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In this paper we study the dynamics of a three-level atom interacting with a two-mode squeezed vacu-
um, a highly correlated state in which each mode contains the same number of quanta yet exhibits a
thermal photon distribution. Under'elelct resonance, the Rabi oscillations exhibit an irregular behavior
reminiscent of those in the thermal-state Jaynes-Cummings model. If the individual field modes are
sufficiently detuned from the intermediate atomic level, the Rabi oscillations become quasiperiodic. The
three-level system in this case reduces to an effective two-level system in which two-photon processes
dominate. The times of revivals of the Rabi oscillations in this limit depend only on the atom-field cou-
pling constants and the detuning. For comparison, we present a parallel study of the case in which the
initial field is prepared in an uncorrelated two-mode state, such as a two-mode thermal state or a two-
mode coherent state. Under the full resonance condition, the former leads to an irregular evolution of
the Rabi oscillations, while the latter leads to the usual collapse and revival phenomena. If the individu-
al modes are sufficiently detuned from the intermediate atomic level, we observe the same quasiperiodici-
ty of the Rabi oscillations as in the case of the two-mode squeezed vacuum but with a doubling of revival
times (for equal atom-field coupling constants). Whereas the two-mode squeezed vacuum and the two-
mode thermal-state transition dynamics lead to correlation between the field modes, -the two-mode
coherent state leads to anticorrelation (when sufficiently detuned from the intermediate atomic level).
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1. INTRODUCTION

A subject of considerable interest in quantum optics
concerns the interaction of atoms with quantized fields
[1]. The prototype of such problems is the ordinary
Jaynes-Cummings model (JCM) [2], in which a two-level
atom interacts with a single mode of the electromagnetic
radiation field. This model is exactly solvable in the
rotating-wave approximation and yields purely quantum
features in the system dynamics, such as the collapse and
revival of the Rabi oscillations [3], the squeezing of the
electromagnetic field [4], and sub-Poissonian photo-
counting statistics [5]. Recent experiments with Rydberg
atoms in high-Q microwave cavities have led to the obser-
vation of some of these effects [6].

Various extensions of the ordinary JCM have been
made. These include multiphoton generalizations of the
JCM [7]; the addition of a further atomic level to support
a second resonance [8]; and cooperative effects in multia-
tom systems [9]. In this paper we shall concentrate on
the second category of problems. Namely, we shall take
a three-level atom in the A configuration and two quan-

tized modes of the electromagnetic field. In a previous .

paper [10] we treated such a problem in which the field is
prepared in the SU(2) coherent state [11], where the
modes are anticorrelated. It was shown that the an-
ticorrelation between the modes can lead to purely
periodic behavior of the Rabi oscillations. Our motiva-
tion in the present study is to investigate the effect of in-
termode field correlations (in particular those associated
with the two-mode squeezed vacuum [12]) on the system

dynamics. o
The two-mode squeezed vacuum is a highly nonclassi-
4

cal state of the electromagnetic field in which each mode
contains the same number of quanta and each exhibits a
thermal photon distribution, whereas a superposition of
the modes shows a reduction in noise below the quantum
limit [13]. The interaction of this state of light with a
three-level atom is particularly interesting. Under the
full resonance condition, the Rabi oscillations are shown
here to exhibit an irregular behavior reminiscent of those
in the ordinary JCM with the initial field prepared in the
thermal state [14]. Moreover, we find that on allowing
the individual modes to be sufficiently detuned from the
intermediate level (see Fig. 1), the Rabi oscillations revive
periodically and independently of the intensity of the ini-
tial field. In fact the revival times depend only on the
atom-field coupling constants and the detuning. The ini-
tial correlation of the field in this case is shown to reduce
the revival times of the Rabi oscillations. Moreover, be-
cause we have started from an exact three-level system,
the induced Stark shifts from the dominant levels are im-
plicitly included [15], and are shown to play an important
role in the atomic dynamics, both for correlated and un-
correlated fields. .

We should point out that studies of the interactions of
three-level atoms with uncorrelated fields have been car-
ried out previously [8,16—-18]. In particular, Li and Peng
[18] considered a three-level atom in thé A configuration
interacting with a quantized field prepared either in the
two-mode coherent state or the two-mode thermal state.
They examined the atomic populations for these fields
under the full resonant and off-one-photon resonance
conditions, and showed that the effect of coherent and
chaotic sources are different even at low intensities. They
failed, however, to note the periodicity of the revival
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FIG. 1. Energy-level diagram for a three-lével atom in the A
configuration interacting with two quantized modes of the elec-
tromagnetic radiation field, with a one-photon detuning A.

times and their independence from the intensity of the in-
itial field in the far-off-one-photon resonance limit.
Recently, Gerry and Eberly [19] studied the interaction
of a Raman coupled model [20] with two quantized
modes of the electromagnetic field. The Raman coupled
model is a special case of the three-level atom in which
the excited state is considered to be far-off resonance [8]
and is adiabatically eliminated [15]. It is described by an
effective Hamiltonian containing products of the transi-
tion operators between two lower state levels and a field
annihilation operator from one mode and a creation
operator from the other. Moreover, the induced Stark
shifts can be included by assuming that the resulting
two-level system is no longer two-photon resonant, but is
detuned by an intensity-dependent amount. However, it
is this latter aspect of the problem that Gerry and Eberly
neglected in their study, and as we will show, this leads to
quite different evolutions. In fact the Stark shifts play an
important role in the system dynamics even for low-
intensity fields. Indeed there is evidence that they observ-
ably distort one-atom maser line shapes by amounts
which are determined by the field photon statistics [21].
Another aspect of the present paper concerns the evo-
lution of the field statistics, in particular the field correla-
tion between modes. In the two-mode squeezed vacuum,
the modes are initially correlated, with the degree of
correlation being governed by the number of excitations
in each mode [13]. In the presence of the atom-field in-
teraction it is shown that under the full resonance condi-
tion, all three field states studied here, the two-mode
squeezed vacuum, the two-mode thermal state, and the
two-mode coherent state, lead to an average increase in
correlation between the modes. But when the detuning
from the intermediate level is sufficiently large, we find
that while the modes of the two-mode squeezed vacuum

)= Q'na’nb[Co(na,nb,t)IO;n'a,iz,;')+C1("r'za,nb,t)|1;na—1,nb)+Cz(na,nb,t)[2;na—1,nb+l)] ,
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and the two-mode thermal state remain correlated, those
of the two-mode coherent state become anticorrelated.

" We organize this paper as follows. In Sec. I we intro-
duce our model of the three-level atom interacting with
two quantized field modes, followed in Sec. III by a con-
sideration of the far-off-one-photon resonance limit. Then
in Secs. IV-VII we present a numerical study of the
atomic and field dynamics, concluding in Sec. VIII with a
summary of our results.

II. MODEL

Our three-level atomic system shown in Fig. 1 consists
of two allowed transitions, 0«>1 and 1«2, each interact-
ing with a different mode of the field. We assume for sim-
plicity the two-photon resonance condition, but other-
wise we allow the individual modes to be detuned by an
arbitrary amount A from the intermediate atomic level,
With these assumptions, the interaction Hamiltonian in
the rotating wave approximation is given by

H;=#AR +ﬁ[ga(“TR01 +Rpa )+gb(bTR21 +R;,b)],
2.1)

where R;=[i)(j| are the atomic operators; a,b and
a’,b" are the annihilation and creation operators of the
respective field modes; and g, and g, are the atom-field
coupling constants.

We suppose that the initial state vector of the field may
be written in the form

w(0),= 3 O, nlnan5)

g

(2.2)

where |n,,n,)=|n,)®|n, ). The associated joint photon
distribution is related to the expansion coefficients Q, n,
-

by
Bp(ng,my)=0, ., I” - (2.3)

Similarly, we suppose that the atom starts in the ground-
state level |0), so that the state vector of the total atom-

field system may be written in the factored form
|w(0))=0)e[¥(0)), . (2.4)

At time ¢ the atom and field states are coupled by the in-
teraction and evolve according to

(2.5)

where the coefficients C;(n,,n,,t) are determined from the time-dependent Schrédinger equation, and are given as fol-

lows: , : -
ﬂib (Z%Ia—1 =~ . 8 P —ist
Colng,ny,t)= 0 + 0 cosd, 1yt +lr—81n0”a_l’"bt e )
ng—Ln, n,—l,n, n,—ln,
—__ Q"a_l —idt:
Cilng,ny,t)=—i— e smﬂna_l’nbt ) (2.6)

n,—Ln
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‘()na_II2 ny 8 o 1
Colngsmyt)=————= 1= |cosQ, _;, t+im———sinld, _;,1le "] .
‘Qna—l,nb ‘Qna—l,nb ‘
l -
Here the various Rabi frequencies are defined by with §=A /2. The atomic occupation probabilities in the
————s (ng,n,)th manifold are obtained using
‘Q’nu(b)=ga(b)‘/na(b)_’_1 ’ ‘
= 2 i
@, 10, =1 05, 10, 2.7 Py(ng,my,t)=[Cy(ng,my,t)|* . i=0,1,2 2.8)
- 2
Q, —1,n, \/Qn —1,n, T8 and are given as follows:
J
Py t)= o, 0, 201 =2 t
o\Hgs 1y COS -1, pos sin -1,
ene Q'n -1 1y ‘Q;tta—l,nb e " sza—l,nb e "
207 03, B _
+ cos{), _y ,.tcosdt+—= sinQ, _; , tsindt
Q a aie ] a *%h
n, -1, n, "a_l’"b
‘Q'n -1 e
Pl(na,nb,t)= =5 sSin Qn —l,nbt ) (2.9)
n,—L,nm, ¢
Q‘z —I‘Q'nb 2 -
Pz(na,nb,t)=7—— 1+cos’@, i, t+—=5 sin*(,, 1!
na—l,nb ‘Q'na—l,nb “
-2 cosf),,,a_l,,,bt cosdt + — sin{}, _;, ¢ sint
n,—1l,n,

In the following section we will consider the large one-
photon detuning limit of Eq. (2.9).

111, THE FAR-OFF-ONE-PHOTON RESONANCE LIMIT

The dynamics of the three-level system becomes partic-
ularly simple when we take the large one-photon detun-
ing limit. To show this, we define a small parameter € by

Q’na—l,nb

"a_l'"b= A <1

€ (3.1)

and expand the amplitudes of the system of equations
(2.8) to order unity in €. The result is given by

a0, QO

Polng,ny,t)~1——— sin?—2 “bn! ,
. 24
Pi(n,,n,,t)=0, (3.2)
Py(ng,ny,t)= 4, %1931,, sin? .Q.,, !
Q. 2A

From Eq. (3.2) it follows that in the large-detuning limit,
the probability of occupation of the intermediate atomic
level is vanishingly small and may be adiabatically elim-

inated, reducing the three-level system to an effective

two-level system [15]. This is seen more concretely if we

define an effective coupling constant « and an intensity-
dependent detuning A, , by

— 8a8p
A 2
) (3.3)
~ Q'n —1 an .
Ana-—l,nb_ A (l_anuoanbo) .
We can then recast Eq. (3.2) in the form
2
Ky —1Ln
P, (n,,ny,t)=1— :—;————é—sinzrcnn —1,n, s
Kna—l,nb
) (3:4)
Kna—l,nb '
P_(ng,ny,t)=— sin’&, _, nyt 2
Kna—l,nb

which are readily recognized as the solutions for a two-
state system with levels + and — (see Fig. 2). The quan-
tities «, _q n, and K, 4 n, are the effective and general-
a 4 a ’

ized Rabi frequencies defined by

Q, 10

nu*l,nbz A

~ — 2 1A2
Kna-l,nb ‘/Kna—l,nb+4Ana—l,nb .

K T =V ny(n,+1),

(3.5)
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FIG. 2. The Raman coupled model with two quantized
modes a@ and b, driving transitions via a virtual state from state
|4+ ) to a|—), both of which are Stark shifted.

Of course, in this limit we could have started from an
effective two-level Hamiltonian with Stark shifted transi-
tion frequencies and a two-photon coupling,

H=%0,a'a+#0,b b +#d R, , +#6_R__

78,85 o o
A

+ (@R, _+R_.b%a), (3.6)

where R,_=|+){—|, and &, and &_ are the
intensity-dependent transition frequencies defined by

2

@+=wo+%aTa N

(3.7
~ gngb
D_~w,+ A .

The last terms in Eq. (3.7) are due to ac Stark shifts of
levels 1 and 2, respectively.

Finally, we would like to point out from Egs. (3.2) or
(3.4) that the proper inclusion of the Stark shifts has re-
sulted in a linear dependence of the Rabi frequency
kn‘;_l’nb on the photon numbers n, and n,. Had we

neglected the Stark shifts, we would have arrived at the
solutions .

P+(na,nb,t)=coszlc,,a_l’nbt ,

6.8

P_(n,,ny,t)=sin’ t,

n,—ln,
as if the two-photon-resonant levels were driven by an
effective coupling constant of 2« as shown by Gerry and
Eberly [19], rather than the correct value of k. Further,
it is seen that the Rabi frequency in Eq. (3.8) depends on
the square root of the product of n, and n,+1, rather
than a linear dependence on them required for large de-
tunings as in Eq. (3.2) for a two-photon process. It is
therefore vital that Stark shifts are included in any
analysis of multiphoton effective two-level systems.

IV. ATOMIC DYNAMICS

In this section we present a numerical study of the dy-
namics of a three-level atom interacting with correlated
and uncorrelated states of the electromagnetic field. The
quantities of interest are the atomic occupation probabili-
ties defined by

P(t)=3 Prlng,ny)Png,n,,t), i=0,1,2

ny,ny,

where Ff(n,',,nb ) is the joint photon distribution of the in-
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itial field and P;(n,,n,,t) are the atomic occupation
probabilities in the (n,,n, )th manifold. Section IV A will
deal with a field prepared in the two-mode squeezed vac-
vum, while Secs. IVB and IVC will deal with fields
prepared in the two-mode thermal state and the two-
mode coherent state, respectively.

A. Two-mode squeezed vacuum

The two-mode squeezed vacuum has been widely stud-
ied in connection with nonclassical states of the elec-
tromagnetic field [12—-13], and has recently been realized
in the laboratory [22]. In its number-state representation,
it takes the form [13]

- 7|§)”; 4.2)

1 S e™btanhr(n,n) ,
coshr ‘=,
where the squeezing parameter £=re’®, The correlation
between the modes of the two-mode squeezed vacuum is
immediately apparent in Eq. (4.2), where it is seen that
each mode contains the same number of quanta. Barnett

---and Phoenix [23], using their index of correlation, have

shown that the two-mode squeezed vacuum is the most
correlated of all two-mode states of light.

“The joint photon distribution for the two-mode
squeezed vacuum is obtained straightforwardly from Eq.
(4.2) and is given by

_na

n

Prlng,ny)= 4.3)

nn, ?
(1) e
where 7 =sinh?r is the mean number of photons in each
mode. The marginal photon distributions are obtained
by tracing over the appropriate mode variable and are
given by
pa pb 73 m"
Pf(n)=P,f(n)T,1j{(n),-_—,,(1-|—ﬁ)"+1 .
It follows therefore that the photon statistics of the indi-
vidual modes of the two-mode squeezed vacuum are
thermal in character [13].

For the two-mode squeezed vacuum, the double sum-
mation in Eq. (4.1) for the atomic occupation probabili-
ties reduces to a single summation due to the tight pho-
ton correlation (the delta function §, ,n,) between the

4.4)

modes,

P()= 3 Pn)Pmnt), i=0,1,2. @5)
n=0

In Fig. 3 we display the results of Eq. (4.5) for various
values of the one-photon detuning A. The value of 7
chosen corresponds to about 95% squeezing in the nor-
mal mode quadrature operators. At zero detuning, the
Rabi oscillations are irregular, rather like those of the or-
dinary JCM with the initial field prepared in the thermal
state [14]. This observation is readily intelligible because
at zero detuning, one photon processes play a significant
role in the system dynamics, and therefore, as the indivi-
dual modes of the two-mode squeezed vacuum are



4 DYNAMICS OF A THREE-LEVEL ATOM IN A TWO-MODE. .. 6047
A=0 A=10g A=20g
1.0 1.0 8 1.0
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FIG. 3. Time evolution of the atomic occupation probabilities when the initial field is prepared in the two-mode squeezed vacuum
with the number of excitations in each mode 7 equal to 4. The atom-field coupling constants are equal, g, =g, =g.

thermal in character, the atomic occupation probabilities  linear dependence of the effective Rabi frequency on the
should reflect this feature. However, on increasing the  photon numbers (in the large one-photon detuning limit)
detuning, we observe a transition from irregular behavior  so that the photon statistical averages become sums of
to an apparently quasiperiodic behavior. The three-level  commensurate Rabi oscillations.

system in this limit is an effective two-level system in To estimate the revival times of the Rabi oscillations in
which two-photon processes dominate. The Rabi oscilla-  the limit of large one-photon detuning, we follow an
tions revive periodically and independently of the intensi-  analogous procedure given in Refs. [8,19]. First, we write
ty of the initial field. Its origin may be traced back to the  the probability of occupation of level 0 in the form

I

Q0 202 02 02 ¢

o n —1l,n
Po(t)=3 Ps(n) + cos———
n=0 ta—l,nb ‘Q:a—-l,nb A
R if n) Qﬁa—ﬁ‘ﬂﬁb + 29'%1“—193:,, i‘Q%za—l,nbt ] @6
=Re r(n exp , .
n=0 Q‘:Ila—l,nb ‘Q‘fza—l,nb A

and then we assume that the dominant contribution in the summation comes from the term for which n ~ng, where n,

is the photon number for which Ff(n) is maximum. To single out this dominant term we rewrite Q2 _, n, 38
.~ L
O — 10, = 10, T (82 +8))(n— 1) ' 4.7)

and then substitute Eq. (4.7) back into Eq. (4.6), giving

Py(t)=Re {exp mio_l’nét E‘,P (n) Qﬁfﬁgib exp —mio_l’not l Zgia_lﬂﬁb ea tei)n —no)t
olt)=
A n=0 4 ‘Q'?za—l,nb A ‘Q'ﬁa—l,nb A

4.8)
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The times of revivals #, of the Rabi oscillations occur whenever the phase in the last exponential of Eq. (4.8) is a multi-
ple of 2m, i.e.,

(g24+g2)t
g"—Agb—’=2qu, k=12, ... 4.9)
or
4= 2217kA2 ) o s i e —- (4.10)
ga+gb

Thus in the large-one-photon-detuning limit, the revival times are independent of the intensity of the initial field. The
result (4.10) is in good agreement with the numerical plots of Fig. 3 from the solution of the full equations of motion. It
should be noted that for the sake of brevity, we have used the term revival to mean a reinitiation of the time-dependent
evolution of the atomic populations after a period of quiescent collapse. Strictly speaking, only the times ¢, in Eq. (4.10)
for which k is an even number correspond to true revivals of the Rabi oscillations, as seen when we substitute ¢ =¢, into
Eq. (4.6), giving

© o, T 207 0 ?
Py(t=t{)= "3 Pr(n) | — L+ - 2cos | |n+ > b 5 |27k 4.11)
n=0 Qna—l,nb ‘Qna—-l,nb 8a +gb
[

From Eq. (4.11) it readily follows that when the atom- P=p,®p, , 4.12)
field coupling constants are equal, only even values of k _ _ )
will give rise to constructive interference among the vari-  Where p, and pj, are given by
ous terms comprising the sum (and hence a revival of the 5 _n
Rabi oscillations); odd values of k will give rise to des- =3 _—E—imlni Ynl, i=ab. (4.13)

tructive interference, leading to a minimum in Py(¢).

n=0 (147;)"

B. Two-mode thermal state . .
From Eqgs. (4.12) and (4.13) it follows that the joint and

marginal photon distributions for the two-mode thermal
state are given by

The two-mode thermal state is characterized by the
density matrix [24]

A=0 A=10g A=20g
1.0 1.0 1.0
oo 05 | 0.5 0.5
0.0 +———1——1——1——71— Y 0.0 +————1————7—
0 10 20 30 40 60 0 40 80 120 1680 200 0 40 80 120 180 200
1.0 1.0 1.0
<
<, 0.6 0.6 - 0.5 -
Q,
L—wwmwwwwm -
0.0 +—+——"7—"7F—71— 0.0 b 0.0~ ety
0 10 20 80 40 60 0 40 80 120 180 200 0 40 80 120 160 200
1.0 1.0 1.0
o
4 0.6 0.6 - 0.5 -
0.0 ey 0.0 ——r——T—r—p—r—— 0.0 +—————————1—
0 10 20 30 40 60 0 40 80 120 160 200 0 40 80 120 160 200
gt gt gt

FIG. 4. Same as in Fig. 3 but with the field in the two-mode thermal state.
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Pan,)= n”n e (4.14)
(1+m,)"
— 1y
P/I?(nb)= bnb+1

In what follows we have chosen the distributions such
that the photon statistics for the individual modes of the
two-mode thermal state are the same as those for the
two-mode squeezed vacuum.

In Fig. 4 we plot the atomic occupation probabilities
for a field initially prepared in the two-mode thermal
state (4.12). A general feature of the graphs which im-
mediately comes to mind is that the amplitudes of the
Rabi oscillations are somewhat smaller than those of the
corresponding ones for the two-mode squeezed vacuum.
We can understand this by realizing that when the modes
are uncorrelated the total effective field is smaller than
|
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when the modes are correlated. The other feature which
we see is a transition from irregular evolution to an ap-
parently quasiperiodic evolution when the one-photon de-

.. tuning is made sufficiently large. As with the two-mode

squeezed vacuum, we can trace this back to the linear
dependence of the effective Rabi frequency Ry, 1,1, in
Eq. (3.4) on the photon numbers. - Closer exammation of
the revival times for the two-mode thermal state reveals
that they are twice those of the corresponding revival
times for the two-mode squeezed vacuum (for the partic-
ular values of atom-field coupling constants chosen) in
the limit of large one-photon detuning. Thus one way of
distinguishing between correlated and uncorrelated fields
of the same marginal photon statistics is through the
difference in the revival times of the Rabi oscillations in
the large-one-photon-detuning limit.

To estimate the revival time of the Rabi oscillations in
the large-one-photon-detuning limit, we again adopt an
analogous procedure given in Refs. [8,19]. That is, we
rewrite the probability of occupation of level 0 in the
form

= iQ%’o Ligg” | @ w 5 a; _1+Qib _iQ%'Oa_l»"Obt
Py(t)=Re jexp E 2 Pi(ng,n,) exp
A , =0n,=0 n ~Ln A
b
2 2 .
N 2Q; 10y, igHn, —ng, )t oxp igi(n, —ng, )t
‘Q’n —Ln, A A ’
4.15)
[
where we have divided Q,, —1,m, into two parts, Rabi oscillations. The result (4.18) applies for any un-
correlated_two-mode states of the field in the large-one-
QF —1n, =Xn —1,n,, T82(ng 1o, ) T8 (m, —ngy) - photon-detuning limit.
(4.16)

Here ngy, and ng, are the photon numbers for which the
joint photon distribution Pf(na,nb) is maximum. The
Rabi oscillations revive whenever

2
4
g"A’ =k , k=1,2,...
2, 4.17)
Evlr
= =1,2,... .
A I

Multiplying and dividing these two expressions, we ob-
tain the conditions for the revival times ¢, as follows:

=2TVmA k=12, ..
gagb
(4.18)
& _k
g !

Comparing Egs. (4.18) and (4.10) it is readily seen that
uncorrelated fields lead to longer revival times for the

C. Two-mode coherent state
The two-mode coherent state is defined by [24]
letg, @ ) =exp[ —L(]a, >+, 1?)]

"a

oyt
X3 3 A=
n —Onb—Ovn ! ‘/ ny!

with joint and marginal photon distributions given by

In,,,n,7 Y, (4.19)

Pr(ng,ny)=P %(n,)P &(n) ,
- By
P4%(n,)= na' exp(—n,), (4.20)
.
Y
~ 7
TR —
nb.

where 7, and 7, are the mean photon numbers in modes
a and b, respectively.

In Fig. 5 we plot the atomic occupation probabilities
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FIG. 5. Same as in Fig. 3 but with the field in the two-mode coherent state.
for a field initially prepared in the two-mode coherent Q QF _, 52
state. At zero one-photon detuning we see the usual col- P (n,,n,) 7 b 7 z I+— s
lapse and revival of Rabi oscillations. We note further Qo —1n, 20y 1, Q5 1,
that there two types of Rabi oscillations, one at a smaller 2
amplitude than the other. These are attributed to one- @, ~1 5.4
and two-photon processes, respectively. As we increase Py(ng,ny) 202 ’ (5.4
the one-photon detuning, we see a gradual decrease in the L
amplitudes of the one-photon Rabi oscillations, and a Q2 .02 02 _ .02 2
. . ae e . — n,—1%%n, n,— 1%, )
gradual increase in the periodicity of the revivals of the Py(ng,ny)=— n 1+—
two-photon Rabi oscillations. The revival times estimat- Qo —1n, 20y —1,m, Qo —1,n,

ed using Eq. (4.18) are found to be in good agreement
with the numerical plots of Fig. 5.

V. TIME-AVERAGED ATOMIC DYNAMICS

In this section we investigate the mean behavior of the
three-level atom through the time-averaged occupation
probabilities [25]

P=1tim + ["dtP(t), i=0,1,2. (5.1)
T—ow I Y0
Using Eq. (4.1) we find
Pi= 2 ﬁf(na,nb)Pi(na,ﬁb) ) (5.2)
na,nb
where
5 . 1 pT
Pi(na,nb)=1}1_13;-1—,—fo dt Py(ng,n,,t), (5.3)

from which we obtain

In the limit of large one-photon detuning the expressions
(5.4) reduce to the simpler forms

KZ

_ n,—i,n,
Po(na,nb)zl—i—-——~2 N
Kna—l,nb
Pl(fla,nb)~0 » (5.5)
2
- -1 Kna_l’nb
Pz(na,nb)z_ 3
2 %2
Kna—l,nb

where Ky, —1,n, 20d K n,—1,n, are defined as before.

In Fig. 6 we plot the time-averaged atomic occupation
probability P, as a function of the mean photon number
in each mode of the field. We have chosen a detuning
such that the two-level approximation to the three-level
system remains valid for the range of mean photon num-
bers considered. What clearly emerges from the plot in
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FIG. 6. Time-averaged occupation probability of level 0 as a
function of the mean photon number in each mode. The solid,
dotted and dashed lines are for fields prepared in the two-mode
squeezed vacuum, the two-mode thermal state, and the two-
mode coherent state, respectively. The one-photon detuning A
was set to 20g.

Fig. 6 is that P, is higher if the initial field is prepared in
the two-mode thermal state, rather than the two-mode
squeezed vacuum or the two-mode coherent state. At
first glance, it seems rather puzzling that P, should be
different at all for the two-mode squeezed vacuum and
the two-mode thermal state, given they each have the
same marginal photon statistics. The answer to this puz-
zle lies in the fact that the spread in the induced
intensity-dependent detuning A is far greater if the field is
prepared in the two-mode thermal state rather than the
two-mode squeezed vacuum and reflects the correlations
between the modes rather than the mean photon numbers
which determine the mean shift. ‘We will discuss this
point in more detail later.

In experiments a quantity which is often measured is
the probability of the atom staying in its initial state as
the frequency of the exciting field is swept, or equivalent-
ly as the system is detuned from exact resonance. In
what follows we shall assume that the two-level approxi-
mation to the three-level system is valid, that is, we as-
sume a large one-photon detuning. Then the results (5.5)
are easily generalized to include an intensity-independent
two-photon detuning A?:

2

- n,
PO(na’nb) 1- ; :_72__1’ ’
Ky ,— Ly,
I_’l(na,nb)z() (5.6)
- 1K
PZ(nzvnb) E,,, s
Kn =L,
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FIG. 7. Time-averaged occupation probability of level 0 as
function of the intensity-independent two-photon detuning A'®.
The solid, dotted, and dashed lines in (a) are for fields prepared
in the two-mode squeezed vacuum, the two-mode thermal state,
and the two-mode coherent state, respectively. The atom-field
coupling constants are equal. (b)~(d) display the results for the
three ﬁelds separately. The solid and dotted lines are for equal
(g,=g,=g=1) and nonequal (g,=1, g,=2) atom-field cou-
pling constants, respectively. In all cases the one-photon detun-
ing was set to 20g.

where %, _; n, is defined as
.1

k;a_l’nb=‘\/K3,a.._1’nb+-}(A(2)_“Zna_l’nb )2 . (5.7)

We should stress that the system of equations (5.6) are
valid only in the limit A’ << A and that condition (3.1) is
satisfied.

In Fig. 7(a) we plot P, as a function of the intensity-
independent two-photon detuning for three initial states
of the field. We have chosen the atom-field coupling con-
stants such that g,=g,=g. A first observation shows
that the transition line shapes are symmetric for all three
initial states of the field and that they are shifted by the
same small amounts. When the atom-field coupling con-
stants are such that g,7°g,, the transition line shapes be-
come asymmetric as well as being broader and are shifted
by greater amounts, as shown in Figs. 7(b)-7(d) for the
two-mode squeezed vacuum, the two-mode thermal state,
and the two-mode coherent state, respectively. As we
shall see, these features can be attributed to the induced
Stark shifts of levels 0 and 2.

We showed in Sec. III that in the limit of large one-
photon detuning, the three-level atomic system reduces to
an effective two-level system. Further, we showed that
the atomic occupation probabilities in the (n,,n, )th man-

ifold are simply given by
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2
K”a l’nb .
Po(ng,np,t)~1—— SINKy, —1,4, »
Kna—l,nb
Pl(na,nb,t)zo ’ (5.8)7
2
K"a_l’nb .
Py(ng,np,t)~— SInK, _1,0,%
Kna—l,nb

where the generalized two-photon Rabi frequency
Ko, 1,1, is defined by

A 2
n -1 Wy \/Kn —1 "b+1 LN
and A, _, n, is the induced intensity-dependent detuning
,— 1,
defined by

(5.9)

_ n —1_‘0’2

A, - =_—(1_5na06nb0) .

Y (5.10)

Using Eq. (5.10) we can calculate the mean and variance
of the induced detuning for the three initial states of the
field. The results are easily obtained, and are given by

2 2
~ 848
¢ =
E“(A) A
(ga —gb )2
A?
2

{g [1—P,(0)]—2(g2~

g
<n)_K[1_Pf(O)] ,
(5.11)

Vi(A)= (An?)

for the two-mode squeezed vacuum, and

A > g -~
)=t ) &y 50y,
A A
(5.12)
pue(R )= g Ank)+gi{An})
AZ
L8 p (0,0)
Az {gb[ fiY ]

—2(gX(n, ) —g#{n, 1)} P(0,0)

for the uncorrelated two-mode thermal and coherent
states. When the atom-field coupling constants are equal
and the marginal photon statistics (for the uncorrelated
two-mode states) are the same, expressions (5.11) and
(5.12) reduce to the simpler forms

E4R)=—4-11-P/0)],

4
VC(Z)=%[1—Pf(0)]Ff(0) ,

, (5.13)
E*(R)=—4-[1-P/(0,0)],

oK)= 28" (An2)+ Eo[1—F(0,0)]F,(0,0
= AZ n Az[ f ) )] f ) ).

From Egs. (5.13) it follows that the uncorrelated two-

In Fig. 8 we plot P~
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mode states produce a greater spread in the induced de-
tuning A than the correlated two-mode squeezed vacuum
[as seen from the dependence of V"°(A) on the photon

_number spread An?]. The consequence of this is evident

in Fig. 6, where the time-averaged occupation probability

" of the atomic level O is greater in the presence of the

two-mode thermal states than in the two-mode squeezed
vacuum, even though both exhibit the same photon
statistics in their individual modes.

A convenient measure of the role of the Stark shifts in
the time-averaged atomic dynamics is obtained by calcu-
lating the deviation P,—P, where P} is the time-
averaged occupation probability of level / in the absence
of the Stark shifts. From Egs. (5.2) and (5.8) we find

2

_ . i Knu—l,nb
PO= z Pf(na,nb) I“Et‘z— )
Rgshty, na—l,nb
- (5.14)
Py=1[1+P%0)]
giving
2
_ = 1 © w0 an _1_9:2
P, P(l)=? 2 z f(na,nb) 5
na=0nb=0 'Qna—l,nb
) (5.15)

For the two-mode squeezed vacuum, the double summa-

tion in Eq. (5.15) reduces to a single summation:

. )2

— =, 1 L n -1 Q ~

Po_Po=E > Py(n) o2 —P.(0)
n=0

)
n,—1l,n,
(5.16)

P {, as a function of the mean pho-
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0 2
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FIG. 8. A measure of the role of Stark shifts in the large-
one-photon-detuned three-level atom as function of the mean
photon number in each mode.
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ton number in each mode for three initial states of the
field. For the particular choice of coupling constants
(g,=g,), the Stark shifts play a greater role in the time-
averaged atomic dynamics if the initial field is prepared
in an uncorrelated two-mode state, in particular the two-
mode thermal state.

VI. FIELD DYNAMICS

In this section we turn our attention to a study of the
field dynamics, in particular the time evolution of the
photon distributions and the correlations (or anticorrela-
tions) between the field modes. We start by calculating
the joint photon distribution at time ¢, which from Eq.
(2.4), is given by

6053
Pf(na,n,,,t)=ﬁf(na,nb )Po(na,nb,t)
+Ps(n,+1,n,)Py(n,+1,n,t)
+Pn, +1,n,—1)
X Py(n,+1,my—1,2) . 6.1)

The marginal photon distributions are obtained by trac-
ing out the appropriate mode variable:

)= E Pf(na,nb,t) .

Phia)

PO n, )t (6.2)

Equations (6.1) and (6.2) apply for both correlated and
uncorrelated two-mode states of the field. In particular,
for the two-mode squeezed vacuum, we find the following
expressions for the time-dependent photon distributions:

Pp(ngsnyst =P, )Po(ng,ng,t)8, o +Pplng+ 1P (n+1,ng+ 1,008, 41+ Ppin,+ DPyng+1Lng +1,008, , 12,

PHn,t)=P;(n)Py(n,n,)+Pp(n+1)[1=Po(n+1,n+1,)],
1,6)+Pp(n)[1—Py(n,n,1)],

Pi(n,t)=Pp(n —1)Py(n —1,n—

from which it follows that the atom-field interaction

significantly alters the photon distributions from their in-
itial forms.

The development of correlation or anticorrelation be-
tween the field modes is determined by the normalized
cross-correlation function [24] ‘

{(nyny )
(2 py— . v @bt
& = ),

where the subscript means that the expectation values are
taken at time . Written in this form, the cross-
correlation function is a measure of the time-dependent
coincidence counting of ¢ and b photons. If g'¥ is less
than unity, we say that the photons of mode @ and b are
anticorrelated, otherwise they are correlated.

For the two-mode squeezed vacuum, the relevant
quantities in the expression for g'? are given as follows:

(6.4)

(ng)i=ni— 3, B(m)[1—Po(n,n,0)],
n=0
(ny),=a+ 3, Pr(n)Py(n,n,t), (6.5)
n=0
(nanb),=fi(2r_z+1)— i ﬁf(n)[nPl(n,n,t)-l-Pz(n,n,t)] ’
n=0

while for the wuncorrelated two-mode thermal and
coherent states, we obtain

(n =ﬁ 2 2 Pf na,nb 1 Po(na,nb,t)] N
(np),=m,— S E Pp(ng,n,)Py(ng,np,t) ,

n,=0n,=0

(6.6)

(6.3)
[
<nanb>t=ﬁa_b
- E 2 ﬁf(na’nb)[nbpl(nwnb,t)
n,=0n, =0 .
—(n,—n,—1)
XPy(n,,np,t)] .

From Eqgs. (6.5) and (6.6) we see that the intensity of
mode a is enhanced by the atom-field interaction, while
that in mode b is diminished. This is of course due to the
particular initial condition of the atom. Had we started
in the excited level of the atom, we would have observed
an increase in the intensity of both modes due to the
spontaneous emission of an additional photon into the
field.

In Fig. 9 we display the time evolution of the cross-
correlation function for various values of the one-photon
detuning. At zero detuning, we observe that the modes
of the two-mode squeezed vacuum  and the two-mode
thermal state are correlated for all times, while those of
the two-mode coherent state show both correlation and
anticorrelation depending on the time of observation. As
the detuning is increased, the modes of the two-mode
squeezed vacuum and the two-mode thermal state remain
correlated on the whole, but those of the two-mode
coherent state are predominantly anticorrelated. As the
photon distributions for the two-mode squeezed vacuum
and the two-mode thermal state are much broader than
the corresponding distribution for the two-mode coherent
state, it seems that the spread in the initial photon num-
ber of the field plays an important part in determining the
developments of correlations or anticorrelations between
the field modes. In particular, it seems that the more

sub-Poissonian the photon distribution is, the greater is
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FIG. 9. Time evolution of the cross-correlation function for various initial states of the field. (I) two-mode squeezed vacuum, (II)
two-mode thermal state, and (I1I) two-mode coherent state. The mean photon number in each mode is 4 and g, =g, =g.

the anticorrelation which will develop between the
modes.

VIL. TIME-AVERAGED FIELD DYNAMICS

The mean, time-averaged behavior of the field is deter-

mined by the time-averaged cross-correlation function
O

In Fig. 10 we plot £ as a function of the one-photon
detuning A. Whilst the modes of the two-mode squeezed
vacuum and the two-mode thermal state remain correlat-
ed for all values of the detuning, curiously those of the
two-mode coherent state are anticorrelated for sufficiently
large values of the detuning. We observe further that the
time-averaged correlation function saturates to a steady
level for large detunings.

We can also study the time-averaged field dynamics by
showing how g ‘?) behaves as a function of the mean Pho-
ton number in each mode. But rather than use g 2 we
will find it more convenient to use the quantity

=_g%—g%0) - e (7 )
(2) ’ :
g£'“(0) .

which is a measure of the deviation of the time-averaged
cross-correlation function from the initial value of the
cross-correlation g®(0). In Fig. 11 we display C as a

7 (2)—

(7.1)

function of the mean photon number in each mode. Two
values of the detuning were chosen, one at zero and the
other at 20g, where g =g, =g, is the atom-field coupling
constant. At large mean photon numbers, the time-
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FIG. 10. Time-averaged cross-correlation function vs one-
photon detuning. The solid, dotted, and dashed lines are for the
two-mode squeezed vacuum, the two-mode thermal state, and
the two-mode coherent state, respectively. The mean photon
number in each mode is 4 and g, =g, =g.
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FIG. 11. Time-averaged deviation from the initial value of
the cross-correlation function vs mean photon number in each
mode. (I) two-mode squeezed vacuum, (IT) two-mode thermal
state, and (I7I) two-mode coherent state. The solid and dotted
lines are for A=0 and A=20g, respectively. The atom-field
coupling constants in all cases are g, =g=1.

averaged field dynamics are hardly changed by the atom-
field interaction. Further, for the two-mode coherent
state, there is an optimum value for the anticorrelation
between the modes, and this is reached at a moderate
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mean photon number. Finally, we note that at small
mean photon numbers, we could clearly distinguish be-
tween correlated and uncorrelated states of the field

through a measurement of C.

. VIII. CONCLUSION

We have studied in detail the dynamics of a three-level
atom in the A configuration interacting with correlated
and uncorrelated states of the electromagnetic radiation
field. We showed that when the individual modes of the
field are detuned by large amounts from the intermediate
atomic level, the Rabi oscillations of the system dynamics
are periodic and revive independently of the intensity of
the initial field. We have attributed this to the linear
dependence of the effective Rabi frequency on the photon
numbers of the field modes. We found in particular that
the revival times of the Rabi oscillations for the two-
mode squeezed vacuum are in general smaller than those
for the uncorrelated two-mode states, and that this is en-
tirely due to the initial correlation which exists between
the modes. We have demonstrated the role of Stark
shifts in the system dynamics of the Raman coupled mod-
el studied by Gerry and Eberly [19] and by Knight [20],
and showed that they cannot in general be neglected. Fi-
nally, we studied the influence of the atom-field interac-
tion on the field dynamics. We showed that the photon
distributions are greatly altered from their initial forms
by the atom-field interaction. We examined the an-
ticorrelation between the field modes and found that,
whereas the modes of the two-mode squeezed vacuum
and the two-mode thermal state are correlated by the
atom-field interaction, those of the two-mode coherent
state are anticorrelated by the atom-field interaction.
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