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Amplitude kth-power squeezing of k-photon coherent states
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We have defined a new nonclassical effect: amplitude kth-power squeezing. We have analyzed the
squeezing properties of the k-photon coherent states as defined by D’Ariano, Rasetti, and Vadac-
chio [Phys. Rev. D 32, 1034 (1985)]; Katriel et al. [Phys. Rev. D 34, 332 (1986)]; and D’Ariano and
Sterpi [Phys. Rev. A 39, 1810 (1989)]. It has been shown that, due to the interaction with the non-
linear nonabsorbing medium modeled as an anharmonic oscillator, these states become amplitude

kth power squeezed.

I. INTRODUCTION

Investigations of the nonclassical features' > of the
electromagnetic field have become one of the central to-
pics in quantum optics. In particular, attention is paid to
the effect of the sub-Poissonian statistics"? in which the
photon-number distribution is narrower than the Pois-
sonian distribution. Another widely discussed effect is
light squeezing®™> when the fluctuations in one of the
canonically conjugated quadratures are reduced under
the value of the vacuum fluctuations.

Since the pioneer works of Stoler® and Yuen’ on
squeezed states, several generalizations of the notion of
squeezing have been studied. Particularly, the multipho-
ton squeezed states have been proposed. As shown by
Fischer et al.,® the straightforward generalization of the
two-photon unitary (squeeze) operators which generate
the usual squeezed states to higher order is questionable
due to the fact that the vacuum-to-vacuum matrix ele-
ment of the generalized squeeze operator 0 (xy defined as

Ouw=explze@NE+R, (@ 2)—z2 @),

(where Re(af,ﬁ) is a polynomial in @, and a' of order less '

than k) diverges for k >2. This difficulty can be partly
overcome from the computational point of view using
Padé approximants.® An alternative way to define k-
photon states has been proposed by D’Ariano and co-

workers.'” 12 They used the Brandt-Greenberg!® multi- -

photon operators (see below) and the group-theoretical
approach for constructing generalized coherent states.
Besides generalizing the ordinary coherent and
squeezed states of the radiation field, it is possible to ex-
tend the notation of squeezing to higher-order moments
of the field quadratures. In particular, Hong and Man-
del* considered the Nth order moments {(AX,)") of the
real part of the field amplitude X,. {(AX)¥ ) is said to

be squeezed if it takes values less than its coherent state -

value.

Subsequently Hillery'# has shown that the squeezing of
the square of the field amplitude is also a nonclassical
effect. Squeezing proposed by Hillery is not equivalent to
that of Hong and Mandel. It is natural that under
different definitions of squeezing the very same state of
light can exhibit different properties.
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In this paper we study the interaction of k-photon
coherent states as proposed by D’Ariano et al.’® with a
nonlinear, nonabsorbing medium modeled as an anhar-
monic oscillator. We will study the time behavior of the
variances of the quadrature operators corresponding to
the Brandt-Greenberg k-photon operators. Using these
multiboson operators the amplitude kth-power squeezing
is defined.

II. k-PHOTON COHERENT STATES

We begin with some brief remarks on k-photon
coherent states as discussed by D’Ariano and co-
workers.'”"'? They have used Brandt-Greenberg opera-
tOI'S13 A(k) and A(k)
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satisfying the commutation relation

[ A, Al]=1. 2.2)

In (2.1) the functlon [x] is defined as the greatest integer
less or equal to x; a' and @ are the usual bosonic creation
and annihilation operators and # is the photon-number
operator = a'a. For k =1 we obtain the usual creation
and annihilation operators a'and a.

In the Fock space 4y, and A}, act as k-photon an-
nihilation and creation operators

Ayylnk +mY=vVnln =Dk +m) ,
Alylnk +m)=vVa +Dl(n+ Dk +m) ,

where 0<m <k —1.

(2.3) .

Due to the fact that there are k

vacuum states |n) (Q <n <k —1) for the generalized an-

nihilation operator 4 ,,, the Fock space splits into k or-
thogonal subspaces which are invariant under the action
of the k-photon operators;
|nk +m ) is thus labeled by the quantum number n and

the degeneracy parameter m, w hlch are the e envalues
of the commuting operators 4] k,A( x and
~k Al A
A(k)A(k)lnk +m ) =n[nk +m > ’
(2.4)

M lnk +m)=mlnk +m) .
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To overcome the degeneracy problem it is convenient to
suppose m =0, i.e., the vacuum state of the k-photon
operator A is also the vacuum state of the photon
operator @. This assumption is quite natural if the k-
photon state is supposed to be generated from the vacu-
um state |0).

Glauber’s coherent state |a) can be generated by shift-
ing the vacuum W1th the unitary displacement operator
D(a,a)=explatt—a*a):

_ _ i © '
la)=D(@,a)a)=exp(—|al| /2)n§°mln). (2.5)

The k-photon coherent state can be obtained by shifting
the vacuum with the unitary k-photon displacement

operator D( 4y, a):
|a)k=ﬁ A(k),a)lO) ’ ~
where

D=expladfy—a* 4, . (2.6)

Since the algebraic properties of the operators Ay A fk}
are the same as in the case of the operators @,a", for |a )
we obtain the following expression:

= (ad})
la ), =exp(—|al|?/2) 2 an' j0)
=exp(—|al?/2) }_‘, V—|nk) 2.7

From (2.7) it follows that for k=1 the generalized
coherent state is equal to Glauber’s coherent state (2.5).

III. AMPLITUDE kTH-POWER SQUEEZING

We introduce two canonically conjugated varlables
.? (k) andf

_ A(l;)f"AFkl

= . 2
(k) 2 3

= “2i

= (3.0)

with the commutation relation [§ (k),f(k)]—z/Z The
canonical variables X}, and X2, can be understood as a
generallzatlon of the canomcal operators yi=(a?
+a%)/2 and Y?=(a%—
and the imaginary parts of the square amplitude intro-
duced by Hillery. Besides thls, it should be underlined

here that the operators a2, 2™ and 272 used by Hillery are

related to the particular bosonic reahzatlon of SU(1,1)
Lie algebra, while operators Ay, and A( & are related to
the Weyl-Heisenberg algebra. The uncertainty relations

are, in these two cases, also different. For the amplitude

squared operators we obtain
(AR Y ADD) 2 (A+1L)?

with the squeezing condition {(A?;)?) <{(f+1), while
for amplitude k-power squeezing (AkS) in terms of the
operators A( x the uncertamty relation is

(AR} ((ARZ,?) >

"‘16

3.3)
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12) /2i which represent the real

~amplitude-squared squeezed light.

32

and the squeezing condition is (AR ) < +. Following
the idea of Hoﬁg and Mandel* we can introduce the pa-
rameters Q{) which measure the degree of squeezing in
both quadratures (i =1 or 2)

. (AR — 2[R Y0 RE D] .
Q= (RS2
i4<:(Az?{k))2i> s

where (:(ARI,,)*) is the normally ordered variance.
The squeezing condition is, in this case, very simple

(3.4)

Qfi <0 (3.5)
and maximum (100%) A%S is obtained in the case
Qi =—1. One can easily check that for the states la),

the parameters Q!;, are equal to zero which means that
these states are not amplitude kth power squeezed. Nev-
ertheless, as it has been shown by D’Ariano and co-
workers,m 12 these states exhibit ordinary squeezing (in
our notation Q) is less than zero).

~ IV. AMPLITUDE kTH-POWER SQUEEZING
BY AN ANHARMONIC OSCILLATOR

The schemes proposed for the generation of squeezed
states!>~!8 are essentially based on nonlinear-optical pro-

- cesses when the field interacts with matter characterlzed

by kth-order susceptibility. In particular, Tanas!® has
shown that a high degree of ordinary squeezing may be

“—obtained from the interaction of coherent light with a

nonlinear, nonabsorbing medium modeled as an anhar-
monic oscillator with the Hamiltonian (we adopt #i=1)
@'ya?,

Cp=waa+ + 4.1)

—— where A is related to the third-order susceptibility of the

medium. Subsequently, the model has been generalized
by Gerry® to the case of the s-photon anharmonic oscil-
lator

- B=ot'a+tatye. “2)
It has been shown that due to the nonlinear interaction,
the ordinary squeezing can appear for the initial coherent
state of the field. Besides, it has been shown that the sys-
tems under consideration can serve as a generator of

21,22

‘One of the possible generalizations of the nonlinear

Hamiltonian (4.2) can be written in the form

b =w@"a+%—( AT,y as,, 4.3)

where w is the characteristic frequency of the field and A

-:is the couplmg constant related to the nonlinear suscepti—

bility and s is an integer. The Hamiltonian (4.3) given in
terms of the multiboson operators A;rk and A( 3
preserves the structure of the Hamiltonian (4.2) and in
the case kK =1 reduces to (4.2). Another possible generali-
zation of the nonlinear Hamiltonian (4.2) can be thought

by considering the terms of the form ad fk) orad (k). For
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instance, one can study the dynamics of the nonlinear os-
cillator given by the Hamiltonian

o= ma*a+—(A(k,)’( A rre@+at A+ k) .

In this case the generalized Hamiltonian does not
preserve the subspace structure of the Hilbert space gen-
erated by the action of the operator (2.6) upon the vacu-
um state.

The time evolution of the o
the Heisenberg equation with /

erator A (t) is given by
given by (4.3)

.d ~ ~ '
’E{A(m:[ﬂ(k),ﬁ] , 4.4)
and the solution of this equation can be written as
j
«{al dytla),=aexp(— Ialz)z la l exp —i¢(
72 =2 2y < |a!2" .
W{al A4y (0)a), =a’exp(—|al®) z kel el

k(alﬁ{k)(t);f(k) [a)k la[2

where we have set At =7. Using the expressions (4.6) and
(4.7) we can evaluate the function

Ql(=4([AR} ) —1 .

Further we will analyze the Hamiltonian (4.3) for s =2.
In this case the function Q{;, can be obtained in a closed
form. If a is chosen to be real, then we can write

Qi (t)=2a?{1+exp[a*(cos27—1)]cos(T+a’sin27)
—2exp[2a*(cosr—1)]cosX a’sinT)} .
. (4.8)

This function describes the time evolution of amplitude
kth-power squeezing govered by (4.3) of an initially k-
photon coherent state (2.7). Now the question arises of
whether the nonlinear interaction governed by (4.3) leads
to the amplitude kth-power squeezing of the k-photon
coherent state (2.7). To answer this question we evaluate
the first and the second derivatives of the function Q{, at
the initial moment of the evolution. It can be easily
found that (3/37)Q {4, (7)|,=o=0 and

Q(k,(r)l,_ =—20%1+4a?) , (4.9)

a#
from which it follows that, due to the interaction with the
material medium, the k-photon coherent state starts to be
amplitude k power squeezed. Moreover, the higher the
initial photon number ({f)=ca?) is, the more rapidly
squeezing appears. The first minimum of the function
Q!ly(2) for a*— w is equal to 68%. Then squeezing is re-
voked, but after some time it appears again and its max-
imum value is almost 1009%. To analyze the high-

intensity limit (a®>>1) it is convenient to introduce new
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zli\(k)(t)=exp( —it [kco-i— A.[ 2&)(0)]‘:_—1

X[ Ay (0OF 1) 4 4,(0)

Further, we will consider only the variance in the first
quadrature for which we have

((Af(lk))2>= %‘( 2

4.5

o0 Ay (D)) +4Re{ A2 (0))

—[Re{ 4 (D) P+L . 4.6)

Dropping the free-evolution term and assuming the light
to be initially in the k-photon coherent state | ), we ob-
tain for the mean values of the relevant operators

!

n—s+10 |’
n! (n+1)
4.7
(n~=s+1)!  (n—s+2) } ’

I

scaled time o =a?r. Then the function Q('k) () up to
terms O(1/a?) can be written in the following form:

Qlilo

The time behavior of the function Q( 1 (o) is given in Fig.
1. From this plcture it is seen that 4 *S appears regularly
with the period of 7 in the scaled time o.

Here we can mention that the explicit expression for
the functions Q!,, does not depend on k, from which it
follows that the functions Q{y, describe the time evolu-
tion of the ordinary squeezing (k = l) of the field mltlally
prepared in Glauber’s coherent state?® as well as 4%S of
the k-photon coherent field for any k.

Finishing the paper, we can conclude the following.

(i) In the paper the definition of the amplitude kth-
power squeezing has been given.

=[20 sin(o)—cos(o)]*—cos¥ o).  (4.10)

squeezing
(@]
o
1
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FIG. 1. The time dependence of squeezing given by the func-
tion Ql (o). From the picture it is seen that only the first
minimum differs considerably from 100% squeezing. Scaled

time o is equal to Aa’z.
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(ii) The squeezing properties (particularly A*S) of the
k-photon coherent states (CS) have been analyzed. It has
been shown that these states are not amplitude kth power
squeezed.

(iii) The nonlinear interaction of the k-photon CS

“" BRIEF REPORTS
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governed by the Hamiltonian (4.3) leads to 4 kS of the k-
photon CS. In this case, the time behavior of 4 kS has
been analyzed in detail. In particular, we have shown
that the A %S behaves periodically for high intensities of
the initial field [see Eq. (4.10) and Fig. 1].
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