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We have studied the interaction of the squeezed light with the nonabsorbing nonlinear medlum in
the framework of the model of an anharmonlc oscillator initially in a Holstein-Primakoff Su(,n
coherent state. We have shown that the initial squeezing reappears periodically. Furthermore, due

- to the interaction with the nonlmgar medium, the squeezing can be enhanced.

I. INTRODUCTION

Today, when it has become possible to generate the
squeezed states of the electromagnetic field (for reviews
on the subject see Refs. 1-3) in the laboratory,*~7 new
perspectives have opened in quantum optics—theoretical
as well as experimental. In this situation it seems mean-
ingful to analyze the influence of the material media on
squeezing properties of the llght field.

The recent paper by Gerry® has been devoted to the

problem of the interaction of matter with the _squeezed
light. He has studied the solvable model of the nonab-

sorbing medium modeled as an anharmonic oscillator
with the Hamiltonian®~# (#i=1)

interacting with the squeezed light described as an
SU(1,1) coherent state (CS).' !¢ Gerry has found that the
Hamiltonian (1.1) can be rewritten in terms of the same
SU(1,1) generators as those on which the SU(1,1) CS has
been builf (see below). In the framework of such a model
it has been shown that the nonlinear medium tends to re-
voke the squeezing of an initially squeezed SU(1,1) CS.
Moreover, the greater the initial squeezing the more rap-
idly it is revoked and at longer times the variances of the
quadrature operators tend to oscillate, but seem to never
become squeezed again.

In the present paper we will analyze the model of the
anharmonic oscillator very similar to that considered by
Gerry the typical feature of which are the periodical re-
vivals of the initial squeezing. We will also show that due
to the interaction with the nonlinear medium the initial
squeezing gets enhanced.

II. MODEL

Gerry has studied in his paper® the dynamics of the
nonlinear oscillator with the Hamiltonian (1.1) rewritten
in terms of the generators K, and K. of the Lie algebra
of the SU(1,1) group given in terms of the bosonic ope-
rators aand at ([a,a ]—1)

Ko=4a'a+aah), K+ (@"?, K_=Lar2,

-—tion®

ley=(1—|g

(2.1

which obey the commutation relations

[KoKi]l=2K., [K_,K.]=2K, . (22)

Using (2.1) the Hamiltonian (1.1) can be rewritten (up to
constant factors) as follows:

H=wK,+AK K _ (2.3)
The SU(1,1) CS corresponding to the realization (2.1)

of the generators K, and K. is given by the rela-
8,15—16

L(n+1)

Tt (2.4)

172
] £"2n),

n =0

. . where £=|Ele'® (0<[£|<1).
H=coa1ua-i-5(a‘r)2a2 (1.1 where §=¢le €1

In our analysis we will also consider the Hamiltonian

. in the form (2.3), but with a different realization of the

generators K. Namely, we will use the Holstein-
Primakoff realization of the SU(1,1) Lie algebra,!”

Ko=4(a'a+aa", k,=VNa', K_aVN,

where N =a'q is the photon-number operator.

The SU(1,1) CS corresponding to the generators (2.5) is
the special (one-photon) case of the multiboson Holstein-
Primakoff SU(1,1) CS as discussed by Katriel and co-
--workers'® ™2 which in the number state representation
has the following form:

~1O=U-1E? Z emnd= 3 Q,ln),
- n=0 n=0
where £=|£|e’? and 0<|£| <1, 0<@<27. This state is

not a minimum-uncertainty state (its wave function is not
a Gaussian one), nevertheless, it is a squeezed state with

(2.5)

(2.6)

“the variance in one quadrature less than the one associat-
- ed with the coherent field (for details see Ref. 21).

.-The evolution of the system under consideration is

‘ given by the Schrédinger equation

o) =H1g0) @7
Following the idea of Gerry, we will assume the initial
state of the system (at # =0) to be an SU(1.1) CS (2.6)
and for the state vector [z/J(t)) given by the Eq. (2.7) we
obtain
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l@(e))= EQ,, exp[—ilon+AnH)t]in) . (2.8)
n=0

For the purposes of the following calculations we will
write down the mean values of the photon-number opera-
tor (N ), photon amplitude {a ), and the squared photon
amplitude {a?),

4o=(N)= i‘ nP,=|&|X(1— &))" =nm ,

n=0

A,=(a)e! @ P=|g| 3 P it/ y L]
n=0

A2=<a2)82i(wt—¢) 2.9)

=l§|2 z Pne—4i(n+1)'r1/(n+1)(n+2) ,
n=0

where 7=At and P, is the distribution of the SU(1,1) CS
(2.6), .

P,=1Q,I*=1—gPlg*" .

At the end of the present section we mention that the
average photon number 7 is the integral of motion, which
is the consequence of the commutation relation
[Ko,H]=0.

(2.10)

III. LIGHT SQUEEZING

To analyze the squeezing properties of light we intro-
duce two Hermitian time-dependent quadrature opera-
tors

al(t)=_%(aei(a;t'—8)+a1'e—i(Qt—S)) , (3.1a)

i(mt—S)_aTe -i(wt—8)) ,

ay(1)=~-(ae (3.16)
where d is an arbitrary phase chosen to be equal to @ {the
phase of the squeezing parameter £). One of the conse-
quences of the commutation relation for the quadrature
operators a;(t),

[a,(0hay(0]=7 (3.2)
is the uncertainty relation
iz &, - (3.3)

where V(1) are the variances of the quadrature operators
Q; (1),

Vi ={a}())—(a,())*.

Since the squeezed states are defined as the states with
a smaller uncertainty in one quadrature of the field than
that associated with the coherent field, the squeezing con-
dition can be written as

(3.4)

Vity<} fori=1lor2. (3.5)

The variances of the quadrature operators a; can be ex-
pressed through the mean values of the photon operators

(2.9).
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FIG. 1. Functions V;(z) at ¢t =0 vs the squeezing parameter

i

Vi(t)=1[ dg+1+Red, —2(Re4,)?], (3.62)

Vy(t)=4[ 4o +L—Red,—2(Im4,)] . (3.6b)

IV. DISCUSSION

From the expressions for the functions V;(z) several
properties of the variances of the quadrature operators
follow.

(1) For the particular value of the phase 8 (§=¢) the
variance in the second quadrature is squeezed at t =0
[V,(t=0)<{]. The functions V;(¢) at ¢ =0 versus the
parameter |£|? are plotted in Fig. 1. It is typical for the
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FIG. 2. Second derivative of the function V,(r) at 7=0 vs

[{8
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FIG. 3. Functions ¥,(7=0) (curve 1) and V,(r=m/2) (curve the evolution vs |£]2.

2) vs €%

Holstein-Primakoff SU(1,1) CS (Ref. 21) that the degree

of squeezing increases with increasing the intensity of the
field (or, what is the same, with increasing |£[%). The
maximum (1009%) squeezing is obtained for A—
(lE]2—>1). -

(2) The time evolution of the variances of the quadra-
ture operators is described by the functions V;(¢). These
functions are strictly periodical with the period T=7/A,

V)=Vt +w/A) . 4.1)

This means that if at + =0 one quadrature is squeezed,
then this initial squeezing reappears periodically at later
moments. )

(3) One can find that in the initial moments of the evo-
lution the squeezing becomes revoked. To determine
how rapidly it is revoked we evaluate the time derivatives
of the function V,(t) (the second quadrature is initially
squeezed) at ¢t =0 and examine their dependence on the
parameter |£]2. Since the first derivative at ¢ =0 van-
ishes, we have to calculate the second one. This deriva-
tive is strictly positive and it increases with increasing the
initial photon number; this means that (see Fig. 2)

~'We can say that the more photons in the initial state the
more rapidly squeezing is revoked (this is the situation
identical to that in Gerry’s® case). Nevertheless, it should
be stressed once more that the initial squeezing is periodi-
cally restored in the long-time scale.

(4) Furthermore, one can find that the global minimum
of the function V,(¢) is obtained not for ¢ =0, but for
t =T /2. Consequently, due to the interaction with a
nonlinear medium squeezing of the light can be
enhanced. Functions V,(r=0) and V,{(r=m/2) versus
|&]? are plotted in Fig. 3. It is seen that

Yy (r=0)<V,(r—7/2) 4.3)

for any value of the initial squeezing.

(5) In Fig. 4 time evolutions of the functions ¥,(¢) and
V,(t) for [£[2=0.1 are plotted. From this figure it is seen
that for weak intensities (|£[250.3) the first quadrature
becomes squeezed during the evolution in spite of the fact
that at ¢ =0 this quadrature is unsqueezed. In Fig. 5 the
minimum of the function ¥,{r) reached during the evolu-
tion versus the parameter |£]? is plotted. The maximum
squeezing in this quadrature is obtained for r==287/100
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FIG. 4. Time evolution of the functions V,(r) (curve 1) and
V(1) (curve 2) for |£|2=0.1.
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FIG. 6. Time evolution of the function ¥,(r) for |£]>=0.3
(curve 1) and |£]>=0.6 (curve 2).
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and |£]2=0.14. ,

The time evolution of the function V,(r) for |& |2=0.3
and 0.6 is given in Fig. 6. Typical features (1)—(4) of the
functions V,(7) are clearly seen in this picture.

V. CONCLUSIONS

We can conclude that in the present model of the
anharmonic oscillator interacting with the Holstein-
Primakoff SU(1,1) CS, squeezing of the variances exhibits
periodical revivals for any value of the initial squeezing.
Furthermore, the interaction with a nonlinear medium
leads to the enhancement of the initial squeezing.

The periodicity of the model described above [see Eq.
(4.1)] is preserved for any initial state. In particular, if we
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suppose the light field to be in Glauber’s coherent state at
t =0, then during the evolution of the system one of the
quadratures becomes squeezed and this squeezing reap-
pears periodically.?

In the present paper we have analyzed the interaction
of the squeezed light with the nonlinear medium without
dissipations. To make the problem more realistic, the
dissipations should be taken into account. This problem
will be discussed elsewhere.
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