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In this paper we investigate the sensitivity of coupled atomic transitions to correlations between field
modes. In particular, we show that a three-level atom interacting with a cavity field supporting two
quantized modes can be highly sensitive to the nature of the correlations between the modes. Correlated
two-mode states include the two-mode squeezed state, whereas the SU(2) coherent state is an example of
an anticorrelated state. We study in detail the dynamics of a three-level atom in the A configuration, in-
teracting with the two modes of an SU(2) coherent state. We show that for certain choices of the atom-
field coupling constants, the generalized two-photon Rabi frequency for the system becomes independent
of the photon number, leading to a purely periodic behavior in time of the atomic population probabili-
ties; for other choices of the atom-field coupling constants, we observe the usual collapse and revival of
the Rabi oscillations. We study also the dynamics of the field, in particular the correlations between the
modes. Finally, for comparison purposes, we present a parallel study of the case in which the field

modes are initially uncorrelated.

I. INTRODUCTION

The Jaynes-Cummings model [1-3] JCM), composed
of a two-level atom interacting with a single model of the
electromagnetic field, has received considerable interest
over recent years. This interest stems from the fact that
this model is exactly solvable in the rotating-wave ap-
proximation and yields nontrivial results due to the quan-
tized nature of the radiation field. These include the col-
lapse and revival of the atomic inversion [4], the produc-
tion of squeezed states of the electromagnetic field [5],
and sub-Poissonian photon-counting statistics [6]. Re-
cent advances in the construction of microwave cavities
have led to the observation of some of these effects when
Rydberg atoms interact with quantized fields in high-Q
cavities [7].

A natural extension of the JCM would be to consider a
three-level atom interacting with one or two modes of the
electromagnetic field [8]. In the latter one can study the
effect of intermode field correlations on the dynamics of
the atom, and vice versa. This particular aspect of the
problem will form the basis of this paper. We will take
an SU(2) coherent state as our example of a two-mode
correlated field state, and a three-level atom in the A
configuration as our atomic transition sequence used to
sense such correlations. The SU(2) coherent state [9] is
characterized by the property that if » photons are ob-
served in one mode, then m —n photons will be observed
in the other mode, where m is the maximum possible
number of photons in both modes. We show that this
special correlation between the photon numbers of the in-
dividual modes (provided that the atom-field coupling
constants are equal) leads to generalized two-photon Rabi
frequencies that are independent of the photon number.
This means that the population probabilities will exhibit
purely periodic behavior. The usual collapse and revival
of the Rabi oscillations as in the ordinary JCM are ob-
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served when the atom-field coupling constants are not
equal. Moreover, because we have a three-level system in
which one- and two-photon processes are possible, there
will be two types of revivals of the population probabili-

ties, with one occurring at half the period of the other.

For comparison purposes, we present a parallel study
of the case in which the initial field is in a two-mode un-
correlated state.: Yoo and Eberly {8] used the two-mode
coherent state in their studies. In our case, we have tak-
en a two-mode state in which each mode exhibits the
same photon distribution as in the corresponding modes
of the SU(2) coherent state. We have found that the pop-
ulation probabilities exhibit collapses and revivals for all
choices of the atom-field coupling constants, and that the
revivals occur at much later times than those associated
with the SU(2) coherent state. In a further paper we ad-
dress the problem of a three-level system coupled to a
two-mode squeezed state where the field modes are corre-
lated.

The plan of this paper is as follows. In Sec. II we
present our model of the three-level atom interacting
with a two-mode field, followed in Sec. IL A by a résumé
of the properties of the SU(2) coherent state. Then in
Secs. III and IV, we present the results of a numerical
study of the atomic population probabilities and photon
correlations, ending in Sec. V with a summary.

II. THE MODEL

The scheme of the three-level atomic system, as shown
in Fig. 1, consists of two allowed transitions, O«>1 and
1<>2, each interacting with a different mode of the field.
We assume for simplicity the full resonance condition, so

‘that we can write the interaction Hamiltonian in the

rotating-wave approximation as’

Hy=#[g,(a"Ro +Ryga)+g,(b"Ry +R 1,01, 2.1)
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Qo =Eap i+ D2,
2 2 3172 2.6)
Ly, = 0 )
In the following sections we will use the solutions (2.5) to
study the atomic and field dynamics under two initial
fields, namely their SU(2) coherent field and the uncorre-
FIG. 1. Energy diagram of a three-level atom in the A  lated two-mode binomial field. But first, we briefly re-

configuration interacting with two quantized cavity modes.

where R;=|i)(j| are the atomic raising and lowering

operators, a,b and aT,bT are the annihilation and creation
operators of the respective field modes, and g, and g, are
the atom-field coupling constants.

We suppose that the initial-state vector of the field may
be written in the form

I\I’(O)>f= 2 Qna,nblna’nb> s

ng,ny

2.2)

where |n,,n,)=|n,)®|n, ). The joint photon distribu-
tion Pf(n,,,nb) for the state (2.2) is related to the expan-

sion coefficients Qn ., by

Pylng,ny)=10, I (2.3)
Later on we will take (2.3) either to represent the photon
distribution for the SU(2) coherent state or the two-mode
uncorrelated binomial state.

Assuming that the atom starts in the state |0), we may
write the state vector of the total atom-field system at
time ¢ as

W)= Q,,a,nb[Co(na,nb,t)|0;na,nb)

na,nb
+C1(na,nb,t)| l;na
+Cylng,np,8)|2;m,

"‘l,nb)
_17nb+1 >] s
2.4)

where the coefficients C;(n,,n,,?) are obtained from the
time-dependent Schrodmger equation, and are given as
follows:

2 2
Q’nb ‘Qna-—l
Colng,ny,t)= 2 7 cos{}, —l,nbt ’
‘Q'na—l,nb ‘Qna—l,nb
. Qn _1 -
Ci(ng,ny,t)=—i sin€d, —y,5,t , 2.5)
ny,~=1l,n,
‘Q’na—l‘an
Cylng,np,t)=—— (1—cos(}, —I,nbt) .
‘Q’na—l,nb

The quantities Q,  and Q, , in Egs. (2.5) are the one-

and two-photon Rabi frequencies defined by

view the properties of the former.

A, Résumé of the SU(2) coherent state

The SU(2) coherent state has been studied by many au-
thors in connection with superradiance in atomic systems
[10]. In its bosonic representation, it takes the form [9]
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|m,7)= ™n,m—n), 2.7)

(H—ITIZ)—"’/Zi
n=0

where m is the maximum possible number of photons and
7 is a complex parameter related to the partition of pho-
tons in the SU(2) coherent-state field modes. The SU(2)
coherent state can be generated in a linear directional
coupler in which a pure number state |m ) is launched
into one port of the coupler, and the vacuum into the

- other [11].

By forming the density matrix and tracing out the ap-
propriate mode, we obtain the following reduced density
matrices:

m |m
=3 |, 5" (1=5)"""|n, Y n,| ,
n, =0 a
(2.8)
m n m—n
Pa= 3 |, |(1=5)"s" Pln,)m,l .
1, =0 b

Here the partition parameter s is related to 7 by
s=|7[%/(14]|7|%) and governs the mean number of pho-
tons in each mode. For s =1, all photons are in mode a
and the vacuum in mode b. The SU(2) coherent state is
thus decoupled in this limit, with one mode projected
into a pure number state and the other into the vacuum
state. For s =21, each mode will have the same mean
photon number but anticorrelated with respect to its
partner.

It is clearly seen from Egs. (2.7) and (2.8) that the joint
and marginal photon distributions are described by the
binomial distributions

s (1—5)" " ,

P(na’nb)= ny,m=—n,

R,

m
" sn(l_s)m—n ,

Py(n)= (2.9)
P (n)=P,(m—n),
with mean and variance given, respectively, by
(n,)=sm, {(n,)=(1—s)m ,
(2.10)

(An2)=(An2)=s(1—s)m ,
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where (An?)=(n2)—(n )2 From Egs. (2.10) it follows
that the statistics in each mode are sub-Poissonian.

A very interesting property of the SU(2) coherent state
is the anticorrelation between the modes, that is, there is
no tendency for photons of both modes to appear simul-
taneously. We quantify this anticorrelation by defining
the normalized cross-correlation function -

(n ny )
2_"a 9" , @.11)
& T ) (ny) |
which for the SU(2) coherent state is given by
g(2)=m__1_ . 2.12)

m

As this quantity is less than unity, the modes are clearly
anticorrelated, the magnitude of the anticorrelation being
determined only by the total possible number of excita-
tions in the field.

IIl. ATOMIC POPULATION PROBABILITIES

By measuring the occupation probabilities of the vari-
ous atomic levels, one can gain an insight into the photon
statistical properties of the exciting field. In the three-
level-two-mode problem, these quantities are given by

Pi(t)=3 Pplng,ny)Png,ny,t), i=0,1,2, (3.1)

Ngsny

where Ff(na,nb) is the initial joint photon distribution of
the field and P;(n,,n,,t) are the occupation probabilities
of the various atomic levels in the (n,,n;)th manifold,
which are obtained from Egs. (2.5) as

4 2 2
‘an 2‘Q’na—l‘an
Py(ng,ny,t)=——=+— cosQy, —1,n,t
‘Q'nn—l,nb Q'na—l,nb
4
i
+ g 2Q t
2 Ccos ng—1m,t
n,—1,n,
2
Q"a_l . 2
Py (ny,ny,t)=———sin"Q, _,t, (3.2
I\Vtas’tp 2 n,—Ln,
n,—1,n,
2 2
‘Q'na—l‘Q'nb
Py(ng,np,t)=—F (1—2cosQ, _y,, ¢
na-l,nb

+cos?Q, 1) -

From Egs. (3.2) it is clear that there are two Rabi fre-
quencies, %Q"a_l’nb and Q, _;,, which govern the
atomic dynamics. These are attributed to one- and two-
photon processes, respectively, and as we show later, they
lead to two types of revivals in the oscillations of the oc-
cupation probabilities.

We now treat two cases of the initial field, namely a
field in the SU(2) coherent state and a field in the two-
mode uncorrelated binomial state.
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A, SU(2) coherent state

When the initial field is in the SU(2) coherent state, the
double summation in Eq. (3.1) reduces to a single summa-
tion due to the tight photon correlation between the
modes,

m —~
Pi(t)=3, Ps(n)P;(n,m —n,t) . (3.3)
n=0
Here P(n) is given by the binomial distribution
Pi(n)= , ST L=s)m T (3.4)

In Figs. 2 and 3 we display the occupation probabilities
of the various atomic levels as a function of time, for
varying values of the atomic-field coupling constants and
partition parameter s. The former is for the case in
which the atom-field coupling constants are equal, and as
we have mentioned earlier on, this leads to a purely
periodic behavior of the atomic occupation probabilities
due to the independence of the generalized two-photon
Rabi frequency on the photon number. We further ob-
serve that increasing the mean number of photons in
mode a or b leads to an enhancement of one-photon tran-
sitions, as seen in Fig 1(b), where 90% of the photons are
initially in mode a. When the atom-field coupling con-
stants are not equal, we observe collapse and revival of
the Rabi oscillations (Fig. 3). Due to the possibility of
one- and two-photon processes, two types of revivals are
seen. The ones with smaller amplitude are associated
with one-photon processes, while those of larger ampli-
tude are associated with two-photon processes. As in the
case of equal atom-field coupling constants, an enhance-
ment of the one-photon processes is observed when there
is an imbalance of mean photon number between the
modes [see Fig. 3(b)].

Following a procedure analogous to that given in Refs.
[4] and [8], we can estimate the revival times of the Rabi
oscillations of the atomic occupation probabilities. We
suppose that the dominant Rabi frequency is the one for
which n =7, and that the interval between revivals ¢, is
obtained when two neighboring components with n =7
and n=p+1 differ in phase by 27 (for the two-photon
revivals), that is, :

Qi ™ Qg8 =27 @3.5)
or more simply
47Q)_ _
a,m—n—1
s gb>g
882 ‘ 56
t~ 3.
’ 40 1 g g.>b
gi—g < TE

The interval between revivals of the one-photon Rabi os-
cillations occurs at half these times. These predictions
are in agreement with the numerical plots of Fig. 3.

Finally we investigate the mean behavior of the atomic
dynamics, as determined by the time-averaged occupa-
tion probabilities defined by
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(3.7

. 1 pT
P,-(na,nb)=]}1mw T4, dt Pi(n,,ny,t) , (3.9)
from which we obtain
1.0
=
= 0.5 -
- QD
R,
0.0 i ] T T
0 1 2 3 4
1.0
-
~1 0.5
A,
0.0 i T T T
0 1 2 3 4
1.0
= o :
2, 08
Q.
0.0 , | | {
0 1 2 3 4

13

44
_ 208 +0f
Py(n,,ny)= -,
¢ 2‘Q'ﬁ —L,n,
Py(ng,n) 0,1 (3.10)
W\ By lp )= .
e
Pitnm) 307 05,
o\, Ny )=
¢ 2‘94 —l,nb

The time-average occupation probabilities (3.8) are plot-
ted in Fig. 4 as a function of the parition parameter s and
for varying values of the atom-field coupling constants.
We observe that as we increase the number of mean pho-

(b)

1.0

0.5

0.0 T T T T

1.0

0.5

0.0 ,

1.0

0.5

. 0.0 T T T

t

FIG. 2. Time evolution of the atomic occupation probabilities when the initial field is in the SU(2) coherent state with a maximum
total m of 40 photons. The atom-field coupling constants are g, =g, =1, and the partition parameter (a) s =0.5 and (b) s =0.9.
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tons in mode a, at the expense of a decrease in mode b,
the one-photon transitions are enhanced, as shown by an
increase in the occupation probability of level 1. Of
course we will observe the same effect when we increase
the number of mean photons in mode b, at the expense of
a decrease in mode a. We note that the time-averaged oc-
cupation probabilities of levels 0 and 2 have a minimum
and a maximum value, respectively. These points occur
when the Rabi frequencies of the respective modes are
comparable in magnitude with each other.

B. Two-mode uncorrelated binomial state

In the two-mode uncorrelated binomial state, the occu-
pation probabilities of the atomic levels take the form

m m
P,‘(t)= 2 2 Pf(na,n,,)Pi(na,nb,t) N (3.11)
"a=°"b=0
1.0
—~
~o
~— 0.5
)
ol
0.0 T T | T
0 10 20 30 40 50
1.0
=
~L 0.5
Q,
0.0 T T T T
0 10 20 30 40 50
1.0
= 05
g
5 0
) WN
0.0 T T T T
0 10 20 30 40 50
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‘where Ff(na,nb) is given by the joint binomial photon
distribution

— m —
sna(l_‘s>m n, (l_s)nbsm ny

P’f(rna,nb )= n,

Ry

=PH(n, )PYny) . (3.12)
We have chosen the distribution (3.12) such that the
mean and variance in photon number are the same as
those in the corresponding modes of the SU(2) coherent
state [see Eq. (2.10)]. ,

In Fig. 5 we display the occupation probabilities of the
various atomic levels for two choices of the atom-field
coupling constants. We immediately notice distinct
differences between this case and the case in which the
field is initially prepared in an SU(2) coherent state.
First, there is no purely periodic behavior in time of the

(b)

1.0

0.6 |
il Lk
e ol

0.0

1.0

0.5 *
0.0
0
1.0
0.5 M
0.0
0

FIG. 3. Asin Fig. 2 but with g,=1 and g, =2.
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atomic occupation probabilities. Second, although there
are still two types of revivals, these occur at much later
times. We also note that the amplitude of the Rabi oscil-
lations are smaller than those assocmted with the corre-
sponding SU(2) coherent state.

To estimate the interval between revivals we adopt an
analogous procedure given in Ref. 12. We write the two-
photon component of the occupation probability of level
0 in the form

e
Py()=Re | 3 Piln,,n,) o exp(iQ, _yp, 1)
nysy n,—Lny
(3.13)
. 202 _— 02
Py(t)=Re exp(iQy 5 11) 3 Pf(n,,,nb)———————Q4 :
ng,ny n,—Ln,

Xexpli —gZQ_ 1,7, -1

Now the times of revivals ¢, of the two-photon Rabi oscil-
lations occur when the two phases in the exponentials in-
side the sum are in phase with each other, that is, when

120, =2k, k=0,1,2,.

(3.16)

lg20-1 =271, 1=0,1,2,....

n, —1, n, —1
Multiplying and dividing these two expressions, we ob-
tain the conditions for the revival times as follows

arvm Q._ 17,1
t,= s

’ 848p

m =kl

=O,1,2, .

(3.17)
8 _ -

g7

For the values used in the numerical plots of Fig. 5 we es-

le'

Pf(na,nb,t)=Pf(na,nb)Po(na,nb,t)+ﬁf(n +1,nb )Pl(n +1,nb,t)+Pf(n +1 nb_l
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We now suppose that the dominant Rabi frequency is
that for which n,=#, and n,=r,, so that we may ex-
pand Q,,,a —1n, in a Taylor series,

Q‘na—l,nbzﬂna—l,nb-l
2 1 5
z'Q'n —-lnb—l+ ﬂn -1, nb—l( nﬂ)
+1g00s L i)+ - (3.14)

Substituting this back into the expression (3.13) gives

—1, )t]exp[z—g (n, — 7, )t] (3.15)

[ —1 iy —1

timate the revival times of the two-photon Rabi oscilla-
tions as

80, g,=g,=1

126, g, =1, g,=2. (3.18)

The revival times of the one-photon Rabi oscillations
occrtr at half these values. These are in agreement with
the numerical results.

____IV. FIELD STATISTICS

In this section we turn our attention to a study of the
field dynamics, in particular the time evolution of the
-~ photon distributions and the correlations (or anticorrela-

“tions) between the field modes. We start by calculating
the joint photon distribution at time #, which from Eq.
(2.4) is given by .

)Pz(na+1,nb_1,t) . (4.1)

The marginal photon distributions are obtained by tracmg out the appropriate variable:

=3 Pplng,ny,t) .

"y (a)

PF Oy gyt

4.2)

For the SU(2) coherent state (2.7), Egs. (4.1) and (4.2) become
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Pf(na,n,,,t)=ﬁf(na,m —Hh, )Po(navm —n, )Snb,m—na

+Pp(n,+1,m —n,—1)Py(n, +1,m —n,

+Pp(n, +1,m —n,—1)Py(n,+1,m —n,
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—1,8)8

—1,1)8
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ny,m—n,—1

(4.3)

’ Ry,m—n, ’

PH(n,t)=P $(n)Py(n,m —n,t)+P $(n +1)[1—Po(n +1,m —n —1,1)],

Pi(n,t)=P 4(n)[1—Py(m —n,n,0)]+P%n —1Py(m —n+1,n —1,2),

1.0
| 9,59,=1
0.5 )
O_O /;z , l !
0.0 0.5 1.0
1.0
ga:ll, 9,72
0.5
0.0 q=f=p ==
0.0 0.5 1.0

FIG. 4. Time-averaged values of the atomic occupation prob-
abilities as a function of the partition parametér s when the ini-
tial field is in the SU(2) coherent state with a maximum total m
of 40 excitations. The solid, long-dashed, and short-dashed
lines represent levels 0, 1, and 2, respectively.

where the initial photon distributions are given by Egs.
(2.9). For the two-mode uncorrelated binomial state, we
replace Pf(n,,n,) in Eqgs. (4.1) and (4.2) by the joint pho-
ton distribution (3.12). The photon distributions are thus
greatly altered from their initial binomial forms by the
atom-field interaction.

The correlation or anticorrelation between the modes
as mentioned before is described by the normalized
cross-correlation function defined by

gm(t)— (n,,n,, >t

CBRCR IR 4.4

Written in this form, the cross-correlation function is a
measure of the coincidence counting of a and b photons
at time z. If g is less than unity, we say that the pho-
tons of mode a and b are anticorrelated, otherwise they
are correlated.

For the SU(2) coherent state the relevant quantities in
the expression for g‘?)(¢) are given as follows:

{n,),=sm— ﬁ‘, P4(n)[1—Py(n,m —n,1)],

n=0

(ny ) =(1—s)m + 3 Bn)Py(m —

n=0

(n,ny),=s(1—s)m(m—1)

+(m —2n + 1P, (n,m —n,8)] .

On the other hand, for the two-mode uncorrelated bino-
mial state, we have
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(a) (b)
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FIG. 5. Time evolution of the atomic occupation probabilities when the initial field is in the two-mode uncorrelated binomial state
with a maximum total m of 40 excitations. The atom-field coupling constants are (a) g, =g, =1 and (b) g,=1, g, =2, and the parti-
tion parameter s =0.5.
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FIG. 6. Time evolution of the cross-correlation function when the initial field is in the SU(2) coherent state with a maximum total
m of 40 excitations. The atom-field coupling constants are (a) g, =g, =1 and (b) g, =1, g, =2, and the partition parameter s =0.5.



S

(a)

INTERACTION OF A THREE-LEVEL ATOM WITH AN SU(@2). .. : 2011

~ (b)
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FIG.7. Asin Fig. 6, but with the field in the two-mode uncorrelated binomial state.

<na)t=<na )0_ 2 2 ﬁf(nainb)[I_Po(na’nb:t)]’

n,=0n, =0

(nb);=<nb )0+ 2 2 Pf(naynb )Pz(naynlnt) »
n,=0n,=0
(4.6)
<nanb>l‘:=<nanb >O

X[anl(na,nb,t)
~(ng—n,—1)Py(n,,ny,t)] .

In Figs. 6 and 7 we display the time evolution of the
cross-correlation function for two sets of atom-field cou-
pling constants. We note that for the SU(2) coherent
state (Fig. 6), the cross-correlation function evolves in a
purely periodic manner when the atom-field coupling
constants are equal, and that it oscillates between its ini-
tial value and some lower value; thus the effect of the
atom-field interaction is to increase the anticorrelation
between the modes in this case. We can trace this in-
crease in anticorrelation back to the periodic removal of
a photon from mode a and the emission of the same pho-
ton into mode b. Had we started in the atomic state |1)
we would have observed a decrease in anticorrelation due
to the periodic emission of an additional photon into
mode a or b. For nonequal atom-field coupling constants,
oscillations of the cross-correlation exhibit collapses and
revivals similar to those of the atomic occupation proba-
bilities. However, there is one difference; the revivals
occur in pairs. One can readily understand this from the
expression for {n,n, ), which depends on the occupation
probabilities of two atomic levels, rather than one as in
the case of {n, ), or {n,),. We note that, unlike the case
of equal atom-field coupling constants, the time-averaged
anticorrelation between the modes is slightly weakened

by the atom-field interaction. Similar remarks apply for
the two-mode uncorrelated binomial state, except that
the cross correlation does not exhibit purely periodic be-
havior for any choice of the atom-field coupling con-
stants.

V. SUMMARY

We have studied the dynamics of a three-level atom in-
teracting with an SU(2) coherent state and a two-mode
uncorrelated binomial state. We showed that there are
marked differences between the two cases. In particular,
we found that for the SU(2) coherent state, the atomic oc-
cupation probabilities exhibit purely periodic behavior
for equal atom-field coupling constants. This is entirely
absent when the field is in the two-mode uncorrelated bi-
nomial state or any other state except for the number
state. Furthermore, we have found that the time of re-
vivals of the Rabi oscillations when the initial field is in
the SU(2) coherent state is much shorter than those when
the field is in the two-mode uncorrelated binomial state,
even though the photon statistics of the individual modes
are the same as those in the latter. Finally, we studied
the influence of the atom-field interaction on the field dy-
namics. We showed that the photon distributions are
greatly altered from their initial forms by the interaction.
We examined the anticorrelation between the modes and
found that its time evolution follows a similar pattern to
that of the atomic occupation probabilities.
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