as higher-order
squeezing [2].

In the last few years several schemes have been pro-
posed for production of the even CS in micromasers [8,9].
In the micromaser experiments one can expect the ampli-
tude [§ | of component states to be rather small. There-
fore, natural questions arise as to whether it is possible to
amplify the superposition state (4) without destroying its
phase properties.

It is well known that amplification degrades an optical

_._signal and rapidly destroys quantum features that may

have been associated with the input. In particular, for an
input the phase-
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insensitive amplifier provides a squeezed output only for  limit determined by the value of N [14]:

a gain factor G smaller than 2 [10]. To overcome this IMI2<N(N+1).

cloning limit phase-sensitive amplifiers have been pro-

posed for which squeezed output for a gain larger than 2  The gain G of the amplifier is defined as [15]
can be obtained [10]. It is well known that squeezing is a G =exp(yt) . 7))
phase-dependent nonclassical effect [11]; therefore one
can expect that phase-sensitive amplifiers will preserve
phase properties of input fields. In this paper we assume
the even CS [Eq. (4)] to be the input state to the amplifier.
As we said, the noise added by the amplifier inevitably
destroys nonclassical features of the input state [10].
Simultaneously, we know that the amount of noise
transferred from the amplifier into the particular quadra-
ture of the field mode depends on the nature of the Q(a,0)= [lex @,0)+ Qi (,0)], (8)
amplifier. In what follows, we consider phase-sensitive .
amplifiers [12]. The dynamics of the field mode coupled ~ With

to the phase-sensitive amplifier is, in the Born-Markov Qmix(@,0)=exp(—a}){exp[ —(a, —£)*]
approximation, governed by the Fokker-Planck equation 2

of the © function [0(a)={alpla) /], which, in the in- texp[—(e, +071}, O

(6

In this paper we study in detail the evolution of the
single-mode field that is initially prepared in the even CS
[Eq. (4)] with the real amphtude ¢ of the component
states |+£). The squeezing parameter M is, in general,
complex, but to make our analytical results more trans-
parent we will consider only the case of M real. The Q
function for the even CS can be written as

teraction picture, can be written as [13] Qini(@,0)=2e —g? exp( —a?—a?)cos(2lq;) , (10)
2
90(a,7) _ & 1129 —a* +—a—a where «, and ¢; are the real and imaginary parts of a.
ar * 2 a .
da™da da* * The mixture part, Q.;,, of the Q function of the even CS

M* 2 M 3 consists of two Gaussian peaks localized around a,==¢.
>t S o7 Q) (5)  The interference part Q;,, has oscillatory behavior and
2 da 2 da*) has its maximum at the origin of phase space, a={0,0}.
where y is proportional to the coupling constant between ~ This term arises as a direct consequence of the quantum
the field mode and the amplifier. The number of mode interference between coherent states |£) and |—¢) and is
excitations of the amplifier is denoted N, and M measures  responsible for nonclassical behavior of the even CS.
the strength of correlations between the amplifier modes. One can find an explicit solution to the Fokker-Planck
If this phase-sensitive parameter M is set equal to zero,  equation (5) for the Q function with the initial condition
the Fokker-Planck equation (5) then reduces to an equa-  (8) from which the expression for the Wigner function of
tion describing the phase-insensitive amplification of the  the output state at time ¢ (i.e., for a given G) can be ob-

single-mode field [7]. The squeezing parameter M has the  tained [16]:
| ..

_|_

Wia )= 4 —a} —la, =g | [ =l +el ]
a,t)= exp exp |———— | texp
TV awbw w bw bw
2 o? 28(t)e
+2exp —2§2+§—(Q——r cos ft)a; , (1n
aw bw w
[
where the “noise” factors a,, and b,, are defined as of the even CS. Moreover, the negativity of the interfer-
— + 1 —M()—1, ence part of the Wigner function represents a necessary
Z‘” __N( B)+exp(y )-I-M(( )_ 12 ~ (12) condition for the Wigner PQD to take negative values [4]
w=N(t)+exp(yt) N3 (see below). In Fig. 1(b) we plot the Wigner function of
and the even CS amplified by the phase-insensitive amplifier
N(@)=N(G—1), M()=M(G—1). (13) (M =0) for the gain factor G =2.5. From this figure we

. ) can learn two important results. First, the qu -
The t}me-dependent amplitude of the component states at interference term pin Wigner func tiosrtl’ is cgmiﬁggy
t>0is , ) suppressed by the action of the amplifier, i.e., the noise
E=¢VG . (14)  transferred from the amplifier to the quantum system

In Fig. 1(a) we plot the Wigner function of the initial  (field mode) completely destroys quantum coherences and
even CS. This function describes two component states  the Wigner function becomes positive. Secondly, the
(two Gaussian peaks centered at o={(,0} and  width of the Gaussian peaks describing component states
a={—¢,0}) and the interference term centered at the increases significantly for G > 1, which reflects the in-
origin of phase space. The interference term arises as a  crease of noise transferred from the amplifier. Neverthe-
direct consequence of quantum interference between less, in the case of the phase-sensitive amplifier (M70)
component states [1,2] and it can take negative values. [see Figs. 1(c) and 1(d)] the amount of noise transferred
The fact that the interference term of the Wigner func-  from the amplifier into a given quadrature of the light
tion takes negative values results in nonclassical behavior  field depends on the phase of the amplifier. In particular,
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for a proper choice of the relative phase between the
phase-sensitive amplifier and the superposition state, one
can preserve the quantum-interference term (i.e., quan-
tum coherence and consequently nonclassical effects) for
much larger gain factors than in the case of the phase-
insensitive amplifier [compare Figs. 1(c) and 1(b), which
are plotted for the same value of the gain, G =2.5]. In
other words, we can conclude that the decay of quantum
coherences can be significantly suppressed if the
quantum-mechanical system (light field) is amplified by
the phase-sensitive amplifier, which results in the fact
that the Wigner function can be negative even for rela-
tively large values of G. From Figs. 1(c) and 1(d) we also
see that the noise transferred into the system increases
quadrature fluctuations in one direction (quadrature)
more rapidly than in the other. For a real { and M >0,
quadrature fluctuations increase rapidly in the direction
connecting two component states, while for M <0 the
fluctuations increase in the direction orthogonal to the
axis connecting two componerit states. The phase-
sensitive transfer of the noise from the amplifier to the
quantum system significantly affects phase properties of
amplified superposition states. ) 7

At the initial moment (G =1) the Wigner PQD of the
even CS has two maxima around 8= —/2 and 8=m/2

that correspond to contributions from two component

states, | —£) and |£) (here we have introduced a refer-
ence phase 6=—m/2). Moreover, the function P(g)
has some negative values at the edges of two peaks, which
is seen clearly in Fig. 2, where we have plotted the
Wigner PQD of the even CS with {=2. As pointed out
by Garraway and Knight [4], the negativity of the
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SRR FIG. 1. (a) The Wigner func-
S tion of the even CS with {=2.
The Wigner function of the even
CS amplified by the phase-
insensitive amplifier with (b)
N =3 and M =0, by the phase-
sensitive amplifier with (c) N =3
and M=V'12, and (d) with
N=3 and M=—V12. We as-
sume the gain factor G =2.5.

Wigner PQD follows from the fact that the Wigner func-
tion of the even CS has an interference term that takes
negative values [see Fig. 1(a)] and from the fact that the
even CS can be represented as a superposition of even
Fock states.

During the amplification process the noise added into
the system destroys quantum coherence, and consequent-
ly the interference term in the Wigner function disap-
pears, which means that the negative parts of the Wigner
PQD disappear as well. The other, even more important
feature that we can observe is that—under the influence
of the phase-insensitive amplifier—the width of the two
peaks of the function P‘*)(6) becomes wider as the noise
is transferred from the amplifier to the system during the
amplification process. In other words, for sufficiently

FIG. 2. The Wigner phase quasiprobability distribution
P'"™(9) corresponding to the even CS. We assume { to be real
and equal to 2.
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FIG. 3. (a) The Wigner PQD of the initial even CS ({=2) as a
function of G in the case of phase-insensitive amplifier with
N=3 and M =0, and (b) in the case of the phase-sensitive
amplifier with N=3 and M=v"12 and (c) with N=3 and

=—v12. o
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large gain the phase distribution becomes almost com-
pletely flat (i.e., the phase is random) and we lose any in-
formation about phase properties of the initial state [see
Fig. 3(a)]. On the other hand, using the phase-sensitive
amplifier with a properly chosen phase, we can preserve
the initial two-peak structure of the Wigner PQD for an
arbitrarily large gain factor G [see Fig. 3(b)]. We should
stress here that this preservation of the two-peak struc-
ture of the phase distribution does not mean that nonclas-
sical effects associated with the even CS (such as squeez-
ing) will be preserved for arbitrarily large gain. In partic-
ular, in the case of the even CS amplified by squeezed
amplifier the quadrature squeezing can be observed for
maximum gain factor G, equal to 2.1 [16] (which

- slightly overcomes the cloning limit of G =2 for phase-

insensitive amplifiers). We have just shown that a phase-
sensitive amplifier with properly chosen phase can
preserve the two-peak structure of the initial phase distri-
bution of the even CS for any value of G. On the other
hand, if the phase of the squeezed amplifier is such that
M <0, then the two-peak structure of the Wigner PQD
deteriorates much faster than in the case of the phase-
insensitive amplifier [compare Figs. 3(a) and 3(c)].

"In conclusion, we have shown that the two-peak struc-
ture of the phase distribution is preserved for any value
of the gain factor, provided the initial even CS is
amplified by the phase-sensitive amplifier with the prop-
erly chosen phase. It can be shown that the two-peak
structure of the Wigner PQD is also preserved for any
other superpositions of two-component states (not neces-
sarily pure superpositions) that are out of phase by 180°
and are amplified by phase-sensitive (squeezed) amplifiers
with the properly chosen phase.
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