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Abstrakt

Zaujímavou oblast’ou výskumu v modernej fyzike je vyšetrovanie správania sa
klasických a kvantových systémov na neeuklidovských povrchoch v blízkosti fá-
zového prechodu. Špecifické vlastnosti hyperbolickej geometrie však neumož-
ňujú riešit’ takéto systémy analyticky, dokonca ani štandardnými numerickými
metódami. Preto otázka vhodného prístupu k analýze fermiónových modelov na
hyperbolických mriežkach v termodynamickej limite zostáva nedoriešená. V prí-
pade klasických spinových systémov bolo navrhnuté zovšeobecnenie algoritmu
Corner Transfer Matrix Renormalization Group, ktoré bolo úspešne použité pri
riešení spinových modelov na nekonečne vel’kom počte pravidelných hyperbol-
ických mriežok. V tejto práci rozširujeme uvedený algoritmus na špeciálne typy
trojuhol’níkových mriežok. Ukážeme, že hyperbolická geometria indukuje u všet-
kých spinových modelov v bodoch fázového prechodu správanie zodpovedajúce
triede univerzality stredného pol’a. Je tiež dôležité zdôraznit’, že doposial’ ešte
neboli vytvorené vhodné numerické algoritmy pre štúdium kvantových systémov
v základnom stave v podobných podmienkach. V tejto práci preto ponúkame
jedno konkrétne riešenie tohto problému reprezentované návrhom variačného nu-
merického algoritmu Tensor Product Variational Formulation, ktorý aproximuje
kvantový základný stav v tvare súčinu nízkorozmerných uniformných tenzorov.
Metódu Tensor Product Variational Formulation využívame pri štúdiu troch zá-
kladných kvantových modelov na viacerých pravidelných hyperbolických mriež-
kach. Rovnako, ako tomu bolo v prípade klasických spinových systémov, bez
ohl’adu na model pozorujeme v okolí fázového prechodu správanie zodpoveda-
júce triede univerzality stredného pol’a. Hlavné výstupy tejto práce možno zaradit’
do nasledujúcich troch oblastí: (1) Navrhli sme algoritmus na výpočet a klasifiká-
ciu termodynamických vlastností Isingovho modelu na trojuhol’níkovej hyperbol-
ickej mriežke. Ďalej vyšetrujeme pôvod správania zodpovedajúceho triede uni-
verzality stredného pol’a na mriežkach s malou negatívnou krivost’ou. (2) Vytvo-
rili sme algoritmus Tensor Product Variational Formulation, pomocou ktorého
numericky analyzujeme základný stav kvantových systémov na hyperbolicky za-
krivených povrchoch. (3) Klasifikujeme kvantové fázové prechody na troch vy-
bratých spinových modeloch umiestnených na rôznych typoch hyperbolických
mriežok vrátane Betheho mriežky.

Kl’účové slová:
fázové prechody, klasické a kvantové spinové mriežkové modely, hyperbolická
geometria mriežok so zápornou krivost’ou, tenzorové siete, tenzorové súčinové
stavy, renormalizácia maticou hustoty, strednopol’ová trieda univerzality



Abstract
The investigation of the behaviour of both classical and quantum systems on non-
Euclidean surfaces near the phase transition point represents an interesting re-
search area of the modern physics. However, due to the specific nature of the
hyperbolic geometry, there are no analytical solutions available so far and the po-
tential of analytic and standard numerical methods is strongly limited. The task
of finding an appropriate approach to analyze the fermionic models on the hyper-
bolic lattices in the thermodynamic limit still remains an open question. In case
of classical spin systems, a generalization of the Corner Transfer Matrix Renor-
malization Group algorithm has been developed and successfully applied to spin
models on infinitely many regular hyperbolic lattices. In this work, we extend
these studies to specific types of lattices. We also conclude that the hyperbolic
geometry induces mean-field behaviour of all spin models at phase transitions. It
is important to say that no suitable algorithms for numerical analysis of ground-
states of quantum systems in similar conditions have been implemented yet. In
this thesis we offer a particular solution of the problem by proposing a variational
numerical algorithm Tensor Product Variational Formulation, which assumes a
quantum ground-state written in the form of a low-dimensional uniform tensor
product state. We apply the Tensor Product Variational Formulation to three typ-
ical quantum models on a variety of regular hyperbolic lattices. Again, as in the
case of classical spin systems, we conjecture the identical adherence to the mean-
field-like universality class irrespective of the original model. The main outcomes
of this thesis are the following: (1) We propose an algorithm for calculation and
classification of the thermodynamic properties of the Ising model on triangular-
tiled hyperbolic lattices. In addition, we investigate the origin of the mean-field
universality on a series of weakly curved lattices. (2) We develop the Tensor Prod-
uct Variational Formulation algorithm for the numerical analysis of the ground-
state of the quantum systems on the hyperbolic lattices. (3) We study quantum
phase transition phenomena for the three selected spin models on various types of
the hyperbolic lattices including the Bethe lattice.

Keywords:
Phase Transition Phenomena, Classical and Quantum Spin Lattice Models, Hy-
perbolic Lattice Geometry, Tensor Networks, Tensor Product States, Density Ma-
trix Renormalization, Mean-field Universality Classification



Contents

Preface xi

Introduction 1

1 Basic concepts 5
1.1 Classical phase transitions . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Basic notions from the classical statistical physics . . . . . 8
1.1.2 The correlation function . . . . . . . . . . . . . . . . . . 9
1.1.3 Critical exponents . . . . . . . . . . . . . . . . . . . . . 11

1.2 Spin models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.1 Classical spin models: Ising and mean-field . . . . . . . . 13
1.2.2 Quantum spin models: Ising, XY and Heisenberg . . . . . 17
1.2.3 Quantum-classical correspondence . . . . . . . . . . . . . 18

1.3 Quantum phase transitions . . . . . . . . . . . . . . . . . . . . . 21
1.3.1 Ising model on the one-dimensional spin chain . . . . . . 22

2 Non-Euclidean geometry 25
2.1 Euclidean geometry . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Spherical geometry . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Hyperbolic geometry . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4 Regular tessellation . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Corner tensor networks 33
3.1 Transfer approach to partition function analysis . . . . . . . . . . 33

3.1.1 Transfer tensor formalism . . . . . . . . . . . . . . . . . 33
3.1.2 Corner transfer tensor formalism . . . . . . . . . . . . . . 37

3.2 Corner transfer renormalization group . . . . . . . . . . . . . . . 40
3.2.1 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 CTMRG on hyperbolic lattices . . . . . . . . . . . . . . . . . . . 49
3.3.1 The case (4,q ≥ 4) . . . . . . . . . . . . . . . . . . . . . 49
3.3.2 The case (p ≥ 4,4) . . . . . . . . . . . . . . . . . . . . . 53

ix



3.4 Tensor Product Variational Formulation . . . . . . . . . . . . . . 55
3.4.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4.2 The tensor symmetries . . . . . . . . . . . . . . . . . . . 58
3.4.3 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.4 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Classical spin models on hyperbolic lattices 65
4.1 Ising model on the (3,q) lattices . . . . . . . . . . . . . . . . . . 65

4.1.1 The model and expansion scheme . . . . . . . . . . . . . 65
4.1.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Ising model on the weakly curved lattices . . . . . . . . . . . . . 75
4.2.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . 78

5 Quantum spin models on hyperbolic lattices 83
5.1 Spin models on the (p,4) lattices . . . . . . . . . . . . . . . . . . 84

5.1.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.1.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Spin models on the (4,q) lattices . . . . . . . . . . . . . . . . . . 94
5.2.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . 96

Conclusions 99



Preface

This thesis summarizes the most important results obtained by myself and in close
collaboration with other colleagues during my PhD study. The work is structured
as follows: Chapter 1 provides brief review of the general theory of both the
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Introduction

The properties of both classical and quantum systems on non-Euclidean surfaces
have been attracting researchers in various fields of modern physics. For exam-
ple, experiments were performed with soft materials on conical geometry [Moura-
Melo et al., 2007] and magnetic nanostructures on various negatively curved sur-
faces [Yoshikawa et al., 2004, Liang et al., 2006, Cabot et al., 2009]. In addition,
the influence of non-flatness of the underlying surface on the thermal properties
of the system can be important in specific applications.

The main motivation of this PhD work is to investigate ground-state prop-
erties around phase transitions of strongly correlated systems, which are repre-
sented by a variety of Hamiltonians known in Solid-State Physics, when applied
to negatively curved lattice geometries, often referred to as the so-called anti-de
Sitter (AdS) space of the General Theory of Relativity. Here, wave functions
of many-body interacting systems are intended to describe a non-trivial curved
space, where time is excluded from consideration for the time being. The mutual
relations among Solid-State Physics, General Theory of Relativity, and the Con-
formal Field Theory (CFT) enrich the interdisciplinary research, such as AdS-
CFT correspondence known from the theory of Quantum Gravity [Maldacena,
1998, Maldacena, 1999, Kazakov, 1986, Holm and Janke, 1996].

In order to accomplish such a nontrivial task, the physical space can be consid-
ered to be discrete. The entire discrete space is occupied by interacting multi-state
spin variables with the distances as small as the Plank length ( 10−35m) thus form-
ing a spin network. The first elementary steps to tackle the given problem of the
Quantum Gravity are studied in this thesis. In particular, we analyze relations be-
tween Gaussian curvature and correlations of the interacting spin particles. The
off-criticality represented by non-diverging correlation length at phase transition
is one of the key features to understand the negatively curved (AdS) geometry.
The final step of this thesis will be the determination of a relation between the en-
tanglement von Neumann entropy and the Gaussian curvature, which are crucial
issues for the holographic principle in Quantum Gravity. Therefore, we have cho-
sen quantum Heisenberg, XY, and transverse-field Ising models as the reference
spin systems. Our intention is to confirm a concept of the holographic entan-
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2 INTRODUCTION

glement entropy [’t Hooft, 1993, Susskind, 1995, Ryu and Takayanagi, 2006]. It
means that a non-gravitational theory is expected to live on the boundary of a sub-
system ∂A of (d + 1)-dimensional hyperbolic spaces. The entanglement entropy
SA, associated with a reduced density matrix ofA, is a measure of the amount of
information for the AdS/CFT correspondence. The entropy SA is then related to
a surface region ∂A in the AdS space. There is a duality in (d + 1)-dimensional
AdS and the d-dimensional systemA in CFT.

In this thesis we begin with the study of simple spin models on regular hy-
perbolic lattices constructed by tessellation of congruent p-sided polygons with
coordination number q, which are denoted as (p,q). The hyperbolic (p,q) lattices
satisfy the condition (p− 2)(q− 2) > 4, exhibit constant negative curvature and
their Hausdorff dimension is infinite if the thermodynamic limit is considered. On
hyperbolic lattices the number of lattice sites N grows exponentially as the lattice
diameter increases linearly. Also, the boundary effects are not negligible in the
thermodynamic limit N → ∞ on the hyperbolic lattices and, therefore, the spin
systems exhibit phase transitions exclusively in the centre of the infinite hyper-
bolic lattice. Due to these specific conditions, the standard numerical tools devel-
oped for either classical or quantum systems (such as, Monte Carlo simulations,
transfer matrix exact diagonalization, the coordinate Bethe Ansatz, the algebraic
Bethe Ansatz or the vertex operator approach) face significant difficulties when
applied to study phase transitions on hyperbolic lattices in the thermodynamic
limit.

In case of the classical spin systems, the modified Corner transfer matrix
renormalization group (CTMRG) algorithm was applied to an infinite series of
hyperbolic (p,4) lattices [Krčmár et al., 2008a, Ueda et al., 2007, Krčmár et al.,
2008b, Gendiar et al., 2008]. Developing the original idea, we reformulate the
CTMRG algorithm for use on the triangular (3,q) as well as on weakly curved
hyperbolic lattices, which represents a missing complementary study to the (p,4)
case.

So far, an analogous algorithm designed for the ground-state analysis of quan-
tum systems on hyperbolic surfaces has been missing. We expand a variational
method, Tensor product variational formulation (TPVF) [Daniška and Gendiar,
2015, Daniška and Gendiar, 2016] in order to find out an effective solution of the
problem. Here, the quantum ground-state is approximated in the form of the ten-
sor product state, which allows us to implement a generalization of the original
CTMRG algorithm.

Our analyses of both the classical and the quantum spin systems confirm that
the hyperbolic geometry causes that the mean-field universality behaviour at the
phase transition point occurs, irrespective of the spin model used. We attribute this
feature to the infinite Hausdorff dimension of the hyperbolic surfaces. Another
key outcome of this work is an indirect analysis of the quantum spin models on
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the Bethe lattice, where the coordination number is fixed to be four. The Bethe
lattice is attributed to the asymptotics of the (p,4) lattices, where p→∞. These
interesting outcomes have been published in refs. [Gendiar et al., 2012, Gendiar
et al., 2014, Daniška and Gendiar, 2016].

The thesis is structured into five chapters. Chapter 1 summarizes the most
important aspects of the theory behind the phase transition phenomena, which
are relevant in this study. The reader familiar with the basic theory of the phase
transitions can directly proceed to the next chapter. Chapter 2 introduces the non-
Euclidean geometry in general and the hyperbolic lattices in particular. The de-
tailed description of the numerical algorithms CTMRG and TPVF for use on both
the Euclidean and the hyperbolic lattices is provided in chapter 3. We emphasize
the details important for the practical implementation of the methods. Additional
theoretical reasoning associated with the renormalization procedure can be found
in references provided therein. The three chapters contain the theoretical part of
the thesis. The core of this work is represented by chapters 4 and 5, where the re-
sults of our numerical analyses are demonstrated. First, chapter 4 analyzes phase
transitions of the classical Ising model on the triangular (3,q) lattice and weakly
curved hyperbolic lattices. Second, we make use of the TPVF to perform a simi-
lar analysis for the quantum phase transition in the transverse-field Ising, XY and
modified Heisenberg models on the series of the hyperbolic (p,4) and (4,q) lat-
tices in chapter 5. We estimate the properties of the respective quantum models
on the Bethe lattice.
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Chapter 1

Basic concepts

1.1 Classical phase transitions

In physics, the term phase refers to a thermodynamic system throughout which
the state variables (e. g. temperature, pressure, density, magnetization, ...) are
spatially homogeneous. If a small change of external parameters produces a new
phase with qualitatively different properties in comparison to the previous one,
we talk about the phase transition. This phenomenon is always hallmarked by a
singularity in the free energy of the system or one of its derivatives. The phase
transition is classified as "of n-th order" if there is a discontinuity in the n-th
derivative of the free energy. In this section we provide a brief introduction to
these phenomena following the books [Baxter, 1982] and [Yeomans, 1992].

A common example of the phase transition is the abrupt change of properties
of water at atmospheric pressure if its temperature T rises over 100◦C. Liquid wa-
ter transforms into the gas form (steam) which results in sudden fall of the density.
Another important example is represented by phase transitions in ferromagnetic
materials which can be authentically simulated even on very simple spin lattice
models. The typical magnetization profiles of a magnetic material with respect
to magnetic field h for temperatures T below, equal to and above the Curie tem-
perature TC are depicted in fig. 1.1. Two phases of the ferromagnet are possible
- one with positive magnetization M(h,T ) > 0 if the magnetic field h is parallel
to the selected direction (h > 0) or one with negative magnetization M(h,T ) < 0
at antiparallel magnetic field (h < 0). If the initially strong external magnetic
field h monotonically decreases to zero at given temperature T , the magnetiza-
tion M(h,T ) of the material also decreases. The magnitude of magnetization at
zero field defines the spontaneous magnetization M0(T ). The term "spontaneous"
reflects the fact that in the absence of the external field the magnetization is gen-
erated by the material itself. Orientation of the initial field plays the role of the

5
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h

M

M0

−M0

+1

−1

T > Tc

T = Tc

T < Tc

Figure 1.1: The magnetization M(h,T ) as a function of varying magnetic field h
at constant temperature T < TC (green), T = TC (red) and T > TC (blue).

symmetry-breaking mechanism which determines the orientation of the sponta-
neous magnetization after the field vanishes. Depending on whether the zero field
is approached through positive or negative values h, we have

lim
h→0+

M(h,T ) = M0(T ) or lim
h→0−

M(h,T ) = −M0(T ). (1.1)

The temperature dependence of the spontaneous magnetization is depicted in
fig. 1.2. Whenever T < TC , M0(T ) is strictly positive. Therefore, at constant
temperature T < TC and varying magnetic field h, the ferromagnet undergoes a
phase transition at h = 0 with discontinuity in the magnetization, changing sud-
denly from the negative value −M0(T ) to the positive one M0(T ) (or vice versa).
Because the discontinuity occurred in magnetization, which can be calculated as
the first partial derivative of the free energy with respect to h, it is the first-order

T0

M0 (T )
+1

Tc

Figure 1.2: The spontaneous magnetization M0(T ).
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Tc

M

M > 0

< 0

T

h

Figure 1.3: The phase diagram of the ferromagnetic material in the (h,T ) half-
plane.

phase transition. If T ≥ TC , M0(T ) drops to zero and, thus, the magnetization
M(h,T ) becomes a continuous function of h at h = 0 and analytic one if T > TC .
Therefore, there is no phase transition between the negative and the positive phase
at h = 0 and T > TC . Although the magnetization is continuous at T = TC , it is
non-analytical (singular) due to infinite value of its first derivative ∂M(h,TC)

∂h (the
magnetic susceptibility). This situation is equivalent to the absence of phase tran-
sition on the liquid-gas phase coexistence line above the critical temperature in
the water phase diagram, where the difference in densities of both phases becomes
continuous.

The above mentioned observations are summarized in the phase diagram of
the ferromagnet shown in fig. 1.3. The line h = 0 represents the line of coexis-
tence between phases, which separates the phase with the positive magnetization
(h > 0) from the negatively magnetized one (h < 0). The magnetization is an ana-
lytic function of both h and T at all points of the (h,T ) half-plane, except those on
the line segment (h = 0,0≤ T ≤ TC), across which the phase transition occurs. The
endpoint of this line segment (h = 0,T = TC) is denoted as the critical point. If
constrained to the phase coexistence line, two new phases can be defined - the or-
dered one with nonzero spontaneous magnetization M0(T ) and the disordered one
with M0(T ) = 0. The two phases are separated at the critical point TC and the spon-
taneous magnetization plays the role of the order parameter, which identifies the
ordered (disordered) phase by its nonzero (zero) value. The singular behaviour of
M0(T ) at the critical temperature TC is a hallmark of the phase transition between
the ordered and the disordered phase. Note that this phase transition is generated
by changing the temperature T at constant field h = 0. On the contrary, in case of
the phase transitions between the negatively and the positively magnetized phases
the field h changes, while the temperature T is held constant.
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1.1.1 Basic notions from the classical statistical physics
Let us consider a classical statistical system in external magnetic field h at ther-
modynamic temperature T . The microstates of the system are labelled by index r
and their energies are E(r,h). Then, the canonical partition function of the system
is defined as

Z(h,T ) =
∑

r
exp

(
−

E(r,h)
kBT

)
(1.2)

and the free energy as

F (h,T ) = −kBT lnZ(h,T ), (1.3)

where kB is the Boltzmann constant. The summands exp
(
−

E(r,h)
kBT

)
in (1.2) are

usually referred to as the statistical or the Boltzmann weight of the microstate r.
Now, complete information about the system can be in principle extracted

from F (or Z, equivalently) and its derivatives. Using the canonical probability
of finding the system in the state r,

P(r) =
1
Z

exp
(
−

E(r,h)
kBT

)
, (1.4)

the thermal average of any thermodynamic function X(r) is calculated as

〈X〉 =
∑

r
X(r)P(r) =

∑
r

X(r)exp
(
−

E(r,h)
kBT

)
Z

. (1.5)

The internal energy, defined as

Eint(h,T ) ≡ 〈E(r,h)〉 =

∑
r

E(r,h)exp
(
−

E(r,h)
kBT

)
Z

, (1.6)

is a good example of such an averaged quantity. This formula can be further
rewritten into another convenient form

Eint(h,T ) = kBT 2
(
∂ lnZ(h,T )

∂T

)
h

= −T 2 ∂

∂T

(
F (h,T )

T

)
h
, (1.7)

where the right bottom index h in
(
∂
∂T

)
h

explicitly identifies the variable which
is held constant during the partial differentiation and the second equality follows
from (1.3). Partial differentiation of the internal energy with respect to T produces
the specific heat at constant external field

Ch(h,T ) =

(
∂Eint(h,T )

∂T

)
h
. (1.8)
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If Eint is replaced by −F in the previous definition, we receive the formula for
entropy of the system

S (h,T ) ≡ −kB

∑
r
P(r) lnP(r) = −

(
∂F (h,T )
∂T

)
h
. (1.9)

As the entropy and the specific heat are given by the first and the second deriva-
tives of the free energy F , a discontinuity in these quantities witnesses, respec-
tively, for the first- or second-order phase transition with respect to temperature
change.

Analogously, phase transitions in magnetic materials induced by changes of
the external magnetic field h are classified by singularities in magnetization

M(h,T ) ≡ 〈m(r,h)〉 =

∑
r

m(r,h)exp
(
−

E(r,h)
kBT

)
Z

= −

(
∂F (h,T )

∂h

)
T

(1.10)

and magnetic susceptibility

χ(h,T ) ≡
(
∂M(h,T )

∂h

)
T
. (1.11)

Here m(r,h) denotes magnetization of the r-th microstate at magnetic field h.

1.1.2 The correlation function
The characterization of phase transitions through averaged quantities such as mag-
netization or entropy represents the macroscopic approach. To be able to under-
stand the transition phenomena on the microscopic level better, the concept of
correlation functions has been introduced.

Let us consider a spin lattice system with N spins. On each lattice site i there
is a spin variable σi, which can take two values, σi = −1 or σi = 1. The set of
microstates of the system consists of 2N different configurations {σ} ≡ {σ1...σN}

of the bivalent spin variables. The energy E({σ},h) of the microstate (spin config-
uration) {σ} is given by the Hamiltonian of the systemH({σ},h). The Ising model
with Hamiltonian

E({σ},h) =H({σ},h) = −J
∑
〈i, j〉

σiσ j−h
N∑

i=1

σi, (1.12)

where
∑
〈i, j〉

denotes summation over couples of nearest-neighbour lattice sites and

J the interaction strength, can be used as an example. The formula for the mag-
netization of the spin system is then

M(h,T ) = 〈σ1 + ...+σN〉/N. (1.13)
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The spin-spin correlation function between spins σi and σ j is defined as

g(ri,r j) ≡
〈
(σi−〈σi〉)(σ j−〈σ j〉)

〉
= 〈σiσ j〉− 〈σi〉〈σ j〉, (1.14)

where ri is the position vector of the spin σi on the lattice. Notice that g(ri,r j)
is only a specific member of a much wider class of correlation functions. Usu-
ally, the Hamiltonian H({σ},h) is translationally invariant, which yields 〈σi〉 =

〈σ j〉,∀i, j and consequently (after inserting into (1.13))

〈σi〉 = M(h,T ),∀i. (1.15)

As a result, the spin-spin correlation function depends only on the vector distance
between the lattice sites i and j

ri j ≡ ri− r j = ri jei j, (1.16)

where ri j = |ri j| and ei j = ri j/ri j is a unit vector pointing in the direction of ri j.
Therefore, g(ri,r j) ≡ g(ri j).

The correlation function plays a crucial role in the concept of critical points.
Away from the critical point (TC in ferromagnets), both below and above it, any
couple of spins becomes uncorrelated if their mutual distance is large enough,
i. e., g(ri j)→ 0 if ri j → ∞. It is expected that the correlation function decays
exponentially obeying the formula

g(ri j) = r−τi j exp
(
−

ri j

ξ

)
, (1.17)

where ξ is the correlation length and τ is some number. The correlation length
is a function of h, T and the direction ei j, nevertheless, it is expected to become
directionally independent near the critical point for large ri j.

The critical point is by definition characterized by developing long-range cor-
relations in the system which is hallmarked by diverging correlation length ξ.
Hence, the necessary and sufficient condition for existence of a critical point (tem-
perature) TC in the ferromagnet is

lim
T→TC

ξ(h = 0,T ) =∞, (1.18)

where the isotropicity of ξ near criticality was utilized. As a result, the formula
(1.17) breaks down. Instead, the correlation function decays as a power-like func-
tion

g(ri j) = r−d+2−η
i j , (1.19)

where d is dimension of the underlying lattice and η is a so-called critical exponent
(see the next section for details).
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1.1.3 Critical exponents
Let us consider again the example of the ferromagnet in the following. It was
argued in the previous sections that a critical point is inevitably coupled with sin-
gular behaviour of some thermodynamic functions in the form of discontinuities
or divergences. It is expected that these singularities follow simple power-like for-
mulae with non-integer exponents independent of h and T - the critical exponents.

Let us introduce a dimensionless measure of the deviation from the critical
temperature TC in the form of the reduced temperature

t =
T −TC

TC
. (1.20)

Hence, the critical point corresponds to t = 0. The critical exponent λ associated
with a thermodynamic function A(t) ≡ A(h = hc ≡ 0, t) is defined by formula

λ = lim
t→0

ln |A(t)|
ln |t|

. (1.21)

Equivalently, in the limit t→ 0 the thermodynamic function asymptotically obeys
the power rule

|A(t)| ∝ |t|λ, (1.22)

as desired. The definition (1.21) applies to phase transitions induced by temper-
ature changes. If, instead, the transition generated by external magnetic field h
is investigated through function A(h) ≡ A(h,T = TC), t is replaced by h in (1.21),
since hC ≡ 0.

The most commonly used critical exponents and the associated thermody-
namic functions are

Ch(h = 0,T ) ∝ |t|−α if t→ 0, (1.23)

M0(T ) ∝ (−t)β if t→ 0−, (1.24)
χ(h = 0,T ) ∝ |t|−γ if t→ 0, (1.25)
ξ(h = 0,T ) ∝ |t|−ν if t→ 0, (1.26)
s(h = 0,T ) ∝ (−t)µ if t→ 0−, (1.27)

M(h,T = Tc) ∝ |h|1/δsgn(h) if h→ 0. (1.28)

In addition, the critical exponent η has already been introduced in equation (1.19).
The yet undefined quantity s in the equation (1.27) is the interfacial tension per
unit area which represents the contribution of a unit area of the interface between
the domains of coexisting positively and negatively magnetized phases at h = 0 to
the free energy F . It is defined within the ordered phase (h = 0,0 ≤ T ≤ TC) only.
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The above mentioned critical exponents are not mutually independent. As-
suming the so-called scaling hypothesis1, one can obtain the following constraints:

γ = β (δ−1) , (1.29)
α+ 2β+γ = 2, (1.30)

(2−η)ν = γ, (1.31)
µ+ ν = 2−α, (1.32)

dν = 2−α. (1.33)

The derivation of the last condition (1.33) requires making further assumptions
known as hyperscaling. The importance of the five scaling relations, which are
in good agreement with the experimental and theoretical results, rests in the fact
that due to them, the knowledge of only two independent critical exponents is
sufficient to determine all the remaining exponents.

Now, we are ready to explain why the critical exponents are so important. It
has been observed that quantities such as M(h,T ) and TC depend strongly on the
details of interactions between spins or particles in the system in general. On the
contrary, it is believed that the critical exponents are insensitive to details of the
system HamiltonianH({σ}) and depend only on dimensionality of the system and
symmetries ofH({σ}), which is known as the universality assumption2. Thus, the
critical behaviour of a complicated realistic system can be correctly investigated
on a model with drastically simplified Hamiltonian, provided that the dimension-
ality and symmetries of H({σ}) have been preserved. The set of systems repre-
sented by the same simple model forms a single universality class. Each class is
usually labelled by the simplest system.

1.2 Spin models
In this section we introduce the most important lattice models of interacting sys-
tems which, due to their simplicity, were chosen as representatives of the corre-
sponding universality classes. At the same time, the critical exponents uniquely
assigned to each class are identified. Here, all the demonstrated models represent
a set of spin variables positioned on vertices of a given lattice which differ only in
the model specific Hamiltonian.

At this point, it is important to emphasize that the phase transition may oc-
cur only on lattices which are of infinite size in each dimension. That is, the
models have to be studied in the thermodynamic limit N1→∞, ...,Nd→∞, where

1See, e. g., [Baxter, 1982] for more details.
2Note that the scaling hypothesis and the universality idea represent two independent assump-

tions.
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N1, ...,Nd denote number of lattice spins in the base directions of the d-dimensional
lattice3.

1.2.1 Classical spin models: Ising and mean-field
The Ising model

The classical Ising model denotes a system governed by Hamiltonian

H({σ},h) = −J
∑
〈i, j〉

σiσ j−h
N∑

i=1

σi, (1.34)

where N stands for the total number of spins in the system. The spin variable
σi can take only two values, σi = +1 if it is oriented in the same direction as the
magnetic field h or σi = −1 if it points in the opposite direction. No other spin
orientation is allowed. The coupling constant J determines character of the spin-
spin interaction. Positive value J > 0 favours ferromagnetic configuration with all
spins pointing in the same direction, while if J < 0, antiferromagnetic alignment
represented by inverse orientation of the neighbouring spins is preferred.

The Ising model on one-dimensional chain can be solved analytically using
the transfer matrix formalism (see section 3.1.1 and [Baxter, 1982]). Although
not difficult to solve, this case is not very interesting from physical point of view,
because the ordered phase includes only a single point (h = 0,T = 0), which si-
multaneously represents the critical point. The critical exponents for the 1D Ising
model together with values for all the other models mentioned below are listed in
table 1.1.

The analytic solution of the Ising model on the two-dimensional square lattice
has been found only in case h = 0 [Onsager, 1944, Baxter, 1982]. In the thermo-
dynamic limit (Nx, Ny →∞) there is the only one critical temperature TC given
by the relation

sinh
(

2Jx

kBTC

)
sinh

(
2Jy

kBTC

)
= 1, (1.35)

where Nx,Ny and Jx, Jy denote the number of lattice sites and interaction strength
in the x and y direction, respectively. Assuming the isotropic case with Jx = Jy ≡ J,
we have

TC =
2J
kB

1

ln(1 +
√

2)
. (1.36)

3This observation may be intuitively attributed to the presence of infinite functional series in
the formula for the partition function Z which may generate a non-analytic function although all
individual components are smooth functions. On the other hand, in case of finite lattices the finite
series preserve the continuousness and differentiability of the summands and, thus, no singular
behaviour may occur in the result.
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Universality class/
representative model α β γ δ ν η

1D Isinga 1 0 1 ∞ 1 1
2D Isinga,b 0 1/8 7/4 15 1 1/4
3D Ising 0.1137c (t→0−)

0.1023c (t→0+) 0.3295c 1.24b 4.8b 0.63b 0.04b

mean-fielda 0 1/2 1 3 — —

Table 1.1: Critical coefficients of selected universality classes and corresponding
representative models. (After [Baxter, 1982] (a), [Yeomans, 1992] (b) and [Xie
et al., 2012](c)).

The 2D model with nonzero magnetic field or the three-dimensional one have
not been solved analytically yet, however, they are precisely described through
numerical calculations.

The mean-field model

As only a few lattice spin models can be solved exactly, a number of approxi-
mation methods were developed. One of the most widely used is the mean-field
theory, where the total effect of direct interaction of a selected spin with its cou-
pling partners is mimicked by an averaged field generated by uniform contribu-
tions from all spins in the system. As an example, let us discuss the Ising model
with N spins at h = 0, where each spin σi is surrounded by q neighbours. The total
impact of all interactions affecting a single spin σi is governed by Hamiltonian

H1(σi) = −Jσi

∑
j∈(i, j)

σ j, (1.37)

where
∑

j∈(i, j) denotes summation over the q nearest neighbours of the spin σi. In
the mean-field approach

∑
j∈(i, j)σ j is approximated by q

N
∑N

j=1σ j = qM, where M
is the magnetization of the system. As a result, the mean-field Hamiltonian for the
spin σ takes the form

HMF
1 (σi) = −JqMσi. (1.38)

The critical temperature TC can be obtained from the self-consistent equation
for magnetization. Namely, as the system is translationally invariant, M = 〈σi〉

and, therefore,

M =
1
Z

∑
σi=±1

σi exp
(
qJM
kBT

σi

)
=

exp
(qJM

kBT

)
− exp

(
−

qJM
kBT

)
exp

(qJM
kBT

)
+ exp

(
−

qJM
kBT

) = tanh
(
qJM
kBT

)
. (1.39)
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Using the identity d
dx tanh(x) = 1− tanh2(x), it is easy to verify, that (1.39) has a

nontrivial solution only iff

d
dM

[
tanh

(
qJM
kBT

)]
M=0

=
qJ

kBT

[
1− tanh2

(
qJM
kBT

)]
M=0

=
qJ

kBT
> 1. (1.40)

It follows from the fact that both sides of (1.39) take the same (zero) value for
M = 0, derivative of the LHS is 1, while the derivative of the RHS is a decreasing
function starting at qJ

kBT when M = 0 and approaching zero as M→∞.
The (spontaneous) magnetization M(h = 0,T ) takes positive (nontrivial) values

for qJ
kBT > 1 and vanishes at qJ

kBT = 1, which signalizes the critical temperature

TC =
qJ
kB

(1.41)

and the ordered phase for (h = 0,0 ≤ T ≤ TC). Note the linear character of the
dependence TC(q). Moreover, the critical temperature TC is not affected by details
of the lattice layout provided that the coordination number q is held constant.
For example, the mean-field models on the two-dimensional triangular lattice and
the three-dimensional cubic one (q = 6 for both) share the identical value of TC .
The critical exponents of the mean-field universality class are α = 0, β = 1/2,
γ = 1 and δ = 3. The exponents ν and η are not defined in this case, since the
equally strong interaction of a selected spin with every other results in distance
independent correlations.

It can be shown that any classical statistical model with dimensionality d ≥ 4≡
dC , where dC is the upper critical dimension, belongs to the mean-field universal-
ity class [Yeomans, 1992]. This fact is of crucial importance within the framework
of this thesis, as the minimal Hausdorff dimension of a space into which a hyper-
bolic lattice (see chapter 2) can be embedded, is infinite. As a result, any model on
the hyperbolic lattice exhibits mean-field behaviour in the vicinity of the critical
point, irrespective of the original Hamiltonian.

Ising model on the Bethe lattice

Applying the Ising Hamiltonian (1.34) to the Bethe lattice is interesting for two
reasons: First, it is exactly solvable and, second, the specific nature of the lattice
causes the model to belong to the mean-field universality class, although no mean-
field approximation is applied. Therefore, the critical exponents are identical,
particularly, α = 0, β = 1/2, γ = 0 and δ = 3.

The Bethe lattice (cf. fig. 1.4) with the coordination number q is constructed
as follows: We start with a single central vertex and create q links from it to its
q nearest neighbours, which form the first shell. Any next shell is constructed
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Figure 1.4: The Bethe lattice for q = 4. Note that the interaction strength J is
identical for all spin pairs coupled by lattice edges, although the edge length was
set different for better visualization.

by connecting q− 1 new vertices to each of the sites of the previous shell. The
number of vertices in the r-th shell is q(q−1)r−1, and the total number of sites in
the lattice consisting of r layers is

nq(r) = q
[
(q−1)r −1

]
/(q−2). (1.42)

The outermost shell forms the lattice boundary. The ratio of the number of bound-
ary positions to the total number of lattice vertices tends to the nonzero value
(q− 2)/(q− 1) in the thermodynamic limit r → ∞ and, therefore, the boundary
effects cannot be removed by increasing the lattice size. In order to avoid this
problem, we study only local properties of spins deep inside the lattice (far away
from the boundary). The Bethe lattice is, by definition, formed by these deep
interior vertices, which are all equivalent and have the coordination number q.

The dimension of the Bethe lattice is calculated as

d = lim
r→∞

lnnq(r)
lnr

=∞ (1.43)

which exceeds the critical dimension dC ≡ 4. Hence, the critical behaviour of the
Ising model on the Bethe lattice is governed by critical exponents with mean-field
values as is confirmed by analytical calculations [Baxter, 1982]. We emphasize
that this mean-field-like critical behaviour is not induced by any mean-field ap-
proximations in the model, but by the infinite-dimensional lattice structure.

The critical point of this model is positioned at (h = 0,T = TC), where

TC =
2J
kB

1
ln

[
q/(q−2)

] . (1.44)
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1.2.2 Quantum spin models: Ising, XY and Heisenberg
Let us consider the Hamiltonian of a quantum system with N spins in the form

H(Jxy, Jz) = −
∑
〈i, j〉

[
Jxy

(
σx

iσ
x
j +σy

iσ
y
j

)
+ Jzσ

z
iσ

z
j

]
−h

N∑
i=1

σx
i , (1.45)

where the spin operators are in the z-representation given by the Pauli matrices

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
. (1.46)

We assume arbitrary but fixed dimension of the system and periodic boundary
conditions. Then, if J > 0, the choice Jxy = Jz = J, h = 0 defines the ferromagnetic
Heisenberg model, Jxy = J, Jz = 0, h = 0 the ferromagnetic XY model and Jxy = 0,
Jz = J with arbitrary h the ferromagnetic Ising model in transverse field. If, in-
stead, negative value J < 0 is chosen, antiferromagnetic versions of the respective
models are obtained.

The class of Hamiltonians H(Jxy, Jz) exhibits some useful symmetries. Here,
we focus on one of them only, but interested reader can find more information in,
e. g., [Šamaj and Bajnok, 2013]. Let us suppose the underlying lattice is bipartite,
i. e., the set of all lattice vertices can be factorized into two subsets A and B in such
way that any couple of nearest neighbours 〈i, j〉 contains exactly one vertex from
each of the two subsets. Then, the unitary transformation generated by operator
U = U† =

∏
i∈Aσ

z
i results in

UH(Jxy, Jz)U† =H(−Jxy, Jz) = −H(Jxy,−Jz). (1.47)

This follows from the fact that the Pauli operator σz
i , where i ∈ A is arbitrary, but

fixed, commutes with all other operators σx
j ,σ

y
j,σ

z
j, j ∈ A∪ B except σx

i and σy
i .

In the latter case we have σz
iσ

x
iσ

z
i = −σx

i and σz
iσ

y
iσ

z
i = −σy

i which finalizes the
proof idea.

The equality between the first and the last term in (1.47) means that the energy
spectra of the Hamiltonians H(Jxy, Jz) and H(Jxy,−Jz) are mutually related by
reflection around the zero energy level E = 0. Hence, the ground state Ψ0 of the
first system determines the most excited state ΦMAX of the second system via

ΦMAX = UΨ0 (1.48)

and vice versa. Another consequence of (1.47), which will be used later in sec-
tion 5.1.1, is that for J > 0 the Hamiltonian H(J,−J) describes an antiferromag-
netic model. Recall that, by definition, the model is (anti)ferromagnetic if the
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sign of the expectation values of local magnetization 〈σx
i 〉, 〈σ

y
i 〉 and 〈σz

i 〉 in the
ground state is identical (opposite) for the nearest-neighbouring pairs of spins.
The HamiltonianH(J,−J) can be obtained by the unitary transformation U of the
antiferromagnetic Heisenberg model

H(J,−J) = −H(−J, J) = −UH(J, J)U† = UH(−J,−J)U†, (1.49)

and therefore the ground-states Ψ
(J,−J)
0 and Ψ

(−J,−J)
0 of the two hamiltonians obey

Ψ
(J,−J)
0 = UΨ

(−J,−J)
0 . (1.50)

Using the same argumentation as in the text below (1.47), we receive for a = x
or y〈

Ψ
(J,−J)
0

∣∣∣σa
i

∣∣∣Ψ(J,−J)
0

〉
=

〈
Ψ

(−J,−J)
0

∣∣∣U†σa
i U

∣∣∣Ψ(−J,−J)
0

〉
= −

〈
Ψ

(−J,−J)
0

∣∣∣σa
i

∣∣∣Ψ(−J,−J)
0

〉
(1.51)

and〈
Ψ

(J,−J)
0

∣∣∣σz
i

∣∣∣Ψ(J,−J)
0

〉
=

〈
Ψ

(−J,−J)
0

∣∣∣U†σz
i U

∣∣∣Ψ(−J,−J)
0

〉
=

〈
Ψ

(−J,−J)
0

∣∣∣σz
i

∣∣∣Ψ(−J,−J)
0

〉
.

(1.52)
Therefore, the alternating sign structure of the local magnetization present in
Ψ

(−J,−J)
0 is preserved also in Ψ

(J,−J)
0 , which proves that H(J,−J) describes an an-

tiferromagnetic system.

1.2.3 Quantum-classical correspondence
In this section we establish a mapping between the quantum transverse-field Ising
model on the one-dimensional chain and the classical Ising model on the two-di-
mensional square lattice. In fact, it can be shown that d-dimensional quantum
spin models can be mapped onto a system-specific (d + 1)-dimensional classical
spin model, which is known as quantum-classical correspondence. This concept
plays an important role in theoretical reasoning of the numerical algorithm Corner
transfer matrix renormalization group (see section 3.2) and, simultaneously, helps
to determine the critical exponents of a quantum system by classification of its
classical counterpart.

We start with the ferromagnetic quantum Ising model on the chain with N
spins in transverse field h governed by Hamiltonian

H = −J
N∑

i=1

σz
iσ

z
i+1−h

N∑
i=1

σx
i ≡HA +HB, (1.53)

where J > 0,HA = −J
∑N

i=1σ
z
iσ

z
i+1,HB = −h

∑N
i=1σ

x
i and periodic boundary con-

ditions are imposed, i. e., σz
N+1 ≡ σ

z
1.
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The partition function of (a quantum system) is defined as

Z = Tr
[
exp(−βH)

]
, (1.54)

where β = (kBT )−1. Introducing a small imaginary time step ∆τ = β/m with m
being a sufficiently large integer4 and making use of the commutativity ofH with
itself,Z can be rewritten as

Z = Tr
[
exp(−∆τH)

]m
= Tr

exp(−∆τH) ... exp(−∆τH)︸                             ︷︷                             ︸
m times

 . (1.55)

Let us insert an identity operator in the form I =
∑

S z
1=↑,↓

...
∑

S z
N=↑,↓

[∏N
i=1

∣∣∣S z
i

〉〈
S z

i

∣∣∣] ≡∑
{Sz}
|Sz〉 〈Sz| between any two consecutive factors in (1.55), where

∣∣∣S z
i

〉
=↑,↓ are

the eigenstates of the Pauli operator σz
i corresponding to eigenvalues sz

i = 1 and
sz

i = −1, respectively, |Sz〉 =
∣∣∣S z

1

〉
⊗ ... ⊗

∣∣∣S z
N

〉
and

∑
{Sz}

denotes summation over the

complete set of 2N base states |Sz〉. After labelling each of the m identities by
index l we receive

Z =
∑
{Sz,1}

...
∑
{Sz,m}

m∏
l=1

〈
Sz,l

∣∣∣exp(−∆τH)
∣∣∣Sz,l+1

〉
. (1.56)

As the operators HA and HB do not commute, the application of the Suzuki-
Trotter expansion yields

exp(−∆τH) = exp
[
−∆τ(HA +HB)

]
= exp(−∆τHA)exp(−∆τHB) +O

(
(∆τ)2

)
,

(1.57)
where O

(
(∆τ)2

)
denotes terms of order (∆τ)2 or higher, which vanish if ∆τ→ 0

(or, equivalently, m→∞). Because Sz are the eigenstates of the operatorHA, we
have〈

Sz,l
∣∣∣exp(−∆τHA)exp(−∆τHB)

∣∣∣Sz,l+1
〉

=

= exp

∆τJ
N∑

i=1

sz,l
i sz,l

i+1

〈Sz,l
∣∣∣exp(−∆τHB)

∣∣∣Sz,l+1
〉
. (1.58)

The matrix elements on the RHS can be simplified by applying the identity rela-
tion (σx)2 = I to the Taylor expansion of exp(∆τhσx), which gives

exp(∆τhσx) = Icosh(∆τh) +σxsinh(∆τh). (1.59)
4In numerical practice ∆τ . 10−2 is required.
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Inspired by structure of the partition function of a classical Ising model, we as-
sume the partial matrix elements in the form〈

S z,l
i

∣∣∣∣exp(∆τhσx
i )

∣∣∣∣S z,l+1
i

〉
= Λexp

(
γsz,l

i sz,l+1
i

)
. (1.60)

Expanding the LHS via (1.59) we receive

〈↑|exp(∆τhσx) |↑〉 = 〈↓|exp(∆τhσx) |↓〉 = cosh(∆τh) = Λexp(γ), (1.61)
〈↑|exp(∆τhσx) |↓〉 = sinh(∆τh) = Λexp(−γ), (1.62)

which gives

Λ =
√

sinh(∆τh)cosh(∆τh) γ = −
1
2

ln[tanh(∆τh)] . (1.63)

Hence, in the limit ∆τ→ 0 (m→∞) we obtain

〈
Sz,l

∣∣∣exp(−∆τH)
∣∣∣Sz,l+1

〉
= exp

∆τJ
N∑

i=1

sz,l
i sz,l

i+1

 N∏
i=1

〈
S z,l

i

∣∣∣∣exp(−∆τhσx
i )

∣∣∣∣S z,l+1
i

〉
= exp

∆τJ
N∑

i=1

sz,l
i sz,l

i+1

 N∏
i=1

Λexp
(
γsz,l

i sz,l+1
i

)
(1.64)

= ΛN exp

∆τJ
N∑

i=1

sz,l
i sz,l

i+1 +γ

N∑
i=1

sz,l
i sz,l+1

i


which after inserting into (1.56) yields

Z = ΛNm
∑

sz,l
i =±1

exp

∆τJ
m∑

l=1

N∑
i=1

sz,l
i sz,l

i+1 +γ

m∑
l=1

N∑
i=1

sz,l
i sz,l+1

i

 . (1.65)

Here
∑

sz,l
i =±1 denotes summation over the eigenvalues sz,l

i for all combinations 1≤

i ≤ N, 1 ≤ l ≤m, which replaces the original summation over the eigenstates
∣∣∣∣S z,l

i

〉
.

Finally, after replacing sz,l
i by the established notation σi,l, Z can be interpreted

as the partition function of a classical Ising model on the two-dimensional infinite
(m→∞) strip-lattice of width N at temperature Tclassical with Hamiltonian

H({σ}) = −J1

m∑
l=1

N∑
i=1

σi,lσi+1,l− J2

m∑
l=1

N∑
i=1

σi,lσi,l+1, (1.66)

where
J1 = ∆τJkBT classical and J2 = γkBT classical. (1.67)
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Note that, in general, the interaction strength in the mutually perpendicular axis
directions labelled by indices l and i is different and T , T classical. Also, it can be
shown that the quantum one-dimensional Ising model can be mapped to the clas-
sical two-dimensional one at zero field only. Thus, the role of the magnetic field
h in the quantum system is portrayed by the temperature T classical in its classical
counterpart.

1.3 Quantum phase transitions
Until now, the phase transition phenomena have been discussed only within the
context of classical statistical physics, where a special attention was paid to the
second-order phase transition triggered by tuning the temperature T around the
critical temperature TC > 0. However, as T → 0, the thermal effects die out and
the so-far suppressed quantum fluctuations become important. As a result, the
quantum phase transition (QPT) may appear.

In order to briefly explain the concept of QPT (see, e.g., [Batrouni and Scalet-
tar, 2011, Sachdev, 2011] for more details), let us consider a lattice model at tem-
perature T = 0 with the Hamiltonian in the form

H(g) =HA + gHB, (1.68)

where g ≥ 0 represents a continuously tunable dimensionless parameter. If HA
and HB commute (

[
HA,HB

]
= 0), both HA and HB can be simultaneously di-

agonalized using the base of eigenstates they share and, thus, it is a problem of
classical physics as described in section 1.1 with no additional quantum effects. A
qualitatively new behaviour related to the quantum aspect of this problem arises
only if [

HA,HB
]
, 0, (1.69)

which we, therefore, assume to hold in the following.
Let the ground-states of the HamiltoniansHA,HB andH be denoted ΦA

0 , ΦB
0

and Ψ0 , respectively. We assume ΦA
0 , ΦB

0 , which, in general, is not guaranteed
by the non-commutativity condition (1.69), although it is implied by it in practice.
When g� 1, H ≈ HA and Ψ0 ≈ ΦA

0 with some quantum fluctuations caused by
small, but nonzero term containingHB, while g� 1 results inH ≈HB and Ψ0 ≈

ΦB
0 . Varying the value of g between these two extreme limits, the energy profile

of the ground-state E0(g) and the first excited state E1(g) of the HamiltonianH is
obtained. If the system is finite, the energy gap E1(g)−E0(g) is always nonzero,
although there could be a significant minimum at a specific g (see fig. 1.5(a)), and
the groundstate Ψ0(g) changes smoothly from ΦA

0 to ΦB
0 as g increases. On infinite

lattice, however, the gap E1(g)− E0(g) may vanish at gC (see fig. 1.5(b)), which
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Figure 1.5: Possible energy profiles of the ground-state E0(g) and the first excited
state E1(g) as functions of the tuning parameter g for the quantum system of (a)
finite and (b) infinite size.

provides an opportunity for an abrupt change in the model ground-state Ψ0(g)
by selecting an arbitrary state from the two-dimensional state space associated
with the degenerated energy level E0(g) = E1(g). If this occurs, we talk about
the quantum phase transition. The (critical) point gC separates two phases - one
withHA dominating over gHB at 0 ≤ g < gC and one, where the reverse is true at
g > gC . The ground-state Ψ0(g) plays the role of the order parameter which is in
some sense closer to ΦA

0 than ΦB
0 if g < gC , but the inverse relation holds if g > gC .

Note that the singularity in E0(g), signalling the critical point gC , appears also in
the free energy F (g), since F (g) = E0(g) at T = 0.

Now, let us apply the mapping from a d-dimensional quantum model to its
(d + 1)-dimensional classical counterpart, where the extra dimension corresponds
to the imaginary time τ. As g approaches gC , the correlation length in the d space
directions diverges as

ξ(g) ∝ |g−gC |
−ν , (1.70)

but the divergence of the correlation length in the imaginary time ξτ may in general
follow a slightly modified rule

ξ(g)τ ∝ |g−gC |
−νz , (1.71)

which defines a new critical exponent z that is unique to the quantum models.

1.3.1 Ising model on the one-dimensional spin chain
As an example of the model with QPT, let us consider the quantum Ising model on
the 1D chain with N spins in the transverse magnetic field h governed by Hamil-
tonian (1.53), where the field h > 0 plays the role of the tuning parameter, while
J is held constant. In section 1.2.3, the mapping of this model to the classical
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2D Ising model in zero field was derived. We are interested in the critical phe-
nomena and, therefore, assume the thermodynamic limit N→∞ at T = 0. Hence,
the infiniteness of the corresponding classical model in both the space and the
imaginary-time direction is guaranteed.

Critical field Inserting the expressions (1.67), relating the parameters of the
corresponding quantum and classical model into the formula (1.36) which deter-
mines the critical temperature of the classical 2D Ising model, the equation for the
critical magnetic field hC of the quantum model takes the form

sinh(2J∆τ) sinh {− ln [tanh(hC∆τ)]} = 1. (1.72)

This can be simplified into

sinh(2J∆τ) = sinh(2hC∆τ) (1.73)

and, thus, hC = J.

Critical exponents It is known for the anisotropic 2D classical Ising model in
zero field that the correlation length becomes directionally independent at the
critical point. Therefore (1.70) holds not only for space directions, but also for
ξτ which yields z = 1. The magnetic field h in the quantum model determines
the temperature T classical in its classical counterpart through (1.67). Inserting the
functional dependence T classical(h) into the relations (1.23)-(1.27) one can see that
the critical exponents describing the thermal phase transition (α, β, γ) in the clas-
sical model are also related to the critical behaviour of the equivalent quantities
in the quantum system, although now the control variable is h, not T classical. As
T classical(h) is not linear, critical exponents of the quantum model can, in general,
differ from those in its classical counterpart. However, it turns out that in this case
they preserve their original values. As a result, the critical behaviour at the QPT
of the 1D quantum Ising model is ruled by

C(h) ≡
∂E0(h)
∂h

∝ |h−hC |
−α if h→ hC , (1.74)〈

S z(h)
〉
≡

〈
Ψ0(h)

∣∣∣σz
∣∣∣Ψ0(h)

〉
∝ (hC −h)β if h→ h−C , (1.75)

χ(h) ≡
∂ 〈S z(h)〉

∂h
∝ |h−hC |

−γ if h→ hC , (1.76)

ξ(h) ∝ |h−hC |
−ν if h→ hC , (1.77)

where α = 0, β = 1/8, γ = 7/4 and ν = 1, which is identical to the classical 2D
Ising model, cf. table 1.1.
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Chapter 2

Non-Euclidean geometry

2.1 Euclidean geometry
The geometry of the world around us, which we are exposed to every day, is
Euclidean. The mathematical description of the Euclidean geometry on a plane
(surface) is based on the following five axioms, which appeared for the first time
in the Euclid’s book the Elements (about 300 B.C.). We present the axioms as
formulated in the Coxeter’s book [Coxeter, 1998]:

I. A straight line may be drawn from any one point to any other point.

II. A finite straight line may be produced to any length in a straight line.

III. A circle may be described with any centre at any distance from that centre.

IV. All right angles are equal.

V. If a straight line meets two other straight lines, so as to make the two interior
angles on one side of it together less than two right angles, the other straight
lines will meet if produced on that side on which the angles are less than
two right angles.

The first four axioms have always been accepted by mathematicians, as they
fulfil the essential requirements originally imposed on the axiom - to be so sim-
ple and obvious that no educated person could doubt its validity (cf. [Greenberg,
2008]). However, the “non-self-evident” fifth axiom, which seems to be artifi-
cial, attracted the attention of mathematicians throughout centuries after Euclid’s
times. All attempts to derive it as a theorem from the other four axioms and thus
prove its redundance within the axiomatic system failed. However, some people
succeeded in reformulating it into an equivalent, but more “self-evident” form.
Probably the best known version comes from the Scottish mathematician John

25



26 CHAPTER 2. NON-EUCLIDEAN GEOMETRY

Playfair and his book Elements of Geometry (1795), which states (cf. [Greenberg,
2008]).

For every line ` and for every point P that does not lie on `, there exists a
unique line m through P that is parallel to `.

Due to this formulation, the fifth axiom is often referred to as the parallel
postulate. In fact, the Playfair’s version is not logically equivalent to the original
one, but in the presence of the axioms I-IV, either of the two can be proved by
assuming the other.

As the two-thousand-year long period of attempts to prove the parallel pos-
tulate as a theorem stalemated, people started to think about the consequences of
its replacement by its negation. If one can find a geometry obeying the axioms
I-IV and the negation of the fifth, this proves, that the parallel postulate cannot
be derived as theorem from the other four. Otherwise, in any geometry based on
the axioms I-IV the validity of the parallel axiom could be derived from the other
four, which contradicts the existence of a geometry where its negation holds.

Examples of a new type of geometry were indeed found independently by
a Hungarian mathematician János Bolyai (1831) and a Russian Nikolai Loba-
chevsky (1829). The two most common non-Euclidean geometries (curved two-
dimensional surfaces) are the spherical geometry and the hyperbolic geometry.
In the spherical geometry, a line has no parallels through a given point, while
in hyperbolic (also called Bolyai–Lobachevskian) geometry for any given line `
and a point P not on ` there are at least 2 distinct lines passing through P and
not intersecting `. We would like to emphasize that both the geometries describe
spatially curved surfaces which are locally two-dimensional. Considering three-
dimensional space with Euclidean metrics, examples of the spherical geometry,
such as the sphere or the ellipsoid, can be easily found. However, an infinite hy-
perbolic surface cannot be embedded into a space with finite Hausdorff dimension
only1.

2.2 Spherical geometry
Although this thesis deals with systems on hyperbolic lattices, the spherical ge-
ometry will be discussed first, as it is easier to imagine due to its finiteness. Con-
sidering the essential properties, there is a sort of dual relationship between the
spherical and the hyperbolic geometry. The spherical geometry, as the name sug-
gests, is the geometry of the sphere and related objects which are characterized
by positive Gaussian curvature κ > 0 at any point on the surface. The Gaussian
curvature κ of a regular sphere is constant and equal to 1/R2, where R is the radius

1Examples of finite hyperbolic surfaces can be visualized in the three-dimensional space, nev-
ertheless, a line of infinite length cannot be drawn there.
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of the sphere. Without loss of generality, we may assume κ = 1, as we can always
measure the distance in the units of the sphere radius. The lines are represented
as the great circles of the sphere. This agrees with the definition of a line as the
set of points, where the shortest path from any point to another is the line segment
between them. It is evident, that for any line ` and a point P not on that line, there
is indeed no line passing through P and not intersecting `.

The sum of angles α+ β+ γ of a triangle ∆ in spherical geometry is always
greater than π. For example, let us consider the triangle created as an intersection
of the first octant of the Cartesian coordinate system with the sphere centred in
the origin of the coordinate system. The sides of the triangle are perpendicular to
each other, hence α = β = γ = π/2 and the sum of angles of the triangle α+β+γ =

3π/2 > π. This follows from the simplified form of the Gauss-Bonnet formula

α+β+γ−π =

"
∆

κ, (2.1)

where the integral is taken throughout the surface portion enclosed by the triangle
∆. In spherical geometry, κ is positive, which proves the statement α+β+γ−π> 0.
Moreover, if the curvature κ is constant, which is the case on the sphere, the area
A =

!
∆

of the triangle ∆ is

A =
α+β+γ−π

κ
. (2.2)

Hence, the size of a triangle is uniquely defined by its angles. Similar triangles
with identical angles and different sizes can exist only on Euclidean surfaces,
where κ = 0 and α+β+γ = π.

The spherical surface has less space than the Euclidean one. Any attempt to
flatten it results in tearing the spherical surface. Equivalently, we cannot create
a sphere from a sheet of paper without cutting some paper away. There is no
mapping from the spherical surface onto the Euclidean plane that preserves both
angles and distance. However, the stereographic projection can preserve the an-
gles, although it disrupts the distances. Let us consider a unit sphere centred in
the origin of the xy plane. In this case, the northern (southern) hemisphere is
mapped onto the outside (inside) of a unit circle in the plane. The south pole is
projected onto the point (0,0), while the north pole corresponds to the points in
plane in infinity. All circles on the sphere are mapped onto circles in the plane
and vice versa. In particular, a line2 in the plane is mapped onto a great circle
on the sphere. Thus, there is a bijective mapping between the geodesics3 of the
respective geometries.

2A line can be considered as a circle which passes through infinity.
3A geodesic is a generalization of the notion line to curved spaces which represents the shortest

route between two points in the space.



28 CHAPTER 2. NON-EUCLIDEAN GEOMETRY

Figure 2.1: Examples of finite hyperbolic surfaces. After [Cagle, 2003] (left)
and [hyp, 1997] (right).

The disruption of the distance is expressed by the new metric induced by the
stereographic projection. If we want to measure the Euclidean distance of two
points on the unit sphere via their images on the xy plane, the metric

ds2 =
(
dx2 + dy2

) 4
(1 + x2 + y2)2 ≡

(
dx2 + dy2

)
f (x,y) (2.3)

must be applied. The function f (x,y) rapidly decreases if (x,y) tends to infinity.
The distance between the points (0,0) and (x→∞,0) in the plane is∫ ∞

0
ds =

∫ ∞

0

2
1 + x2 ds = π, (2.4)

which is the distance between the south and north pole of the sphere — the preim-
ages of the two planar points in the stereographic projection.

2.3 Hyperbolic geometry
The hyperbolic surfaces exhibit negative Gaussian curvature κ < 0 at any point.
Hence, the entire surface is composed of saddle points only. Due to strong analogy
with the spherical geometry, a surface with constant negative curvature κ is called
the pseudosphere.

Examples of hyperbolic surfaces of finite size can be easily constructed in the
three-dimensional space, cf. fig 2.1. However, as the size increases, the surface
curls more and more and the boundary parts start intersecting each other. The
infinite hyperbolic surface, therefore, cannot be placed in the three-dimensional
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a

b
c

P

Figure 2.2: The Poincaré disc representation of the hyperbolic plane with several
examples of the geodesics. Two distinct geodesics labelled b, c passing through
the point P are parallel to the geodesic a. The edge of the disc corresponds to
infinity on the hyperbolic plane.

space with Euclidean metric. On the contrary, it can be shown that the minimal
Hausdorff dimension into which any infinite hyperbolic surface can be embedded
is infinite.

There is more space on the hyperbolic surface than on the Euclidean plane.
Any attempts to flatten it end up with a scrunched object, portions of which over-
lap. As a consequence, for example, a circle of given diameter on the hyperbolic
surface has larger area than its counterpart on the Euclidean plane - its area grows
exponentially with increasing radius in comparison to a quadratic increase in the
Euclidean case.

Developing the analogy with the spherical geometry, assuming κ < 0 in the
Gauss-Bonnet formula (2.1) yields that the sum of angles of any triangle ∆ on the
hyperbolic surface α+β+γ is less than π and the angles uniquely define the size
of the triangle if κ is constant. Note that, since A = |κ|(π− (α+ β+ γ)) < |κ|π, no
triangle on the unit (κ = −1) pseudosphere can have area larger than π.

Although the infinite hyperbolic surface with Euclidean metric cannot be em-
bedded in the three-dimensional space, there is again an angle-preserving (and
distance-distorting) mapping onto the Euclidean plane, or, to be more precise,
onto a unit circle in the Euclidean plane. It is called Poincaré representation [An-
derson, 2005] and the unit circle is referred to as the Poincaré disc, cf. fig. 2.2.
The points located in infinity on the hyperbolic plane are mapped onto the edge
of the unit circle. The geodesics are represented as circles that meet the edge at
right angle. Any non-intersecting such circles correspond to parallel lines on the
hyperbolic surface. One can easily check that more than one parallel to a given
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line passing through a given point not on that line can be constructed. The metric
of the Poincaré disc (assuming unit pseudosphere with κ = −1)

ds2 =
(
dx2 + dy2

) 4
(1− (x2 + y2))2 =

(
dx2 + dy2

)
p(x,y) (2.5)

strongly resembles the stereographic projection, as it differs in the single minus
sign in the denominator. However, the opposite sign changes the geometry com-
pletely. Near the edge of the circle x2 + y2 ≈ 1, p(x,y)→∞ and, therefore, the
distance between the center and the edge of the disc∫ ∞

0
ds =

∫ ∞

0

2
1− x2 ds =∞ (2.6)

is infinite, as expected.

2.4 Regular tessellation
Our objective is to study regular lattice spin systems, where each lattice vertex
corresponds to a position of a single spin and the lattice edges represent the bonds
between neighbouring spins. The regularity means that the lattice is constructed
by tessellation of congruent4 regular p-sided polygons and each spin has q bonds
to its q nearest neighbours. Equivalently, each lattice vertex is shared by q lattice
polygons. The lattice of this structure will be denoted as (p,q) and we refer to the
integers p and q as the lattice parameter and coordination number, respectively.

In Euclidean geometry, only the triangular (3,6), square (4,4) and hexagonal
(6,3) lattices can be formed. This can be justified by the following consideration.
Assuming q congruent non-overlapping regular polygons sharing one vertex with
no space left, the vertex angle δ of the polygon must equal 2π/q. Each regular
p-sided polygon can be divided into p congruent triangles, the two vertices of
which are the neighbouring vertices on the polygon circumference and the third
one is the polygon centre. The angle γ of the triangle at the vertex coinciding with
the polygon centre is then 2π/p and the remaining two angles are α = β = δ/2 =

π/q, thus giving the sum of the angles in the triangle α+ β+ γ = 2π(1/p + 1/q).
In Euclidean geometry, the sum of angles of the triangle must equal π, which
means, that any (p,q) lattice can be formed in the Euclidean plane if and only if
1/q + 1/p = 1/2 or, equivalently, (p− 2)(q− 2) = 4. As p, q are positive integers
greater than two, the only possible Euclidean lattices are (3,6), (4,4) and (6,3).

In the spherical geometry we have α+β+γ > π, which results in the condition
(p −2)(q −2) < 4. This can be fulfilled only if (p,q) ∈ {(3,3), (4,3), (5,3), (3,4),

4The polygons are identical with fixed sizes of sides, i. e., the physical bond strength (the
coupling constant J) is uniform throughout the system.



2.4. REGULAR TESSELLATION 31

Figure 2.3: Poincaré disc representation of the hyperbolic (5,4) (left) and (10,4)
(right) lattices. All the polygons are of equal size and regular shape if the lattice is
drawn on the pseudosphere. The projection of the pseudosphere onto the Poincaré
disc, however, shows them deformed and progressively shrunk toward the disc
boundary.

(3,5)}. These lattices correspond to the "blown"5 versions of the five Platonic
solids - the tetrahedron, the cube, the dodecahedron, the octahedron, the icosahe-
dron. The "blown" version refers to a an object with identical structure of vertices
and edges drawn on a (unit) sphere.

In a similar way, we obtain the condition (p−2)(q−2) > 4 for the regular lat-
tices on hyperbolic surfaces. On contrary to the two previous geometries, there are
infinitely many integer combinations (p,q) which obey the relation. Thus, except
the eight (p,q) lattices realizable either on the Euclidean or the spherical surfaces,
all the other (p,q) lattices must be constructed on the hyperbolic surface. As an
example, we show the (5,4) and (10,4) lattices in the Poincaré disc representation
in fig 2.3. Additional examples in the form of the triangular (3,7) and (3,13) lat-
tices can be found in fig 4.1 in chapter 4. The classification scheme of the (p,q)
lattices into the respective geometries is shown in table 2.1. All the hyperbolic lat-
tices fulfilling (p−2)(q−2) > 4 can be drawn on the unit pseudosphere (κ = −1),
however, the polygon edge length must be rescaled accordingly. Equivalently, if
the polygon edge length l is held constant at the value l = 1, the constant Gaussian

5In the above-mentioned considerations, we assumed smooth surfaces, where a tangent plane
exists at any point and the ratio of the circumference and the radius of an infinitesimal circle is 2π.
Hence, we do not receive the ordinary "angular" Platonic solids. Similarly, the hyperbolic (p,q)
lattices are considered as placed on the smooth hyperbolic surface. The interior of the p-sided
polygon is not flat and there is no sharp edge between two neighbouring polygons as would be the
case if real polygonal tiles were used in the tessellation.
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HHH
HHHp

q
3 4 5 6 7 ...

3 S S S E H H
4 S E H H H H
5 S H H H H H
6 E H H H H H
7 H H H H H H
... H H H H H H

Table 2.1: The classification of regular (p,q) lattices as Euclidean (E), spherical
(S) and hyperbolic (H) with respect to given combinations of the lattice parameter
p and the coordination number q.

curvature of the underlying hyperbolic and Euclidean surfaces obeys [Mosseri and
Sadoc, 1982]

κp,q = −

[
2arccosh

(
cos(π/p)
sin(π/q)

)]2

. (2.7)



Chapter 3

Corner tensor networks

In this chapter we describe numerical algorithms which form the computational
background behind the core results of this thesis presented in chapters 4 and 5.
First we introduce the mutually related concepts of the transfer tensor and the
corner transfer tensor which play a crucial role in the Corner transfer matrix
renormalization group algorithm described in section 3.2.1. Next, we show how to
modify the original algorithm, so that it can be implemented on hyperbolic lattices
and, finally, the Tensor product variational formulation algorithm for quantum
systems on the Euclidean and the hyperbolic surfaces is demonstrated.

3.1 Transfer approach to partition function analysis

3.1.1 Transfer tensor formalism
Following the Baxter’s book [Baxter, 1982], we explain the concept of the transfer
tensor1 directly on a very simple model — the classical Ising model on the one-
dimensional chain with N spins. The Hamiltonian of the model is

H({σ}) = −J
N∑

i=1

σiσi+1−h
N∑

i=1

σi, (3.1)

where σi = ±1, J > 0 is the ferromagnetic coupling and h is the external field.
We impose periodic boundary conditions, i. e., σ1 ≡ σN+1, which in combination

1In literature, it is more usual to refer to the transfer tensor as the transfer matrix. This alter-
native terminology was established within the framework of one- and two-dimensional Euclidean
lattices, where the transfer matrix applied to the vector of Boltzmann weights of the spin (row of
spins) i yields the vector of Boltzmann weights of the next spin (row of spins) i + 1. However, we
prefer the tensor notation in order to unify the terminology with the next section, where the corner
transfer tensor is introduced.

33



34 CHAPTER 3. CORNER TENSOR NETWORKS

with the site-independent values J and h create a translationally invariant system.
The formula for the partition function takes the form

ZN =
∑
{σ}

exp

K N∑
i=1

σiσi+1 + H
N∑

i=1

σi

 , (3.2)

where
∑
{σ} =

∑
σ1

∑
σ2 . . .

∑
σN , K = J/kBT and H = h/kBT .

Now, let us benefit from the sum in the argument of the exponential function.
If we define

V(σ,σ′) = exp
[
Kσσ′+

H
2

(σ+σ′)
]
, (3.3)

the formula (3.2) for the partition function ZN can be rewritten in the product
form

ZN =
∑
{σ}

V(σ1,σ2)V(σ2,σ3)V(σ3,σ4) . . .V(σN ,σ1). (3.4)

It is convenient to think of V(σ,σ′) as elements of a 2×2 matrix V defined as

V =

(
V(+1,+1) V(+1,−1)
V(−1,+1) V(−1,−1)

)
=

(
eK+H e−K

e−K eK−H

)
. (3.5)

This way, the summations
∑
σ2 ...

∑
σN in (3.4) can be interpreted as consequent

matrix multiplications producing the matrix element VN(σ1,σ1) and the last sum∑
σ1 as calculation of the trace. The formula (3.4) thus simplifies into an elegant

expression
ZN = Tr(VN). (3.6)

The matrix V is the transfer matrix (tensor) of the 1D Ising model.
Our choice of the formula for V(σ,σ′) ensures that the matrix V is symmetric.

As a result, V is diagonalizable and its eigenvectors can be chosen as mutually
orthonormal, i. e.

V = P
(
λ1 0
0 λ2

)
P−1, (3.7)

where
λ1,2 = eK cosh H±

(
e2Ksinh2 H + e−2K

) 1
2 (3.8)

are the eigenvalues of V (labelled in the descending order, i.e., λ1 ≥ λ2) and P
is an orthogonal matrix2 containing the mutually orthonormal eigenvectors as its
columns. Thus,

ZN = Tr
(
λ1 0
0 λ2

)N

= Tr
(
λN

1 0
0 λN

2

)
= λN

1 +λN
2 (3.9)

2Orthogonal matrix O is a square matrix which obeys OTO = OOT = I. Hence, O−1 = OT.
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Figure 3.1: The M ×N lattice with coloured areas represented by the Boltzmann
weight tensor WB (a single cell) and the transfer tensor T (ξi, ξi+1) (an entire row
of cells).

and the free energy per site, f , in the thermodynamic limit N→∞ is

f = −kBT lim
N→∞

lnZN

N
= −kBT lim

N→∞

lnλ1 +
1
N

ln

1 +

(
λ2

λ1

)N
 . (3.10)

For T > 0 we have |λ2/λ1|< 1 and, consequently,

f = −kBT lnλ1, (3.11)

which is an analytic function. At h = 0 and T = 0 the correlation length ξ =

[ln(λ1/λ2)]−1 diverges, which is associated with the only critical point. There is
no phase transition in the classical 1D Ising model for T > 0 and real h.

Now, let us apply the transfer tensor formalism to a more interesting ferro-
magnetic Ising model on a two-dimensional lattice with M ×N spins located in
the lattice vertices organized in N rows and M columns, cf. fig. 3.1. We assume
that the interaction strength J > 0 is uniform throughout the entire lattice both in
the horizontal and vertical directions. The Hamiltonian of the system is then given
by

H({σ}) = −J
N∑

i=1

M∑
j=1

(
σi, jσi+1, j +σi, jσi, j+1

)
−h

N∑
i=1

M∑
j=1

σi, j, (3.12)

where σi, j = ±1 labels the spin in the i-th row and j-th column and h is the ho-
mogeneous external field. We impose the periodic boundary conditions3, i.e.,
σN+1, j ≡ σ1, j and σi,M+1 ≡ σi,1 for 1 ≤ j ≤ M and 1 ≤ i ≤ N.

3In general, arbitrary, although identical, boundary conditions can be applied to spins σi,1 for
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Now, in order to rewrite the partition functionZN,M of the N ×M system into
a matrix product form analogous to (3.4), we introduce the Boltzmann weight
tensor of the square-shaped cell bounded by four spins σi, j,σi, j+1,σi+1, j,σi+1, j+1

WB(σi, j,σi, j+1σi+1, j,σi+1, j+1) = exp
[

h
4kBT

(
σi, j +σi, j+1 +σi+1, j +σi+1, j+1

)
+

J
2kBT

(
σi, jσi, j+1 +σi, j+1σi+1, j+1 +σi+1, j+1σi+1, j +σi+1, jσi, j

)]
. (3.13)

The expression in the argument of the exponential function represents contribu-
tion of the selected cell to the total Hamiltonian of the system H({σ}), where the
fractions J/2 and h/4 reflect that (assuming periodic boundary conditions) each
bond and spin position is shared by 2 and 4 neighbouring lattice cells, respectively.
Using (3.13), the formula for the partition functionZN,M can be simplified into

ZN,M =
∑
{σ}

N∏
i=1

M∏
j=1

WB
(
σi, j,σi, j+1σi+1, j,σi+1, j+1

)
, (3.14)

where the sum runs over all 2NM possible spin configurations {σ}. Notice that
the product

∏N
i=1

∏M
j=1 WB of the Boltzmann weights of all lattice cells gives the

Boltzmann weight of the microstate (spin configuration) {σ} of the entire system.
Similarly, the Boltzmann weight of an arbitrary union of the lattice cells equals
the product of the corresponding Boltzmann weight tensors WB.

It is useful if we introduce the (row) transfer tensor T by formula

T(ξi, ξi+1) =

M∏
j=1

WB
(
σi, j,σi, j+1,σi+1, j,σi+1, j+1

)
, (3.15)

1 ≤ i ≤ N on the left lattice boundary and separately to spins σi,M for 1 ≤ i ≤ N on the right
lattice boundary. In that case, however, the expression

∏M
j=1 WB

(
σi, j,σi, j+1,σi+1, j,σi+1, j+1

)
in the

formulae (3.14) and (3.15) has to be replaced by

WL
(
σi,1,σi+1,1

) M−1∏
j=1

WB
(
σi, j,σi, j+1,σi+1, j,σi+1, j+1

)
WR

(
σi,M ,σi+1,M

)
,

where the terms WL
(
σi,1,σi+1,1

)
and WR

(
σi,M ,σi+1,M

)
represent the selected boundary conditions

on the left and right boundary, respectively. For example, open boundary conditions on the left
side result in

WL
(
σi,1,σi+1,1

)
= exp

[
h

4kBT
(
σi,1 +σi+1,1

)
+

J
2kBT

(
σi,1σi+1,1

)]
.
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where ξi =
{
σi,1σi,2 . . .σi,M

}
labels the 2M configurations of M grouped spins in the

i-th lattice row. The transfer tensor T is constructed as the product of Boltzmann
weights tensors of an entire row of cells, hence it represents the Boltzmann weight
of the selected row at spin configurations ξi and ξi+1. Considering the transfer
tensor T in the matrix form allows us to modify the formula for the partition
functionZN,M into

ZN,M =
∑
ξ1

∑
ξ2

. . .
∑
ξN

T(ξ1, ξ2)T(ξ2, ξ3) . . .T(ξN , ξ1) = Tr
(
TN

)
, (3.16)

where we made use of the periodic boundary conditions in the vertical direction
σN+1, j ≡ σ1, j for 1 ≤ j ≤ M. This expression is a formal analogue to (3.4) and
(3.6), which have been developed in the one-dimensional case. Indeed, any N×M
lattice can be considered as a 1D lattice consisting of N "points", each of them
representing one row of M spins with 2M configurations labelled by the variable
ξi.

Being able to calculate the largest eigenvalue λ1 of the transfer matrix T, the
evaluation of the free energy per site f of a system with finite number M of spins
in each row becomes straightforward, because

f =
F

NM
= −

kBT
NM

ln
(
TrTN

)
= −

kBT
NM

N lnλ1 + ln

1 +

2M∑
k=2

(
λk

λ1

)N

 . (3.17)

In the thermodynamic limit N→∞ taken along the vertical direction, the second
term vanishes, and we receive

f = −
kBT
M

lnλ1. (3.18)

The calculation of the largest eigenvalue λ1 of the transfer matrix T is not a trivial
task if the row length M is large. Namely, the numerical algorithms are signifi-
cantly slowed down due to exponential increase of the matrix dimension dim(T) =

2M even if the complete diagonalization is not carried out. On the other hand,
a well-known method, called Density matrix renormalization group [Nishino,
1995, Nishino et al., 1999], can treat as large transfer matrices as M > 103.

3.1.2 Corner transfer tensor formalism

Let us again consider the 2D Ising model, however, unlike the previous case, open
boundary conditions (OBC) are assumed. The lattice is a square, i. e., M = N, and
its size M = N = 2L + 1 is considered to be odd so that we can divide the system
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C

σ

ξ
2

ξ
3

ξ
4

ξ
1

Figure 3.2: The square (2L + 1)× (2L + 1) lattice divided into four quadrants (cor-
ners) for L = 3. The multi-spin variables ξ1, ξ2, ξ3, ξ4 label the 2L configurations
of spins on the borders between two neighbouring corners, and σ denotes the spin
positioned in the lattice centre. The upper-right corner represented by the corner
tensor C(σ,ξ1, ξ2) is coloured in red.

into four equivalent quadrants with respect to the central lattice spin4(see fig. 3.2).
For each of these quadrants, we define the corner transfer tensor5 C as

C
(
σ,ξ,ξ′

)
=

∑
{σ}

′∏
(i, j)

WB(σi, j,σi, j+1,σi+1, j,σi+1, j+1), (3.19)

where
∑
{σ}
′ denotes summation over all configurations of spins inside the quad-

rant and on its outer border (represented by black filled circles in fig. 3.3),
∏

(i, j)
represents product over all the lattice cells within the quadrant, ξ, ξ′ label 2L spin
configurations of L spins on each of the two border lines of the corner with its
neighbours and σ labels the state of the central spin (cf. fig. 3.3). Note that due to
the OBC some of the fractions J/2 and h/4 in the formula (3.13) for WB modify to
J, h or h/2 if the corresponding lattice cell is located on the lattice border, where

4This concept can be further generalized, so that we can also consider M , N for both even
and odd M and N.

5In literature, the corner transfer tensor is usually referred to as the corner transfer matrix.
However, the matrix formalism requires a slightly modified definition

C
(
(σ,ξ), (σ′, ξ′)

)
=

∑
{σ}

′∏
(i, j)

WB(σi, j,σi, j+1,σi+1, j,σi+1, j+1)δ(σ,σ′),

where the duplicated variable σ′ is created with the only intention of establishing C as a square
matrix. We find this approach rather redundant and, therefore, we prefer the tensor notation (3.19)
in the following.
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σ

Figure 3.3: Graphical interpretation of the corner tensor C(σ,ξ,ξ′) representing
the upper-right lattice corner with L = 4 spins on its interior border (left). Sim-
plified graphical representation of the identical tensor (right) will be used in the
following.

the sharing of bonds and spin locations differs from situation inside the lattice.
The corner transfer tensor thus represents the Boltzmann weight of the selected
quadrant at the configuration {σ,ξ,ξ′} of spins on the inner border (if taking into
account all possible configurations of the remaining spins in the corner).

The structure of the corner transfer tensor allows us to rewrite the formula for
the partition function into a convenient form

ZN,N =
∑

σξ1ξ2ξ3ξ4

C (σ,ξ4, ξ1)C (σ,ξ1, ξ2)C (σ,ξ2, ξ3)C (σ,ξ3, ξ4) . (3.20)

This formula can be represented for homogeneous and isotropic spin systems in
the simplified notation as

ZN,N = Tr
(
C4

)
. (3.21)

Therefore, the corner tensor C uniquely and exactly determines the partition func-
tion. In the previous section we derived the expression (3.16), which establishes
a similar relation between Z and the (row) transfer tensor T. Now, instead of
performing N matrix multiplications or solving the eigenvalue problem, the mul-
tiplication of the four identical corner tensors C is required only. Note that the
number of entries in the corner transfer tensor, 22L+1 = 2N , grows exponentially
with the increasing system size N. It is, therefore, impossible to multiply the cor-
ner tensors C or even store them in memory if the system is large. Nevertheless,
in the next section we present a solution to this problem based on an appropriate
renormalization technique.
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3.2 Corner transfer renormalization group

In this section we introduce the Corner transfer matrix renormalization group
(CTMRG) method in its original form as proposed by Nishino and Okunishi
in [Nishino and Okunishi, 1996, Nishino and Okunishi, 1997]. This algorithm
provides highly accurate results for the classical spin models on large 2D square
N ×N lattices, provided that the structure of the model Hamiltonian is uniform
and invariant to rotations of the system by 90◦. The objective of the algorithm
is to construct an "effective" corner transfer tensor C of the large system by an
iterative sequence of step-by-step lattice expansions. A specific renormalization
procedure applied to each step guarantees that the number of entries of the "effec-
tive" tensor in the enlarged system does not exceed a preset bound. Thus obtained
corner transfer tensor C is used to evaluate the partition function Z via (3.21) or
other quantities via similar formulae.

3.2.1 The algorithm

For tutorial purposes let us consider the 2D Ising model with the Hamiltonian
(3.12) and open boundary conditions. As required, the model is uniform and
invariant by 90◦ rotations, hence the Boltzmann weight tensors WB of all lattice
cells are identical and equal to (3.13) (except those with slightly different bonds
and vertices on the lattice boundary). From now on, in order to make the text
shorter, we make no explicit difference between the tensors WB, C or T and the
lattice structures they represent6.

I. Initialization

The algorithm starts with a small system containing 3× 3 spins on the square
lattice, where each of the four corners is formed by a single cell. The corner
tensor C(1) of the initial upper-right 2×2 corner is then according to (3.19) given
by

C(1)(σ1,σ2,σ4) =
∑
σ3

W′
B(σ1,σ2,σ4,σ3), (3.22)

6This means that one can, for example, encounter sentences containing "we attach the half-row
T(k) to the bottom side of the corner C(k)".
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Figure 3.4: Graphical interpretation of the tensors WB(σ1,σ2,σ4,σ3),
C(1)(σ1,σ2,σ4) and T(1)(σ1,σ2,σ4,σ3) with the correct sharing factors appear-
ing in front of the terms hσi and Jσiσ j in the formulae (3.13), (3.23) and (3.24),
respectively. A thick edge labels a bond with the full contribution 2J/2 = J and a
filled circle denotes a spin variable, which is summed over in (3.22).

where

W′
B(σ1,σ2,σ4,σ3) = exp

[
h

4kBT
(σ1 + 2σ2 + 4σ3 + 2σ4)+

+
J

2kBT
(σ1σ2 + 2σ2σ3 + 2σ3σ4 +σ4σ1)

] (3.23)

is the Boltzmann weight tensor of the single corner cell. W′
B is a modification

of the original tensor WB (3.13), which takes into account the different fractions
of the bonds and the vertices on the lattice boundary in comparison to the lattice
interior. The situation is illustrated in fig. 3.4 (in the middle). Spins σ2 and σ4
are shared only between two cells — the current cell and the neighbouring one
to the bottom and to the left, respectively. The sharing fraction of spins σ2 and
σ4 is therefore h/2 = 2h/4. The spin σ3 and the two bonds σ2σ3, σ3σ4 are not
shared with other cells which is represented by the sharing fractions J = 2J/2 and
h = 4h/4.

In CTMRG, the lattice expansion is carried out by attaching two half-rows
of cells of matching length to the interior sides of the corner. The Boltzmann
weight of these half-rows is represented by the (half-row) transfer tensor T. The
matching half-row attached to the initial 2×2 corner is a single cell with one side
on the boundary. The transfer tensor T(1) corresponding to the half-row attached
to the bottom side of the right-upper corner C(1) is

T(1)(σ1,σ2,σ4,σ3) = exp
[

h
4kBT

(σ1 + 2σ2 + 2σ3 +σ4)+

+
J

2kBT
(σ1σ2 + 2σ2σ3 +σ3σ4 +σ4σ1)

]
,

(3.24)
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i. e., a modification of WB with different sharing fractions at terms σ2, σ3, σ2σ3
which are related to the boundary as depicted in fig. 3.4 (on the right) 7.

II. Lattice and tensor expansion

Having initialized the tensors C and T, the process of system expansion can start.
The lattice corner from the previous k-th step containing k×k cells or, equivalently
(k + 1)× (k + 1) spins is extended by adding two half-rows of k cells to its interior
sides and a single cell at the central position. Boltzmann weights of the above-
mentioned objects are represented by tensors C(k),T(k) and WB, respectively. As a
result, we receive an enlarged corner with (k+1)× (k+1) cells. The corresponding
corner tensor C̃(k+1) is, therefore, given by

C̃(k+1)(σ, {τ1ξ1}, {τ2ξ2}) =
∑

σ′,η1,η2

T(k)(σ′,η2, τ2, ξ2)WB(σ,τ1, τ2,σ
′)

×C(k)(σ′,η1,η2)T(k)(τ1, ξ1,σ
′,η1),

(3.25)

where σ, τ1, τ2, σ′ are single- and ξ1, ξ2, η1, η2 multi-spin variables. The tilde
denotes the unrenormalized version of the tensor, as explained in the next section.
The situation is illustrated in fig. 3.5 (left). Due to the sum

∑
σ′,η1,η2 , the tensor

elements (3.25) represent Boltzmann weight of the (k+1)×(k+1) corner at a given
configuration of spins on the inner corner boundary, as required by the definition
of the corner transfer tensor.

In the next iteration step, a half-row with (k + 1) cells will be required. This
object is constructed by attaching a single cell to the interior side of the half-row
represented by T(k). The transfer tensor of the enlarged half-row is thus given by

T̃(k+1)(σ1, {τ1ξ1},σ2, {τ2ξ2}) = WB(σ,τ1,σ2, τ2)T(k)(τ1, ξ1, τ2, ξ2), (3.26)

as illustrated in fig. 3.5 (right). As a result, the total enlargement of the system,
which is constructed from four corners, is equivalent to inserting two rows and
two columns of cells of length 2(k + 1) into the lattice centre.

7 Correct matrix initialization is inevitable only if the lattice size is finite, i. e., L <∞. If, how-
ever, an infinite 2D Euclidean system is simulated, the initialization becomes irrelevant, because
the ratio of the number of spins on the boundary to the number of spins in the entire lattice becomes
zero in the thermodynamic limit. It is often useful to add a small magnetic field g in the initial
tensors C(1) and T(1) in order to enhance the symmetry breaking mechanism. On the contrary,
proper initialization becomes essential on hyperbolic lattices, where the boundary is comparable
in size with the interior. However, the boundary effects may get negligible even on hyperbolic
lattices if, e. g., local quantities, such as the local magnetization 〈σ〉 on the central lattice site are
evaluated.
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Figure 3.5: The expansion of the corner tensor C(k) (left) and the transfer tensor
T(k) (right). Variables, which are summed over in (3.25), are denoted as black-
filled.

Finally, we introduce the simplified notation, in which the recurrence expan-
sion formulae take the form

C(k+1) = T(k)WBC(k)T(k), (3.27)

T(k+1) = WBT(k), (3.28)

where the tildes were omitted in order to emphasize the construction scheme, not
the renormalization aspects.

III. Renormalization

The number of entries in the tensors T(k) and C(k) is (2×2k)2 and 2×22k, respec-
tively, where 2k is the number of spin configurations of the multi-spin variable
labelling k spins. The simple repeating of the expansion process described above
leads to numerical overflows and enormous memory usage caused by exponen-
tial increase of the number of entries in the tensors T(k) and C(k). It is, therefore,
necessary to supply each expansion step with a renormalization procedure, which
reduces the number of entries of the newly created tensors T̃(k+1) and C̃(k+1) to an
acceptable level. In CTMRG this is done by projecting the spin state space of the
multi-spin variables onto a subspace with a significantly lower dimension.

Let us denote the maximal acceptable dimension of the multi-spin state space
by the integer variable m. After the k-th expansion step, new 2×Ωk-dimensional
multi-spin variables {τξ} are created, where Ωk = min

(
2k,m

)
is the dimension-

ality of the variable ξ. Except for a few iterations at the beginning, Ωk = m,
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Figure 3.6: Graphical illustration of the tensor A(k) (left) and the density matrix
ρ(k) (right) corresponding to a cut in the lattice which starts in the lattice centre
and continues to the left boundary.

and the 2×m-dimensional variable {τξ} has to be projected to an appropriate m-
dimensional subspace. The instructions on how to construct the projection opera-
tor are summarized below.

First, we calculate a new tensor A(k) by multiplying two corner tensors C(k) of
two neighbouring lattice quadrants from the previous step,

A(k)(σ,ξ1, ξ3) =
∑
ξ2

C(k)(σ,ξ1, ξ2)C(k)(σ,ξ2, ξ3), (3.29)

as illustrated in fig. 3.6 (left). In this way we defined an object, which represents
the Boltzmann weight of one half of the lattice. The tensor A(k) is normalized8

Ã(k)(σ,ξ,η) =
A(k)(σ,ξ,η)∣∣∣∣∣∣A(k)

∣∣∣∣∣∣ , (3.30)

where the norm is ∣∣∣∣∣∣A(k)
∣∣∣∣∣∣ =

√∑
σ,ξ,η

A(k)2(σ,ξ,η). (3.31)

Now, we construct the reduced density matrix ρ(k) via

ρ(k)
(
{σ,ξ}

∣∣∣{σ′, ξ′}) =
∑
η

Ã(k)(σ,ξ,η)Ã(k)(σ′, ξ′,η), (3.32)

8 The normalization step may be omitted, as its only purpose is to guarantee the validity of the
condition Trρ = 1. The projection operator is constructed from the normalized eigenstates of the
density matrix ρ, which are not affected by scalar multiplication of ρ. It is, however, advisable to
follow the normalization practice so that one can check the truncation error ε =

∑2m
k=m+1ωk, where

ωk are the eigenvalues of the density matrix labelled in the descending order.
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as illustrated in fig. 3.6 (right). The elements of the density matrix ρ ({σ,ξ} |{σ′, ξ′} )
can be interpreted as the Boltzmann weights of a cut in the lattice at the spin con-
figuration {σ,ξ,σ′, ξ′}. The cut starts in the lattice centre and continues along one
of the main axes until the lattice border.

Without loss of generality, let us assume the usual situation, when dimρ = 2m.
The density matrix ρ is constructed as a symmetric matrix, hence it is diagonal-
izable with orthonormal basis of eigenvectors. Let us label the eigenvalues ωk of
ρ in the descending order, i. e., ω1 ≥ ω2 ≥ ... ≥ ω2m and the corresponding eigen-
vectors as Φk. Then, the operator P of projection onto the m-dimensional state
subspace is constructed as a 2m×m matrix filled with eigenvectors Φ1...Φm as its
columns, i. e.,

P =

 | | · · · |

Φ1 Φ2 · · · Φm
| | · · · |

 . (3.33)

The projection operator is applied to the tensors C̃(k+1) and T̃(k+1) given by equa-
tions (3.25) and (3.26), respectively. As a result, we obtain the renormalized ten-
sors

C(k+1) (σ,ξ1, ξ2) =
∑

τ1,η1,τ2,η2

P ({τ1η1}|ξ1) C̃(k+1) (σ, {τ1η1}, {τ2η2})P ({τ2η2}|ξ2)

(3.34)
and

T(k+1) (σ1, ξ1,σ2, ξ2) =

=
∑

τ1,η1,τ2,η2

P ({τ1η1}|ξ1) T̃(k+1) (σ1, {τ1η1},σ2, {τ2η2})P ({τ2η2}|ξ2) , (3.35)

whose multi-spin variables ξ1, ξ2 now live in the demanded m-dimensional space.
The tensors C(k+1) and T(k+1) are used as an input in the following (k + 2)-th iter-
ation step, replacing C(k) and T(k) in the instructions above, which yields C(k+2)

and T(k+2) and so on.
The choice of the classical density matrix, as an effective selector between the

important and negligible states, is based on the quantum-classical correspondence.
Namely, the quantum Density matrix renormalization group algorithm [White,
1992, White, 1993] provides highly accurate results for the ground-state or a few
low excited states of quantum systems on a chain in the thermodynamic limit. The
system is constructed from two identical blocks, which represent the left and the
right part of the chain. In each step the blocks are iteratively expanded by adding
a single site. The dimension of the effective Hilbert space is maintained within ac-
ceptable limits by projecting onto a suitable subspace. Here, the subspace is gener-
ated by the eigenvectors corresponding to the m largest eigenvalues of the reduced
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density matrix of the quantum system. Applying the quantum-classical corre-
spondence, the classical Density matrix renormalization group method [Nishino,
1995] for two-dimensional classical lattice models was developed. The system
gradually expands in the horizontal direction and the renormalization process is
governed by the classical density matrix created from the normalized eigenvector
v1 of the transfer matrix T corresponding to the largest eigenvalue λ1. For large
systems v1 ≈ Ã, cf. (3.29), (3.30), which is the idea of the CTMRG algorithm.

Note that as a result of multiple summations in the expansion-renormalization
formulae, the tensor elements C(k+1) (σ,ξ1, ξ2) and T(k+1) (σ1, ξ1,σ2, ξ2) diverge
exponentially as k increases. In order to avoid this, normalization of tensors C(k+1)

and T(k+1) before starting the next iteration step (k + 1) is necessary. As an exam-
ple, one can use

Ĉ(k+1) =
C(k+1)

ck+1
and T̂(k+1) =

T(k+1)

tk+1
, (3.36)

where

ck+1 = max
σ,ξ1,ξ2

{
C(k+1) (σ,ξ1, ξ2)

}
and tk+1 = max

σ1,ξ1,σ2,ξ2

{
T(k+1) (σ1, ξ1,σ2, ξ2)

}
.

(3.37)

IV. Calculation of the free energy and observables

The CTMRG algorithm stops if the free energy per site f and all important ob-
servables converged. Here, by the term convergence we mean a situation, when
values of the respective quantities in two consecutive iterations differ by less than
a preset tolerance constant ε. For example, we demand | f (k+1) − f (k)| < ε, where
f (k) is the free energy per site f in the iteration k. Below, we demonstrate how to
calculate the free energy f and quantities such as the local magnetization 〈σ`〉 on
a central lattice site ` or the nearest-neighbour correlation function 〈σ`σ`′〉 using
the tensors C and T.

Let us start with the free energy per site

f (k) =
F (k)

N
= −

kBT lnZN,N

N
= −

kBT lnTr
(
C(k)

)4

N
, (3.38)

where N = (2k + 1)2 is the number of lattice vertices in the iteration k. Note that
the free energy F is an extensive quantity, which diverges as the lattice increases
and, thus, does not converge. In CTMRG the exact corner tensor in (3.38) is
approximated by its renormalized version C(k) at high accuracy.

Since we have only the normalized tensors Ĉ(k) at disposal, f (k) is not calcu-
lated directly via (3.38). Instead, the schematic form of the recurrence expansion
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formulae (3.27), (3.28) and the normalization relations (3.36) are used to deter-
mine the partition function ZN,N as a product of the normalization constants ck
and tk. In particular, decomposing the corner tensor Ĉ(k) into the product form of
its constituents, we have

Ĉ(k) =
C(k)

ck
=

WBĈ(k−1)
(
T̂(k−1)

)2

ck
=

WBC(k−1)
(
T(k−1)

)2

ckck−1t2k−1

=

WB

[
WBĈ(k−2)

(
T̂(k−2)

)2
] (

WBT̂(k−2)
)2

ckck−1t2k−1

=
W(k−1)2

B

(
T(1)

)2(k−1)
C(1)∏k

i=1 cit
2(k−i)
i

=
Wk2

B∏k
i=1 cit

2(k−i)
i

.

(3.39)

The product Wk2

B is the Boltzmann weight of a single corner on (2k + 1)× (2k + 1)
lattice in the iteration k with (2k)2 cells. Hence

ZN,N = Tr

 k∏
i=1

cit
2(k−i)
i Ĉ(k)


4

=

 k∏
i=1

cit
2(k−i)
i


4

Tr
(
Ĉ(k)

)4
(3.40)

and

f (k) = −
kBT

(2k + 1)2

lnTr
(
Ĉ(k)

)4
+ 4

k∑
i=1

[lnci + 2(k− i) ln ti]

 . (3.41)

As a result, the complete set of the normalization constants ci, ti for 1 ≤ i ≤ k must
be stored in memory in order to calculate the free energy per site f (k) in iteration
k.

The expected value of the local magnetization 〈σ`〉 on the central lattice site `
is calculated as

〈σ`〉 =

∑
σ`
σ`

∑
ξ1,ξ2,ξ3,ξ4

C(σ`, ξ1, ξ2)C(σ`, ξ2, ξ3)C(σ`, ξ3, ξ4)C(σ`, ξ4, ξ1)∑
σ`,ξ1,ξ2,ξ3,ξ4

C(σ`, ξ1, ξ2)C(σ`, ξ2, ξ3)C(σ`, ξ3, ξ4)C(σ`, ξ4, ξ1)
, (3.42)

since the tensor product C4 gives the Boltzmann weight of the spin state σ`. In
the simplified notation, the formula (3.42) takes the form

〈σ`〉 =
Tr

(
σ`C4

)
Tr

(
C4) . (3.43)
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Figure 3.7: The lattice structure required to calculate the correlation function
〈σ`σ`′〉. Expectation values of any quantities depending on the spin variables
σ`,σ`′ ,σ`′′ ,σ`′′′ can be easily calculated.

Equivalently, using the definition (3.32), we can also write

〈σ`〉 =
Tr(σ`ρ)

Tr (ρ)
, (3.44)

which reduces to Tr(σ`ρ) if we normalize the density matrix so that Tr (ρ) = 1.
Such a simple calculation of the local magnetization can be performed on the
central lattice site ` only, since in the corner tensor formalism the spin variable σ`
is directly accessible, while spins on the remaining lattice sites are either summed
over or incorporated into the multi-spin variables ξ, which do not take track of the
original single-spin states. For the same reason, if we are interested in the nearest-
neighbour correlation function 〈σ`σ`′〉, it is necessary to construct the lattice as a
central polygon (represented by the Boltzmann weight tensor WB) surrounded by
an adequate number of the corners C and the half-rows T, cf. fig. 3.7. Now, all the
four spins σ`,σ`′ ,σ`′′ ,σ`′′′ on the central polygon can be accessed directly. The
nearest-neighbour correlation function 〈σ`σ`′〉 is then calculated as

〈σ`σ`′〉 =
Tr

(
σ`σ`′WBT4C4

)
Tr

(
WBT4C4) , (3.45)

where the denominator determines the partition functionZ of this system.
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Figure 3.8: Decomposition of the hyperbolic (4,5) lattice into q = 5 corners in
the Poincaré disc representation. Borders between the adjacent corners are high-
lighted by red-dotted curves and one of the corners is explicitly coloured in grey.

3.3 CTMRG on hyperbolic lattices

In section 3.2.1 the CTMRG algorithm was presented in its original form, as de-
signed for systems on the two-dimensional Euclidean lattice with the square cells.
Later, it was realized [Ueda et al., 2007] that the algorithm can be naturally gen-
eralized to more complex lattices whenever a partitioning of the system into a set
of equivalent "corners" is possible, and an expansion scheme for the corner (and
the corresponding corner tensor) is supplied.

Hyperbolic (p,q) lattices constructed by tessellation of regular p-sided poly-
gons allow us to satisfy both the above-mentioned conditions, as shown in the fol-
lowing. The modified CTMRG algorithm will be described through its application
to the Ising model on several (p,q) lattices. The description, however, contains all
necessary instructions required to perform the calculations on arbitrary hyperbolic
or Euclidean (p,q) lattices.

3.3.1 The case (4,q ≥ 4)

Let us start with the class of (4,q) lattices, where q ≥ 4, which includes the well-
discussed Euclidean (4,4) lattice as a special case for q = 4. Notice that the in-
finite (4,q) lattice can be divided into q equivalent corners at arbitrary vertex, as
depicted in fig. 3.8, where the (4,5) lattice is shown as an example. The objective
is to construct a sufficiently large lattice to describe the thermodynamic limit (at
given p) by iterative corner expansions in analogy to the original CTMRG on the
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Euclidean square lattice. At each iteration k, the lattice is constructed by joining q
current corners C(k) around the central lattice spin position. The partition function
can be, thus, calculated as

Z(k) = Tr
(
C(k)

)q
. (3.46)

Any lattice vertex is shared between q lattice polygons, hence the fraction h
4kBT

in the formula (3.13) for the Boltzmann weight tensor WB on the (4,4) lattice
changes into h

qkBT on the general (4,q) lattice. For the same reason, the original
formulae (3.22) and (3.24) for the initial corner tensor C(1) and the transfer tensor
T(1) are modified into the form

C(1)(σ1,σ2,σ4) =
∑
σ3

exp
[

h
qkBT

(
σ1 +

q
2
σ2 + qσ3 +

q
2
σ4

)
+

+
J

2kBT
(σ1σ2 + 2σ2σ3 + 2σ3σ4 +σ4σ1)

]
,

(3.47)

T(1)(σ1,σ2,σ4,σ3) = exp
[

h
qkBT

(
σ1 +

q
2
σ2 +

q
2
σ3 +σ4

)
+

+
J

2kBT
(σ1σ2 + 2σ2σ3 +σ3σ4 +σ4σ1)

]
.

(3.48)

The correct corner expansion scheme must satisfy that all interior vertices of the
lattice constructed from the q corners have the identical coordination number q.
This condition is always fulfilled in the initialization step, where the only interior
vertex is the central one, from which q bonds forming the borders between the
corners originate.

Now, let us consider the corner in the k-th iteration with k vertices on its left
and right interior border. Let there be r (s) bonds9 from each of the right (left)
border spins to its neighbours in the corner C(k), see fig. 3.9. When the corners
C(k) are joined together so that the lattice is formed, the border spins and bonds
from adjacent sides of the neighbouring corners merge together. After that, the
number of bonds around any border spin is r + s−2. The lattice has to be uniform
with q bonds emerging from each spin, which yields the condition

r + s = q + 2 (3.49)

for admissible combinations of values r and s. Similarly, we assume that there
are r (s) bonds from each of the right (left) border spins to its neighbours in the

9The integers r, s≥ 3 may take arbitrary values as long as r+ s = q+2. If r = 2, then the vertices
on the right interior border would form an unbranched line of length k which is not connected to
the interior of the corner. The lattice constructed from such q corners would therefore consist
of q almost isolated segments which are connected only through the central vertex. Analogous
reasoning holds for spins on the left side which proves r, s ≥ 3.
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Figure 3.9: The generalized corner tensor C(k) for the hyperbolic (p,q) lattice with
the coordination number q = r + s− 2 = 7. There are r = 4 bonds (the full lines)
from each of the k spins on the right boundary — two bonds to its neighbours on
the boundary and r− 2 = 2 bonds to its neighbours in the interior of the corner.
Similarly, there are s = 5 bonds from each of the k spins on the left boundary,
where s−2 = 3 bonds tend to the interior of the corner.

transfer tensor T(k). Hence, when the transfer tensor T(k) is attached to the corner
C(k) during the corner expansion, the coordination number of all spins on the line
of contact is q, as required.

The expansion process of the corner tensor C(k) is illustrated in fig. 3.10 (left).
The scheme is analogous to the situation on the Euclidean (4,4) lattice: The Boltz-
mann weight tensor WB corresponding to a single cell is attached in the central
position and two transfer tensors T(k) are added on both sides. The difference
is expressed by q− 3 ≥ 1 corners C(k) (instead of a single one) between the two
transfer tensors T(k) and r−3 ≥ 0 (s−3 ≥ 0) corners C(k) on the right (left) side of
the resulting corner C̃(k+1), where originally none were placed. These additional
corners supply missing bonds so that there are q bonds around the interior spin
σ3 and r (s) bonds around the right (left) border spin σ2 (σ4). This guarantees
consistency of the expansion scheme, i. e., the process started with the corner
C(k) (and the transfer tensor T(k)) with q bonds around each interior spin and r (s)
bonds around the border ones, and created the enlarged corner C̃(k+1) with identi-
cal properties. As a result, the expansion recurrence formula for the corner tensor
C̃(k+1) takes the (schematic) form

C̃(k+1) = WB
(
C(k)

)s−3
T(k)

(
C(k)

)q−3
T(k)

(
C(k)

)r−3
= WB

(
C(k)

)2q−7 (
T(k)

)2
, (3.50)

where (3.49) was used in the second equality.
The expansion scheme of the transfer tensor T(k) in the k-th iteration step on

the (4,6) lattice is illustrated in fig. 3.10 (right). After attaching the Boltzmann
weight tensor WB to the transfer tensor T(k), r−3 and s−3 corners C(k) must be
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Figure 3.10: The expansion scheme for the corner tensor C̃(k+1) (left) and the
transfer tensor T̃(k+1) (right) on the hyperbolic (4,6) lattice. Here, r + s = q+2 = 8
and we make the symmetric choice r = s = 4. There are q− 3 = 3 corners C(k)

between the transfer tensors T(k) in the left scheme for C̃(k+1) and r−3 = s−3 = 1
corner C(k) on each of the outer sides in schemes for both C̃(k+1) and T̃(k+1). The
black-filled objects represent the spin/multi-spin variables which are summed over
in the recurrence expansion relations (3.50) and (3.51).

placed on the right and the left side of the tensor T(k), respectively, in order to get
r (s) bonds around the spins σ2 (σ3). The expansion recurrence formula for the
tensor T̃(k+1) thus takes the form

T̃(k+1) = WB
(
C(k)

)s−3
T(k)

(
C(k)

)r−3
= WB

(
C(k)

)q−4
T(k). (3.51)

It is evident that the transfer tensor T(k) on the hyperbolic lattices has a much more
complicated structure if compared to the simple row of cells on the Euclidean
lattice.

The renormalization procedure follows the original idea described in sec-
tion 3.2.1. If q is even, the lattice can be divided into two identical halves, each
consisting of q/2 corners. The Boltzmann weight tensor A(k) of each half of the
lattice in iteration k thus equals the product of q/2 corner tensors C(k)

A(k)(σ,ξ,η) =
∑

τ1,...,τq/2−1

C(k)(σ,ξ,τ1)C(k)(σ,τ1, τ2)...C(k)(σ,τq/2−1,η)︸                                                     ︷︷                                                     ︸
q/2

(3.52)

or shortly A(k) =
(
C(k)

)q/2
. The normalized tensor Ã(k) is then used to construct the

density matrix ρ(k) via (3.32). A slightly modified approach is applied if q is odd,
because the lattice cannot be partitioned into two equally large parts constructed
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of whole corners only. In this case, q = 2u + 1, where u is a positive integer. The
density matrix must be calculated in the symmetrized form [Schollwöck, 2005,
Gendiar et al., 2012]

ρ(k)({σ,ξ}|{σ′, ξ′}) =
1
2

∑
η

[
Ã(k)(σ,ξ,η)B̃(k)(σ′, ξ′,η) + B̃(k)(σ,ξ,η)Ã(k)(σ′, ξ′,η)

]
,

(3.53)
where A(k) =

(
C(k)

)u
and B(k) =

(
C(k)

)u+1
represent Boltzmann weights of the por-

tions of the lattice containing u and u + 1 corners C(k), respectively, and Ã(k), B̃(k)

are their normalized versions so that Tr
(
ρ(k)

)
= 1. The next steps are identical

to the original CTMRG. The columns of the projection matrix P are filled with
m eigenvectors corresponding to the m largest eigenvalues of the density matrix
ρ(k) and the renormalized tensors C(k+1),T(k+1) are created from C̃(k+1), T̃(k+1) via
(3.34) and (3.35).

3.3.2 The case (p ≥ 4,4)

The expansion of the (p,4) lattices, where the system is constructed from q ≡ 4
corners, is an analogous problem. The Boltzmann weight tensor WB of the p-
sided polygon is

WB(σ1,σ2, ...,σp) = exp

 h
4kBT

p∑
i=1

σi +
J

2kBT

p∑
i=1

σiσi+1

 , (3.54)

where the index i labels the polygon vertices in the anti-clockwise order and
σp+1 ≡ σ1. The initial tensors C(1) and T(1) are given by

C(1)(σ1,σ2,σp) =
∑

σ3,...,σp−1

exp

 h
4kBT

σ1 + 2σ2 + 4
p−1∑
i=3

σi + 2σp

+

+
J

2kBT

σ1σ2 + 2
p−1∑
i=2

σiσi+1 +σpσ1




(3.55)

and

T(1)(σ1,σ2,σp,σp−1) =
∑

σ3,...,σp−2

exp

 h
4kBT

σ1 + 2σ2 + 4
p−2∑
i=3

σi + 2σp−1 +σp

+

+
J

2kBT

σ1σ2 + 2
p−2∑
i=2

σiσi+1 +σp−1σp +σpσ1


 .

(3.56)
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Figure 3.11: The expansion scheme for the corner tensor C̃(k+1) (left) and the
transfer tensor T̃(k+1) (right) on the hyperbolic (6,4) lattice. The black-filled ob-
jects represent the spin/multi-spin variables which are summed over in the recur-
rence expansion formulae (3.57) and (3.58).

Without loss of generality, fig. 3.11 illustrates the expansion of both tensors
C(k) and T(k) on the (6,4) lattice. The only possible combination of values r, s ≥ 3,
fulfilling (3.49), is r = s = 3 and, thus, there are r−3 = s−3 = 0 corners attached to
the right or left side of the expanded corner C(k) or transfer tensor T(k). If expand-
ing the corner C(k), the tensors T(k) are attached to p− 2 sides of the additional
p-sided polygon so that we receive the demanded structure with a central spin and
two lines of spins (with r or s bonds) on its sides. Similarly, if the tensor T̃(k+1)

is constructed, the attachment of p−3 tensors T(k) to the polygon is necessary to
create an object with a pair of single spins (σ1, σ6) and two lines of spins (with r
or s bonds) on the sides. A single corner C(k) is always inserted between neigh-
bouring tensors T(k) in order to create four bonds in total around the spin on the
peak of the inserted corner C(k). Hence, the expansion recurrence formulae for the
transfer tensors take the form

C̃(k+1) = WB
(
T(k)

)p−2 (
C(k)

)p−3
(3.57)

T̃(k+1) = WB
(
T(k)

)p−3 (
C(k)

)p−4
. (3.58)

As q = 4, the construction of the density matrix ρ and the subsequent renormaliza-
tion process is identical to that in the original CTMRG algorithm on the Euclidean
(4,4) lattice.



3.4. TENSOR PRODUCT VARIATIONAL FORMULATION 55

3.4 Tensor Product Variational Formulation
In the previous sections we described in detail the CTMRG algorithm for the
classical spin systems on both the Euclidean (4,4) and the regular hyperbolic
(p,q) lattices. The objective of this section is to demonstrate that an analogous
numerical analysis can also be performed in case of the quantum spin systems.

Many analytical and computational techniques have been developed to study
quantum spin models on the two-dimensional Euclidean lattices. However, the
task of finding an appropriate approach to analyze the quantum models on the
hyperbolic lattices still remains an open question. A remarkable demand for an
appropriate numerical tool persists. For example, implementation of the Monte
Carlo simulations fails due to exponential increase of the number of the lattice
sites for models on the hyperbolic lattices with respect to the expanding lattice
size from the lattice center [Baek et al., 2009a, Baek et al., 2009b].

Here we introduce a novel and sufficiently accurate numerical algorithm called
Tensor product variational formulation (TPVF) [Daniška and Gendiar, 2015],
which combines an ansatz for the quantum ground-state in the form of the Tensor
product state (TPS) [Orus, 2014] with the Corner transfer matrix renormalization
group scheme. This algorithm can be used to study quantum spin systems in the
thermodynamic limit on the regular hyperbolic (p,q) lattices of constant nega-
tive Gaussian curvature. Although the TPVF was originally designed in [Nishio
et al., 2004] for treating of quantum systems on the Euclidean (4,4) lattice, we
conjectured in [Daniška and Gendiar, 2015, Daniška and Gendiar, 2016] that
TPVF is more suitable for models on the hyperbolic lattices. This observation
originates in the mean-field-like behaviour induced by the TPS ansatz, which, as
a consequence, cannot accurately approximate the correct ground state of those
quantum models on the two-dimensional Euclidean lattice, which do not belong
to the mean-field universality class, e. g., the transverse field Ising model. On the
contrary, since the Hausdorff dimension of the hyperbolic lattices is infinite, spin
models on these lattices belong to the mean-field universality class due to short
range correlations, even though the mean-field approximation of the Hamiltonian
is not applied, as discussed in section 1.2.1.

3.4.1 The model
The Tensor product variational formulation algorithm can approximate the ground-
state of basic quantum spin models with the nearest-neighbour interaction on the
Euclidean and the hyperbolic (p,q) lattices. As an example, let us assume the
quantum XY, Heisenberg and the transverse field Ising model (TFIM) on the (p,4)
lattices, which are formed by tessellation of regular p-sided polygons with the
constant coordination number, which is equal to four. We intend to study the
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quantum spin systems in the thermodynamic limit, i.e., the number of the lattice
vertices, where the spin variables are located, is infinite.

The Hamiltonian H of the three models can be expressed in the following
compact form

H
(
Jxy, Jz,h

)
=

∑
〈k〉p

G(p)
k

(
Jxy, Jz,h

)
, (3.59)

where G(p)
k represents the local Hamiltonian of the p-sided polygon, the lattice

is constructed from, and k marks the position of the polygon on the lattice. The
summation runs over all the positions of the polygons 〈k〉p. The polygon on the kth

position is described by the ordered set of spin indices k1, k2, ..., kp, see fig. 3.12,
where ki stands for the unique number which is assigned to the corresponding
vertex within the labelling scheme of the lattice vertices. The local Hamiltonian
has the expression

G(p)
k

(
Jxy, Jz,h

)
= −

1
2

p∑
i=1

[
Jxy

(
σx

ki
σx

ki+1
+σy

ki
σy

ki+1

)
+ Jzσ

z
ki
σz

ki+1
+

h
4

(
σx

ki
+σx

ki+1

)]
,

(3.60)
where σx

ki
, σy

ki
, σz

ki
are the Pauli operators, and the spin indices obey the cyclic

condition kp+1 ≡ k1. The x-component of the external magnetic field is described
by the variable h and the constant prefactors J

2 and h
8 reflect the sharing of the spin

couplings and the magnetic field, respectively, if the Hamiltonian is formed by the
polygonal tessellation in (3.59). The spin couplings Jxy and Jz specify the three
models, as defined in section 1.2.2. We assume the ferromagnetic versions of the
models, so that a simpler TPS formulation with identical tensors Wp can be used.

Our objective is to obtain the ground-state of the system

|Φp〉 = lim
N→∞

∑
σ1σ2···σN

Φ
σ1σ2···σN
p |σ1σ2 · · ·σN〉 (3.61)
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in the thermodynamic limit by a variational minimization of the ground-state en-
ergy normalized per bond

E
(p)
0 = min

Φp
lim

Nb→∞

1
Nb

〈Φp|H|Φp〉

〈Φp|Φp〉
, (3.62)

where N stands for the total number of the lattice spins, σ j, j = 1, ...,N, marks one
of the two base states ↓ or ↑ of the jth lattice spin and Nb denotes the total number
of the bonds (the nearest-neighbour pairs).

In order to simplify the numerical calculation, we approximate |Φp〉 by a TPS
|Ψp〉, which is given by the product of the identical tensors Wp of the same polyg-
onal structure as each of the local Hamiltonians G(p)

k has (cf. fig. 3.12). The
p-rank tensors depend on p spin-1

2 variables labelled by indices k1, ...,kp with two
base states σki

= ↓ or ↑. The p individual spin variables are grouped into a sin-
gle one with 2p base configurations denoted as {σk} to simplify the notations if
necessary. It means that the tensor element Wp({σk}) ≡ Wp(σk1

σk2
· · ·σkp

). For
instance, there are 32 base spin configurations for the pentagons, which can be
represented in the arrow notation as {↓↓↓↓↓}, {↓↓↓↓↑}, {↓↓↓↑↓}, ..., {↑↑↑↑↑}. Thus,
the approximative ground state in the form of the polygonal TPS 1011 [Orus, 2014]
has the following form in the thermodynamic limit

|Ψp〉 = lim
N→∞

∑
σ1σ2···σN

∏
〈k〉p

Wp({σk})|σ1σ2 · · ·σN〉 , (3.63)

where the sum runs over the 2N base spin states. Since the TPS |Ψp〉 has the
product structure of the identical tensors Wp

12, the variational problem in (3.62)
is in the thermodynamic limit equivalent to the minimization of the local energy

10The auxiliary states in the TPS language are represented as states with two degrees of freedom
only. Such an approximation enhances the mean-field behaviour around the criticality and is a
compromise to make the calculations feasible numerically due to the exponentially increasing
complexity of the hyperbolic lattice structure.

11It is sufficient to consider the TPS |Ψp〉 and, equivalently, the tensor elements Wp({σk}) as real
numbers, since the Hamiltonian H

(
Jxy, Jz,h

)
contains no imaginary component and, thus, all its

eigenstates, including |Φp〉 can be set real.
12The TPS created from identical tensors Wp can lead to a good approximation of the true

ground state if the system is ferromagnetic. However, the situation gets complicated in the antifer-
romagnetic case. If p is even, it is possible to construct a good TPS approximation in the product
form of two tensors Wp and W′p with a chessboard-like arrangement on the lattice. However, odd
p leads to strong frustration of the system, since it is impossible to obtain a spin configuration with
inverse orientation of all p couples of the neighbouring spins on the lattice polygon. Hence, the
quality of the TPS approximation is disputable.
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of an arbitrary bond in the lattice center (to avoid boundary effects)

E(p)
0 ≡min

Ψp

2
p

〈Ψp|G
(p)
`
|Ψp〉

〈Ψp|Ψp〉
> E

(p)
0 , (3.64)

where ` is the index of a polygon containing the selected central bond and the
factor 2/p reflects that each polygon contains p bonds shared with neighbour-
ing polygons. Moreover, the product structure of |Ψp〉 enables us to express the
denominator

〈Ψp|Ψp〉 =
∑
σ,σ′

∏
〈k〉p

Wp({σ′k})δ{σ′k},{σk}
Wp({σk}) ≡D(Wp({σ})) (3.65)

and the numerator

〈Ψp|G
(p)
`
|Ψp〉 =

∑
σ,σ′

[
Wp({σ′`})(G

(p)
`

){σ′
`
},{σ

`
}Wp({σ`})

×
∏
〈k〉p\{`}

Wp({σ′k})δ{σ′k},{σk}
Wp({σk})

]
≡ N(Wp({σ})) (3.66)

as sole functions of the tensor elements Wp({σ}), where we removed the subscript
k due to the uniform TPS. Here, (G(p)

`
){σ′

`
},{σ

`
} stands for the corresponding matrix

element of the local Hamiltonian G(p)
`

, δ{σ′k},{σk}
is the Kronecker symbol, and

〈k〉p \ {`} denotes the set of all polygon indices except for the index `.
Consequently, the minimization over the set of variational parameters Φ

σ1σ2···σ∞
p

in (3.62) is replaced by a much simpler problem

E(p)
0 = min

Wp({σ})

2
p
N(Wp({σ}))
D(Wp({σ}))

, (3.67)

where we minimize over 2p tensor elements Wp({σ}) only. This set can be further
significantly reduced if symmetries of the local Hamiltonian G(p)

`
are taken into

account, as discussed in the next section. The optimization problem (3.67) with
the lower dimension is then solved by means of the TPVF algorithm described in
section 3.4.3.

3.4.2 The tensor symmetries

Rotational and spin-ordering symmetries of the local Hamiltonian G(p)
`

are present
in all the three spin models. As a typical example, let us consider the hexagonal
lattice (p = 6) and its particular base configuration of spins on the lattice polygon
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{σ∗} = {↑↓↑↑↓↓}. Rotational symmetry requires that the tensor elements corre-
sponding to the set of configurations {↓↑↓↑↑↓}, {↓↓↑↓↑↑}, {↑↓↓↑↓↑}, {↑↑↓↓↑↓},
{↓↑↑↓↓↑} are identical to Wp=6({σ∗}). Next, let us consider a spin-ordering opera-
tion, which reverses the order of the polygon spins. In particular, if the spins are
labelled clockwise, the operation reorders them in the anti-clockwise direction.
It means that the configuration {↑↓↑↑↓↓} is equivalent to {↓↓↑↑↓↑} by the spin-
ordering symmetry and to all the rotations of the latter configuration ({↑↓↓↑↑↓},
{↓↑↓↓↑↑}, {↑↓↑↓↓↑}, {↑↑↓↑↓↓}, {↓↑↑↓↑↓}) by the composition of the spin-ordering
and the rotational symmetry. As a result, the 12 tensor elements W6({σ}) corre-
sponding to the configuration {σ∗} and its 11 equivalent configurations are repre-
sented by a single variational parameter, as they share the same value.

By performing a similar analysis on the set of all 2p configurations {σ} we
can factorize it into N(p)

Ising classes of equivalence with representatives θ j, where

j ∈ {1, . . . ,N(p)
Ising}. As a result, we have Wp({σ}) = Wp(θ j) for all spin configurations

{σ} within the equivalence class labelled by θ j. Thus, in case of a system with the
rotational and the spin-ordering symmetry (as in the TFIM), there are only N(p)

Ising
free variational parameters Wp(θ j) within the set of 2p tensor elements Wp({σ}).
If there is no preferred spin alignment in the system (such as in the XY model,
the Heisenberg model, as well as in the TFIM at and above the phase transition
magnetic field), the spin-inversion symmetry appears. For instance, if p = 4, the
configuration {↑↑↑↓} is equivalent to {↓↓↓↑}, which is obtained by flipping each
spin, resulting in relation W4({↑↑↑↓}) = W4({↓↓↓↑}). Such an additional symmetry
results in consequent reduction of the set of the free variational parameters, the
size of which drops to N(p)

Heis < N(p)
Ising. In this case, we denote the representatives

of the equivalence classes as Θi, where i ∈ {1, . . . ,N(p)
Heis}

13. The numbers of the
free variational parameters N(p)

Ising and N(p)
Heis with respect to the lattice parameter p

are summarized in table 3.1. In addition, one more variational parameter can be
eliminated from each set of the free variational parameters by setting it to 1, being
the normalization condition in Wp({σ}) and |Ψp〉, consequently.

To be more specific, we demonstrate the factorization of the set of the 2p base
spin configurations in the Tables 3.2 and 3.3 on the examples of the square (p = 4)
and pentagonal (p = 5) lattices, respectively. Each line in the tables contains such
spin configurations, which are identical with respect to the rotational and spin-
ordering symmetry operations of the p-sided polygon. We count N(4)

Ising = 6 or

N(5)
Ising = 8 variational parameters Wp(θ j) used in the calculation of the transverse

field Ising model. If, however, the spontaneous symmetry-breaking does not af-
fect the solution, the total number of the variational parameters decreases down to

13Any equivalence class labelled by Θi is a union of two equivalence classes θ j at most.
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p 4 5 6 7 8 9 10 11

N(p)
Heis 4 4 8 9 18 23 44 63

N(p)
Ising 6 8 13 18 30 46 78 126

Table 3.1: The numbers of the free variational parameters N(p)
Heis (for the XY and

the Heisenberg models) and N(p)
Ising (for the TFIM) including the normalization

parameter for the (p,4) lattices.

j W4(θ j) {σ} ≡ {σ1σ2σ3σ4} W4(Θi)
1 W4(θ1) {↓↓↓↓} W4(Θ1)
2 W4(θ2) {↓↓↓↑} {↓↓↑↓} {↓↑↓↓} {↑↓↓↓} W4(Θ2)
3 W4(θ3) {↓↓↑↑} {↓↑↑↓} {↑↑↓↓} {↑↓↓↑} W4(Θ3)
4 W4(θ4) {↓↑↓↑} {↑↓↑↓} W4(Θ4)
5 W4(θ5) {↑↑↑↓} {↑↑↓↑} {↑↓↑↑} {↓↑↑↑} W4(Θ2)
6 W4(θ6) {↑↑↑↑} W4(Θ1)

Table 3.2: The set of 24 = 16 spin configurations for the (4,4) lattice sorted into
N(4)

Ising = 6 equivalence classes labelled by the representatives θ j. The last column

lists the reduced set of N(4)
Heis = 4 parameters Wp(Θi) in case the additional spin-

inversion symmetry appears.

j W5(θ j) {σ} ≡ {σ1σ2σ3σ4σ5} W5(Θi)
1 W5(θ1) {↓↓↓↓↓} W5(Θ1)
2 W5(θ2) {↓↓↓↓↑} {↓↓↓↑↓} {↓↓↑↓↓} {↓↑↓↓↓} {↑↓↓↓↓} W5(Θ2)
3 W5(θ3) {↓↓↓↑↑} {↓↓↑↑↓} {↓↑↑↓↓} {↑↑↓↓↓} {↑↓↓↓↑} W5(Θ3)
4 W5(θ4) {↓↓↑↓↑} {↓↑↓↓↑} {↓↑↓↑↓} {↑↓↓↑↓} {↑↓↑↓↓} W5(Θ4)
5 W5(θ5) {↑↑↑↓↓} {↑↑↓↓↑} {↑↓↓↑↑} {↓↓↑↑↑} {↓↑↑↑↓} W5(Θ3)
6 W5(θ6) {↑↑↓↑↓} {↑↓↑↑↓} {↑↓↑↓↑} {↓↑↑↓↑} {↓↑↓↑↑} W5(Θ4)
7 W5(θ7) {↑↑↑↑↓} {↑↑↑↓↑} {↑↑↓↑↑} {↑↓↑↑↑} {↓↑↑↑↑} W5(Θ2)
8 W5(θ8) {↑↑↑↑↑} W5(Θ1)

Table 3.3: The set of 25 = 32 spin configurations for the (5,4) lattice sorted into
N(5)

Ising = 8 equivalence classes labelled by the representatives θ j. The last column

lists the reduced set of N(5)
Heis = 4 parameters Wp(Θi).
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N(4)
Heis = N(5)

Heis = 4 for both the (4,4) and (5,4) lattices. Applying the normalization
conditions W4(Θ4) = 1 or W5(Θ4) = 1, we find out that only three free variational
parameters (W4(Θ1), W4(Θ2), W4(Θ3) or W5(Θ1), W5(Θ2), W5(Θ3)) suffice to ap-
proximate the ground-state wave function of the models on the square or pentag-
onal lattices, respectively, with no spontaneous symmetry-breaking phases. For
the same reason14, if we consider the system without the spin-inversion symme-
try, there are either five or seven free variational parameters for p = 4 or p = 5,
respectively.

3.4.3 The algorithm
The Tensor Product Variational Formulation algorithm consists of two parts. The
first one evaluates the ratio in (3.67) by applying the CTMRG method separately
to the numerator and the denominator for a given set of the variational parame-
ters Wp(θ j). The second part contains a multi-dimensional minimizer, the Nelder-
Mead simplex algorithm [gsl, ,Galassi et al., 2009,Nelder and Mead, 1965], which
uses the first part to search for the optimized set of the variational parameters
W∗p(θ j), which minimize the ratio in (3.67). The minimizer starts from an ini-
tial simplex in the space of free variational parameters, one vertex of which is
specified by the initial tensor elements Wp(θ j). The simplex undergoes an itera-
tive sequence of size changes and moves towards lower energies and stops if the
energy in (3.67) converged.

The central idea in calculation of the numeratorN(Wp(θ j)) and the denomina-
tor D(Wp(θ j)) in (3.67) is to replace the concept of the Boltzmann weight tensor
WB in the original CTMRG algorithm by the tensors Wp. In order to do this, let
us introduce a double-layer tensor Zp with the tensor elements

Zp({σ′kσk}) ≡Wp({σ′k})δ{σ′k},{σk}
Wp({σk}) . (3.68)

Notice that there are 22p double-layer base spin configurations {σ′kσk}. Figure 3.13
graphically depicts the double-layer tensors Zp at the position k for the square and
pentagonal lattices. Thus, in the language of the classical statistical mechanics,
the general expression for the denominator D(Wp({σ})) = 〈Ψp|Ψp〉 in (3.65) cor-
responds to a tensor product object, which is equivalent to the partition function
of a (non-physical) classical Hamiltonian given by the product of the tensors Zp.

This generalization of the Boltzmann weight tensor enters the CTMRG algo-
rithm and the consequent numerical calculation yields the denominatorD(Wp(θ j))
for the given set of the free tensor elements Wp(θ j) according to (3.65). A simi-
lar approach can be also used to determine the numerator N(Wp(θ j)), as it differs

14If setting, e. g., W4(θ6) = 1 and W5(θ8) = 1.
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Figure 3.13: The double-layer tensor structure of Z4({σ′kσk}) on the left and
Z5({σ′kσk}) on the right. The shaded polygonal areas represent the tensors Wp.

from D(Wp(θ j)) only by the additional double-layer structure at the central posi-
tion ` containing the local Hamiltonian G(p)

`
.

In particular, the infinite TPS geometry is built up from gradually expanding
corner tensors C(k) and transfer tensors T(k) which follow the identical initializa-
tion and expansion scheme for the selected (p,q) lattice as in section 3.3. The
only distinction rests in the replacement of the Boltzmann weight tensor WB in
the initialization and expansion formulae by the tensor Zp.

In order to catch up the additional structure at the central position ` in the nu-
merator N(Wp(θ j)), the (p,4) lattices are constructed from a central polygon sur-
rounded by the alternating sectors represented by the corner tensors C(k) and trans-
fer tensors T(k). The central polygon is represented by the tensor Zp or WpG(p)

`
Wp

in the structure of the denominator D(Wp(θ j)) and the numerator N(Wp(θ j)), re-
spectively. The construction scheme of the lattice is analogous to the situation,
when the correlation function 〈σ`σ`′〉 is evaluated in the classical CTMRG al-
gorithm, as illustrated in fig. 3.7 on the Euclidean (4,4) lattice. Consequently,
the relations (3.65) and (3.66) for the denominator D(Wp(θ j)) and the numerator
N(Wp(θ j)), formulated in the CTMRG language of the (corner) transfer tensors,
take the form15

D(Wp(θ j)) = lim
k→∞

Tr
(
Zp

[
C(k)T(k)

]p)
, (3.69)

N(Wp(θ j)) = lim
k→∞

Tr
(
WpG(p)

`
Wp

[
C(k)T(k)

]p)
. (3.70)

On the (4,q) lattices, a similar argumentation leads to formulae

D(W4(θ j)) = lim
k→∞

Tr
(
Z4

[(
C(k)

)q−3
T(k)

]4
)
, (3.71)

N(W4(θ j)) = lim
k→∞

Tr
(
W4G(4)

`
W4

[(
C(k)

)q−3
T(k)

]4
)
. (3.72)

15If we calculate the numerator N(Wp(θ j)), we omit the δσ′,σ term in the tensors Zp for those
spin variables σ, which are located on the central polygon. This allows us to attach the tensors C
and T to the double-layer structure at the central polygon containing the local Hamiltonian G(p)

`
.
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3.4.4 Remarks
Here, we would like to turn the reader’s attention to two important aspects of the
TPVF algorithm. First, the generalization of the CTMRG algorithm to quantum
systems in the form of the Tensor product variational formulation is not based
on the quantum-classical correspondence. The TPVF utilizes the formal analogy
between the formulae for the quantity 〈Ψp|G

(p)
`
|Ψp〉 and the norm 〈Ψp|Ψp〉 in the

quantum system and the partition function Z of the classical system if the quan-
tum ground-state is approximated as the tensor product state |Ψp〉.

Second, the TPS approximation (3.63) of the quantum ground-state may be
a limiting factor regarding the accuracy of the TPVF on the Euclidean lattices
near the critical point, where the correlation length ξ diverges. The reason is the
low dimension of the tensors W4 in the TPS approximation which suppresses the
quantum long-range correlations on the Euclidean (4,4) lattice near the criticality.
As a result, the TPS approximation (3.63) induces mean-field-like behaviour near
the quantum phase transition irrespective of the true universality class the original
model belongs in. We discuss this in more detail in section 5.1.2 and in [Daniška
and Gendiar, 2016, Daniška and Gendiar, 2015].

An improvement of the numerical accuracy can be achieved if additional (non-
physical) degrees of freedom are assigned to the spin variables σ. However, in-
creasing the number of the free variational parameters prolongs the computational
time of the Nelder-Mead optimization algorithm, and may encounter numerical
instability caused by trapping the system in a local minimum of the energy, rather
than approaching to the correct global minimum, which corresponds to E(p)

0 . On
the other hand, a faster Nelder-Mead optimization with fewer parameters enables
us to improve the accuracy by increasing the number m of states of the multi-spin
variables kept in the renormalization step in CTMRG.

On the contrary, it is expected that all the classical and quantum spin lattice
models on various types of the hyperbolic surfaces belong to the mean-field uni-
versality class, since the Hausdorff dimension of the hyperbolic lattices is infinite,
which exceeds the critical values dC = 4 and dC = 3, respectively. This was con-
firmed in studies [Ueda et al., 2007, Krčmár et al., 2008a, Gendiar et al., 2012]
of classical spin models on the hyperbolic lattices, where the exponential decay
of the density matrix spectra and the correlation function result in the non-critical
phase transition, since the correlation length, ξ . 1, is always finite, reaching its
maximal value at the phase transition [Iharagi et al., 2010]. We assume similar
scenario also in case of the quantum systems. Hence, the mean-field approxima-
tion of the TPVF algorithm induced by the low-dimensional TPS (3.63) is not in
conflict with the mean-field-like behaviour of quantum models on the hyperbolic
lattice geometry. For this reason, we conjecture the TPFV analysis of the models
on the hyperbolic lattices is more accurate than on the Euclidean ones.
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Chapter 4

Classical spin models on hyperbolic
lattices

In this chapter we first study the thermodynamic behaviour of the classical Ising
model on the series of (3,q) lattices constructed by tessellation of triangles. We
assume q ≥ 6, where q = 6 represents the Euclidean triangular lattice and q > 6
corresponds to the hyperbolic lattices. Later, we construct slightly curved surfaces
by distributing exceptional lattice sites of the coordination number seven within
the Euclidean (3,6) lattice. The exceptional sites form a regular pattern with the
typical distance between these sites proportional to an integer parameter n. This
geometry allows us to study the influence of the increasing non-flatness of the
underlying lattice on the thermal properties of the corresponding lattice model.

In the past, classical spin models on the hyperbolic (p,q) lattices with fixed
coordination number q = 4 and various lattice parameters p were investigated in
reports [Ueda et al., 2007,Krčmár et al., 2008a,Gendiar et al., 2008,Krčmár et al.,
2008b]. For the Ising model on the (p,4) lattices, the mean-field universality was
found [Shima and Sakaniwa, 2006, Ueda et al., 2007]. Thus, the study of mod-
els on the (3,q) lattices addresses the complementary problem with the varying
coordination number q at fixed lattice parameter p = 3.

4.1 Ising model on the (3,q) lattices

4.1.1 The model and expansion scheme

We consider the classical Ising model with Hamiltonian (1.34), where the spin
variables σi are located on the vertices of the (3,q) lattices. As an example, the
lattices (3,7) and (3,13) mapped onto the Poincaré disc are shown in fig. 4.1.
Although the lattice polygon is a triangle, it is algorithmically more convenient to

65
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Figure 4.1: Poincaré disc representation of the triangular hyperbolic lattices (3,7)
(left) and (3,13) (right).

assign the Boltzmann weight tensor WB to a rhombus constructed from a pair of
adjacent triangles σaσbσd and σbσcσd as shown in fig. 4.2. The tensor WB for
this pair of the triangles is then given by

WB(σa,σb,σc,σd) = exp
[

J
2kBT

(σaσb +σbσc +σcσd +σdσa+

+2σbσd) +
h

qkBT
(σa + 2σb +σc + 2σd)

]
.

(4.1)

The factor 2 in front of the σbσd term arises from the fact that this bond is shared
by the two adjacent triangles and, thus, entirely contained in the rhombus. Also,
the factor 2 at σb and σd reflects that the rhombus contains two of the q triangles
meeting at the corresponding lattice vertices.

In contrast to the general expansion process on the (p,q) lattices, as described
in section 3.3, the transversal bond σbσd in the tensor WB makes it necessary to
introduce two different kinds of transfer tensors — the left tensor Lq and the right
tensor Rq. Let us explain the recursive expansion scheme of the corner transfer
tensor Cq and the tensors Lq, Rq on the Euclidean (3,6) lattice first. In this case,
the expansions of the transfer tensors L(k)

6 , R(k)
6 and the corner tensor C(k)

6 in the
iteration k follow the formulae

L̃(k+1)
6 (σd,σa,σb,σc, ξ1, ξ2) = WB(σa,σb,σc,σd)L(k)

6 (σd,σc, ξ1, ξ2), (4.2)

R̃(k+1)
6 (σc,σd,σa,σb, ξ1, ξ2) = WB(σa,σb,σc,σd)R(k)

6 (σc,σb, ξ1, ξ2), (4.3)

C̃(k+1)
6 (σd,σa,σb, ξ1, ξ4) =

∑
σc,ξ2,ξ3

WB(σa,σb,σc,σd)L(k)
6 (σd,σc, ξ3, ξ4)

×C(k)
6 (σc, ξ2, ξ3)R(k)

6 (σc,σb, ξ1, ξ2) , (4.4)

as illustrated in fig. 4.2, where the position of the single- and multi-spin variables
σ and ξ, respectively, is also depicted. This recurrence scheme guarantees that at
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Figure 4.2: Graphical representation of the extension process of the left transfer
tensor L̃6 (left), the right transfer tensor R̃6 (middle), and the corner tensor C̃6
(right) on the (3,6) lattice. The transfer tensors L6 and R6 from the previous it-
eration are coloured in blue, while the corner tensor C6 in red. The black-filled
symbols denote single- and multi-spin variables which are summed over in for-
mulae (4.2)-(4.4).

any iteration there are exactly r = 4 and s = 4 bonds stemming from all spins on
the right and left boundary of the three tensors, respectively.

The recursive expansion procedure is initialized by setting L(1)
6 (σa,σb,σc,σd)

= WL
B(σa,σb,σc,σd), R(1)

6 (σd,σa,σb,σc) = WR
B(σa,σb,σc,σd) and C(1)

6 (σa,σb,

σd) =
∑
σc WC

B(σa,σb,σc,σd), where WL
B, WR

B and WC
B are modifications of the

Boltzmann weight tensor (4.1), which reflect the specific situation in sharing of
bonds and vertices between the rhombuses on the lattice boundary.

On the hyperbolic (3,q) lattices, where q ≥ 7, the recurrence expansion rela-
tions in the simplified notation take the form

L̃(k+1)
q = WB

(
C(k)

q

)s−4
L(k)

q

(
C(k)

q

)r−4
, (4.5)

R̃(k+1)
q = WB

(
C(k)

q

)s−4
R(k)

q

(
C(k)

q

)r−4
, (4.6)

C̃(k+1)
q = WB

(
C(k)

q

)s−4
L(k)

q

(
C(k)

q

)q−5
R(k)

q

(
C(k)

q

)r−4
, (4.7)

where the integers r and s are constrained by the condition (3.49). The recurrence
scheme creates tensors with r and s bonds originating from all spins on the right
and left boundary of the three tensors, respectively. In particular, we decided for
the most symmetric combinations

r =

⌈q
2

⌉
+ 1 =: min

{
n ∈ Z : n ≥

q
2

}
+ 1, (4.8)

s =

⌊q
2

⌋
+ 1 =: max

{
n ∈ Z : n ≤

q
2

}
+ 1, (4.9)

as graphically depicted in fig. 4.3 for the two representative lattices (3,7) and
(3,13).
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Figure 4.3: The expansion process of the tensors L̃q (left), R̃q (middle) and C̃q
(right) on the (3,7) (top) and (3,13) (bottom) lattices, which follows the formulae
(4.5)-(4.7).

At each iteration, the reduced density matrix ρ is created via (3.32), where
the tensor A is calculated as (3.52) if q is even, or via the symmetrized formula
(3.53) for odd q. After that, the three tensors are renormalized and subsequently
normalized according to (3.34), (3.35) and (3.36), respectively.

4.1.2 Numerical results

I. Magnetization and energy

In order to suppress the influence of the system boundary on the thermodynamic
properties and the phase transition analysis in case of the hyperbolic lattices, we
concentrate on the bulk properties of a sufficiently large inner region of the lat-
tice [Sakaniwa and Shima, 2009, Krčmár et al., 2008a]. The local magnetization
M(h,T ) ≡ 〈σ`〉 of a spin on the central lattice position ` is an example. General-
izing the formula (3.43) for the case of the hyperbolic lattices, the magnetization
is calculated as

M(h,T ) =
Tr(σ`Cq)

Tr (Cq)
= Tr(σ`ρ)/Trρ, (4.10)

where the second equality holds also for odd coordination numbers q with density
matrix ρ in the symmetrized form (3.53). Without loss of generality, we set the
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Figure 4.4: Spontaneous magnetizations M0(T ) = M(h = 0,T ) with respect to tem-
perature T for 6 ≤ q ≤ 20. The full and the dashed curves, respectively, distinguish
the even and odd values of q. The inset shows the linear behaviour of the cubic
power of the induced magnetization M3(h,T = T (q)

pt ) with respect the magnetic

field h around the transition temperatures T (q)
pt for q ≥ 7.

coupling constant J and the Boltzmann constant kB to unity, and all thermody-
namic functions are evaluated in the unit of kB.

We first investigate the Euclidean (3,6) lattice. Keeping only m = 20 states of
the renormalized multi-spin variables ξ, the obtained spontaneous magnetization
M0(T ) = M(h = 0,T ) is shown in fig. 4.4. The estimated transition temperature
Tc = 3.641 is quite close to the exact value Tc = 4/ ln3 ≈ 3.64096 [Baxter, 1982].
In the identical figure, we also plot the temperature dependence of the spontaneous
magnetization M0(T ) for the hyperbolic (3,q) lattices with coordination numbers
7 ≤ q ≤ 20. As we show later, the system is always off-critical whenever q ≥ 7,
even at the transition temperature. We, therefore, use the notation T (q)

pt instead of

T (q)
C for q ≥ 7 and we also use T (6)

pt for q = 6 in order to unify the notation.

If a small magnetic field h is applied at the transition temperature T (q≥7)
pt , the

cubed induced magnetization M3(h,T = T (q)
pt ) is always linear around h = 0. Thus,

the model satisfies the scaling relation M(h,T = Tpt) ∝ h1/δ with the mean-field
critical exponent δ = 3. This value is in full agreement with the previous results
for the hyperbolic (p ≥ 5,4) lattices [Krčmár et al., 2008a].
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Figure 4.5: The squared spontaneous magnetization M2
0(T ) with respect to the

relative temperature T/T (q≥6)
pt near the transition point. The linearity of the M8

0(T )
signalizes β = 1

8 only when q = 6 as depicted in the inset.

In order to observe the scaling relation of the spontaneous magnetization M0(T )
in a unified manner, we plot the squared spontaneous magnetization M2

0(T ) in
fig. 4.5 with respect to the relative temperature T/T (q≥6)

pt . The linearity of the

curves near the transition point T = T (q≥7)
pt agrees with the mean-field behaviour

M(h = 0,T ) ∝ (T (q)
pt − T )β with β = 1

2 on hyperbolic lattices with q ≥ 7. On the
(3,6) lattice the exponent is β = 1

8 as displayed in the inset.
To detect the critical exponent β in a more precise manner, we calculate the

effective exponent

βeff(T ) =
∂ ln

[
M

(
h = 0,T < T (q)

pt

)]
∂ ln

[
T (q)

pt −T
] (4.11)

by means of the numerical derivative. The convergence of βeff(T ) with respect to
T (q)

pt −T is shown in fig. 4.6. It is apparent that the mean-field value β = 1
2 is de-

tected for any q ≥ 7, whereas we confirm β = 1
8 on the flat (3,6) lattice only, which

agrees with the two-dimensional Ising universality class. The linear increase of
the transition temperature T (q≥7)

pt with respect to q is shown in the inset where the
linearity appears already around q & 8. This agrees with the linear dependence
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tion number q.

TC(q) (1.41) observed in the mean-field model.

Next, we investigate the temperature dependence of the internal energy per
bond in absence of the magnetic field h

Eint(h = 0,T ) = −J〈σ`σ`′〉 = −J Tr(σ`σ`′ρ)/Tr(ρ) (4.12)

and the specific heat per bond

Ch(h = 0,T ) =
∂Eint(h = 0,T )

∂T
, (4.13)

whereσ` andσ`′ denote two neighbouring spins located at the center of the lattice.
Figure 4.7 shows the results. The internal energy Eint(h = 0,T ) is continuous for
all the cases we computed. The kink in Eint(h = 0,T ) at the transition temperatures
T (q)

pt for q ≥ 7 corresponds to the discontinuity in Ch(h = 0,T ) [Krčmár et al.,
2008a, Krčmár et al., 2008b]. For these cases the scaling exponent α is zero.
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shows the temperature dependence of the internal energy Eint(h = 0,T ). Both
Ch(h = 0,T ) and Eint(h = 0,T ) in the paramagnetic region are almost independent
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II. Entropy and correlation

The von Neumann (or entanglement) entropy is defined via the reduced density
matrix ρ 1 as

S = −Tr
(
ρ log2 ρ

)
= −

∑
i

ωi log2ωi , (4.14)

where ωi are the eigenvalues of ρ. Figure 4.8 shows the temperature dependence
of S which remains finite for q ≥ 7 even at the transition temperature T (q)

pt . The
entropies in the paramagnetic region are also almost independent on q if q ≥ 7 as
observed also for Ch(h = 0,T ) and Eint(h = 0,T ) in the previous section.

The decay rate of the density matrix eigenvalues ωi is shown in fig. 4.9 on
a semilogarithmic scale for the Euclidean (3,6) and the hyperbolic (3,9) lattice.
We confirm a power-law decay in ωi only at the transition point T (6)

pt of the (3,6)
lattice. The eigenvalues ωi decrease exponentially for q ≥ 7 at the transition tem-
perature.

1If q is odd, the symmetrized form (3.53) of the density matrix ρ is applied. In this case
the entropy is considered to be less reliable than for even q’s, and we regard such entropy as
complementary information.
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Figure 4.10: Decay of the correlation functions with respect to the spin distance
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The exponential decay of the density matrix spectra is also reflected in the
correlation function

g(ri,r j) ≡ g(|ri− r j|) = Tr
(
σiσ jρ

)
−Tr(σiρ)Tr

(
σ jρ

)
(4.15)

between two distant sites i and j. We place the spin σi at the center of the system
and σ j at the system boundary. Therefore, as the lattice expands in the CTMRG
algorithm, the distance between these two spins increases progressively.

Figure 4.10 depicts log10

[
g(ri,r j)

]
as a function of the distance |ri − r j| for

the Euclidean (3,6) and the hyperbolic (3,9) lattice. It is evident that the corre-
lation functions always decay exponentially on the (3,9) lattice regardless of the
temperature. We remark that an analogous exponential decay of g(ri,r j) has been
observed for all q ≥ 7 (not shown). On the (3,6) lattice, the correlation function
decays as a power law at the transition temperature T (6)

pt , as seen in the inset.
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Figure 4.11: The mixed lattices for n = 1 (left) and n = 2 (right) in iteration k = 5.
The filled circles denote the exceptional lattice sites with the coordination number
seven, and number of the exceptional sites is 90 in the left and 18 in the right, c.f.
(4.19).

4.2 Ising model on the weakly curved lattices

4.2.1 The model

In this section, we study the classical Ising model with Hamiltonian (1.34) on a
series of weakly curved lattices constructed by tessellation of triangles with non-
constant coordination number q, which oscillates between integer values six and
seven. The corresponding lattices are denoted as mixed lattices and the vertices
with coordination number seven are referred to as exceptional sites. They are dis-
tributed regularly throughout the originally flat Euclidean (3,6) lattice with the
typical distance between nearest exceptional sites proportional to an integer n.
Two examples of such lattice geometry are depicted in fig. 4.11. This concept is
motivated by the fact that, assuming unit length of the lattice edges, although the
(3,7) lattice exhibits the least absolute value of the Gaussian curvature κ among
the hyperbolic (3,q ≥ 7) lattices, it is still far more curved than the Euclidean (3,6)
lattice. Indeed, the curvature radius R = 1/

√
−K ≈ 0.917 of the (3,7) lattice (cf.

(2.7)) is of the order of the unit lattice edge length l = 1, while R =∞ on the Eu-
clidean lattice. However, surfaces with averaged curvature radii in between, i. e.,
0.917<R<∞, can be constructed by varying the parameter n in the mixed lattices.
As the integer n increases, the flat triangular (3,6) lattice is approached, which al-
lows us to quantify the effect of the non-zero curvature to the order-disorder phase
transition.
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The mixed lattices are generated according to the extension scheme

L̃(k+1) = WB L(k) ,

R̃(k+1) = WB R(k) , (4.16)

C̃(k+1) =

 WB L(k)
(
C(k)

)2
R(k) (at every nth step),

WB L(k) C(k) R(k) (otherwise),

where the concept of the tensors WB, L, R and C is analogous to the case of
the (3,q ≥ 6) lattices in section 4.1.1. These processes are almost identical to
the extension scheme in (4.2)-(4.4) for the (3,6) lattice, but when k is a multiple
of an integer parameter n, we insert an additional corner C(k) in the extension
process from C(k) to C̃(k+1). This process adds the exceptional lattice site with the
coordination number seven whenever (k mod n) = 0. The tensors are initialized in
the same manner as on the (3,6) lattice. Note that we used the extension process of
L(k) and R(k) as in (4.2) and (4.3). This restriction keeps the corner C(k) symmetric
to the spatial inversion; the property is convenient for numerical calculations by
the CTMRG method. On the other hand, this simplification introduces a slight
inhomogeneity to the lattice, which should be considered carefully.

I. Coordination number

Examining the extension process in (4.16), the total number Nn(k) of the lattice
sites in the whole lattice area (C(k))6 in iteration k is calculated as [Gendiar et al.,
2014]

Nn(k) = 1 + 12
k∑

j=1

j2Mn(nMn(k,1)+n, j) , (4.17)

where Mn(m, j) is the floor function

Mn(m, j) =

⌊m− j
n

⌋
≡max

{
i ∈ Z | i ≤

m− j
n

}
. (4.18)

In the same manner, we can obtain the number of the exceptional sites [Gendiar
et al., 2014]

Sn(k) = 6
[
2Mn(k,1)−1

]
(4.19)

for any set of n and k.
Considering the asymptotic limit k→∞, the ratio between Sn(k) and Nn(k)

leads to the average density of the exceptional sites

lim
k→∞

Sn(k)
Nn(k)

=
1

2n(3n + 1)
. (4.20)
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As a result, the averaged coordination number is

qn = 6 +
1

2n(3n + 1)
. (4.21)

Note that q∞ = 6 is the coordination number of the (3,6) lattice. Using the notation
qn thus defined, we denote the lattice constructed by (4.16) as the (3,qn) lattice.

Length of the system lattice border Pn(k) in iteration k is another essential
quantity that characterizes the geometry of the (3,qn) lattice. The analytic formula
of Pn(k) can be obtained as [Gendiar et al., 2014]

Pn(k) = 12

k−nMn(k,1) + n
Mn(k,1)∑

j=1

2 j

 . (4.22)

It should be noted that the ratio of the boundary sites to the total number of the
lattice sites in the asymptotic limit

lim
k→∞

Pn(k)
Nn(k)

=
2

3n + 1
(4.23)

is finite and inversely proportional to n−1. Such a dominance of the boundary sites
over all lattice sites is a characteristic feature of the hyperbolic lattices. The cen-
ter of the (3,qn) lattice, which represents our research target, the thermodynamic
property of which we study, is, thus, surrounded by a wide system boundary.

II. Averaged curvature

The hyperbolic nature of the (3,qn) lattice arises from the presence of the ex-
ceptional lattice sites which are distributed in a sparse manner. Thus, when we
consider the curvature of the (3,qn) lattice, we have to take a certain average over
the system. Apparently, such an averaged curvature is dependent on the parameter
n, and we write it as κn in the following. Using (2.7), we evaluate the averaged
curvature of the (3,qn) lattice with unit lattice edge length by

κn = −

[
2arccosh

(
cos(π/p)
sin(π/qn)

)]2

. (4.24)

Substituting the asymptotic expression qn = 6 + 1/6n2 from (4.21) into (4.24), we
obtain

κn ∼ −
2

3π
n−2 (4.25)

with the dominant coefficient 2/3π ≈ 0.212 for large n. Hence, the averaged cur-
vature on the (3,qn) lattice κn ∝ −n−2.
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4.2.2 Numerical results
We study the phase transition of the Ising model on the sequence of the non-
Euclidean (3,qn) lattices, in particular,

(3,q1), (3,q2), (3,q3), · · · , (3,q∞) . (4.26)

Without loss of generality, the coupling constant J and the Boltzmann constant
kB are set to unity. All thermodynamic functions are considered in dimension-
less units. The Boltzmann weight tensor WB of the elementary lattice rhombus
characterized by spins σa,σb,σc,σd is given by

WB(σa,σb,σc,σd) = exp
[

J
2kBT

(σaσb +σbσc +σcσd +σdσa+

+2σbσd) +
h

6kBT
(σa + 2σb + ξσc + 2σd)

]
,

(4.27)

which differs from (4.1) (with q = 6) only by the pre-factor ξ in ξσc. Normally, we
set ξ = 1, and ξ is set to zero when over-counting of interaction with external field
h happens at each exceptional lattice point. The reduced density matrix ρ(k)

n is cal-
culated according to the standard definition (3.32), where we use the normalized
tensor A(k)

n =
[
C(k)

]3
(cf. (3.52)).

In our numerical calculations by CTMRG, we keep up to m = 200 block spin
states, where we have confirmed that all the data are converged with respect to
m. As the iteration number k increases, C(k) approaches its thermodynamic limit
during the numerical calculations. Note that C(k) possesses a minor dependence on
k, since we keep inserting of the exceptional lattice sites at every nth extension step
in accord with (4.16). We can either consider the cases where k is multiple of n or
take the average among the minor fluctuations. There is, however, no qualitative
difference in the two choices, and we have chosen the latter one. Again, we focus
on the thermodynamic quantities deep inside the system in order to suppress the
boundary effects.

The spontaneous magnetization for the series of (3,qn) lattices

M0,n(T ) ≡ Mn(h = 0,T ) =
Tr

(
σ
`
ρn

)
Trρn

(4.28)

evaluated on the spin σ` at the center of the lattice system is displayed in fig. 4.12.
For comparison, we also show the magnetization on the flat (3,6) lattice, denoted
by n→∞, as well as on the hyperbolic (3,7) lattice, denoted by n = 0. Analogous
notation by the subscript n is also used for other thermodynamic quantities. The
phase transition temperature Tpt,n monotonously decreases with n and approaches
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Figure 4.12: Temperature dependence of the spontaneous magnetization M0,n(T )
on the (3,qn) and (3,7) lattices.

the analytically known value Tpt,∞ ≡ T (6)
pt = 4/ ln3 ∼ 3.64096 [Baxter, 1982] on

the flat (3,6) lattice. Roughly speaking, the difference Tpt,n − Tpt,∞ is inversely
proportional to n.

In order to detect the magnetic exponent βn in the scaling relation M0,n(T ) ∝
(Tpt,n−T )βn , we use the numerical derivative to calculate the effective exponent

βeff,n(T ) =
∂ ln M0,n(T )

∂ ln
(
Tpt,n−T

) , (4.29)

within the ferromagnetic ordered phase T ≤ Tpt,n. Figure 4.13 shows βeff,n(T ) thus
obtained. When Tpt,n−T is relatively large, βeff,n(T ) follows the Ising universality
value β = 1

8 , however, in the neighbourhood of the transition temperature Tpt,n, the
magnetic exponent βeff,n for finite n increases and tends to βn = 1

2 , the value which
represents the mean-field universality class.

The critical exponent δn associated with the response of the magnetization to
the uniform magnetic field h at the phase transition temperature Tpt,n in the scaling
relation Mn(h,T = Tpt,n) ∝ h1/δn is evaluated in a similar manner. The effective
exponent

δeff,n(h) =

∂ ln Mn(h,T = Tpt,n)

∂ lnh

−1

(4.30)
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Figure 4.13: Inverse of the effective magnetic exponent βeff,n(T ) as a function of
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obtained by numerical derivative in the limit h→ 0 is shown in fig. 4.14. The
observed behaviour qualitatively agrees with that of the magnetic exponent βeff,n
depicted in fig. 4.13. The Ising universality value δ = 15 is obtained for the flat
(3,6) lattice only. It is obvious that the effective exponent δeff,n(h) deviates from
the Ising one when the external field becomes small, and it again approaches the
mean-field value δeff,n(h→ 0) = 3 for any finite n.

The internal energy per bond at the center of the system is

Eint,n(h = 0,T ) = −J
Tr

(
σ`σ`′ ρn

)
Trρn

, (4.31)

where σ
`

and σ
`′

denote two neighbouring spins at the center of the system. Fig-
ure 4.15 shows the specific heat Ch,n(h = 0,T ) = ∂Eint,n(h = 0,T )/∂T , which is
obtained by taking the numerical derivative of Eint,n(h = 0,T ) with respect to the
temperature T . The maxima of the specific heat for large n are not obtained pre-
cisely, because Eint,n(h = 0,T ) around T = Tpt,n is very sensitive to a tiny numerical
error. The discontinuity in Ch,n(h = 0,T ) for finite n supports the fact that the tran-
sition is of the mean-field nature. Note that the specific heat, Ch,n(h = 0,T ), in
the disordered region T ≥ Tpt,n for various n is close to Ch,∞(h = 0,T ) on the flat
(3,6) lattice. This suggests a transient behaviour from the Ising universality to the
mean-field one which happens within the disordered phase.
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Chapter 5

Quantum spin models on hyperbolic
lattices

In this chapter we apply the Tensor Product Variational Formulation (TPVF) de-
scribed in section 3.4 to quantum spin systems in the thermodynamic limit on the
(p,q) hyperbolic lattices and the (4,4) Euclidean lattice. First, we investigate the
effect of the changing lattice parameter p on the series of (p,4) lattices with con-
stant coordination number q = 4, where p ∈ {5,6, . . . ,11}. We analyze the critical
phenomena of the transverse field Ising model (TFIM), the XY and the modified
Heisenberg model. In analogy to previous studies of classical spin models on
these hyperbolic lattices [Ueda et al., 2007, Krčmár et al., 2008a], we expect fast
convergence of the phase transition magnetic field of the quantum TFIM as well as
the ground-state energies of the quantum XY and the modified Heisenberg mod-
els toward the asymptotic case p→∞, which represents the Bethe lattice [Krčmár
et al., 2008a]. Numerical results presented in the following sections are in com-
plete agreement with the expectations. The key feature of this work is the conse-
quent indirect analysis of the quantum TFIM, XY, and Heisenberg models on the
Bethe lattice with coordination number four, which has not been considered yet.

Next, an analogous study is performed on the complementary set of the (4,q)
lattices, where the transverse field Ising model is investigated. Here, we determine
the phase transition fields on the respective lattices by maximizing the von Neu-
mann entropy of the system. Assuming the results of the studies of the classical
Ising model on the (p,q) lattices [Gendiar et al., 2012,Serina et al., 2016], asymp-
totically linear dependence of the transition field on the coordination number q
was expected. However, the numerical results indicate the polynomial behaviour.
Complete results of our calculations for quantum models on the series of the (4,q)
lattices will be published soon [Daniška and Gendiar, ].
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5.1 Spin models on the (p,4) lattices

5.1.1 The model

We study the ground-state properties and the phase transition of the quantum
TFIM, XY, and modified Heisenberg models in the thermodynamic limit on a se-
ries of hyperbolic (p,4) lattices with the lattice parameter p ∈ {5,6, . . . ,11}. Apart
from the set, we include two additional cases: p = 4 being the Euclidean square
lattice and the asymptotic case p→∞, which is associated to the Bethe lattice.
The Euclidean (4,4) lattice serves as the reference lattice, which allows us to
compare the results obtained by TPVF with the outcomes of other numerical al-
gorithms. Thus we can estimate the numerical inaccuracy of the TPVF algorithm,
which varied from 1.2% in the XY model to 3.7% in TFIM at the phase transi-
tion. Analogous results for models on hyperbolic lattices are not available yet.
We, however, expect significantly higher accuracy of the TPVF results on hyper-
bolic lattices, which are of our main interest, than on the Euclidean one, as already
mentioned in section 3.4.

The Hamiltonian of the three models is given by formula (3.59), where the spin
variables are positioned in the lattices vertices. We consider the ferromagnetic
Ising and the XY model with Jxy = 0, Jz = J and Jxy = J, Jz = 0, respectively.
Without loss of generality, we set J = 1 > 0. The modified Heisenberg model
is specified by the choice Jxy = J = 1, Jz = −J = −1, which corresponds to the
unitary transformation of the antiferromagnetic Heisenberg model with Jxy = −1,
Jz = −1 if the coordination number q is even, as discussed in section 1.2.2. The
results for this specific type of the Heisenberg model may differ from the exact
results, since the ground-state is antiferromagnetic if p is even. However, in case
p = 4, a simple calculation confirms that the classical system corresponding to
the optimal tensor Zp in the role of the classical Boltzmann weight tensor WB is
ferromagnetic. Moreover, the relative error of the ground-state energy E(4)

0 of this
model if compared to the reference value [Xie et al., 2012] is 2.2% only. In case
p is odd, exact diagonalization for small lattice systems suggests that the ground-
state is ferromagnetic, although we have not managed to prove this property in
general yet.
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5.1.2 Numerical results

I. The transverse field Ising model

The TFIM undergoes a quantum phase transition1 at a nonzero magnetic field
h(p)

t > 0, where we explicitly emphasize its dependence on the lattice geometry.
The nonzero spontaneous magnetization 〈S z(h)〉 in the ordered phase at h < h(p)

t
breaks the spin-inversion symmetry, which results in approximately twice larger
set of the free variational parameters N(p)

Ising in the TPVF algorithm if compared

to N(p)
Heis in the XY and Heisenberg models, cf. table 3.1. The computational time

for a particular fixed field h is, therefore, significantly prolonged. Moreover, in
order to screen the vicinity of the phase transition field h(p)

t , multiple calculations
for a sequence of magnetic fields h had to be performed. As a consequence, in
order to restrict the total computational time, we have analyzed the TFIM on the
hyperbolic lattices up to p = 10 only. (Notice that the number of block spins states
kept was m = 20 for p ∈ {4,5, . . . ,8}, and only m = 4 for p ∈ {9,10}, which was
sufficient due to exponentially weak correlations caused by the hyperbolic lattice
geometry [Gendiar et al., 2012]; any further increase of the states kept m has not
improved the numerical calculations significantly).

We have analyzed the phase transition of the TFIM by the expectation value
of the spontaneous magnetization 〈S z

p〉 as well as by the magnetic susceptibility
χp. Solving the minimization problem in (3.67), we received the optimal ten-
sor elements W∗p({σ}), which uniquely define the approximative ground state |Ψ∗p〉
via (3.63). Once |Ψ∗p〉 has been constructed, we evaluated the spontaneous mag-
netization

〈S z
p〉 =

〈Ψ∗p|σ
z
`
|Ψ∗p〉

〈Ψ∗p|Ψ
∗
p〉

, (5.1)

where ` labels an arbitrary spin in the central polygon of the lattice in order to
suppress boundary effects. Here, 〈S z

p〉 denotes the order parameter of TFIM and
specifies the quantum phase transition at the phase transition field. The resulting
dependence of the magnetization 〈S z

p〉with respect to the magnetic field h near the
phase transition field h(p)

t is plotted in the upper graph of figure 5.1. The quantum
phase transition of the TFIM is characterized by a non-analytic behaviour of the
magnetization curve, when 〈S z

p〉→ 0 if approaching the phase transition field h→
h(p)

t from the ordered phase (h < h(p)
t ).

1We intentionally avoid the terms critical point, critical field and the corresponding index C
on hyperbolic lattices, since the studies of the classical models on these lattices [Iharagi et al.,
2010, Gendiar et al., 2012] conjecture that the correlation length ξ remains finite at the transition.
Analogous behaviour in case of quantum systems is also expected.
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Figure 5.1: The spontaneous magnetization 〈S z
p〉 (the upper graph) and its square

〈S z
p〉

2 (the lower graph) in the vicinity of the phase transitions with respect to the
magnetic field h for p ∈ {4,5, . . . ,10}. The inset shows the detailed zoomed-in
behaviour for higher values of p.

The phase transition exponent βp, which depends on the lattice geometry, de-
scribes the singularity through the scaling relation in the ordered phase, cf. (1.75),

〈S z
p(h)〉 ∝

(
h(p)

t −h
)βp

. (5.2)

Figure 5.1 (the lower graph) shows the squared transversal magnetization 〈S z
p〉

2,
where we point out the linearity of the squared magnetization if approaching the
phase transition field h(p)

t . Such a dependence confirms the mean-field exponent
βp = 1

2 regardless of the lattice parameter p, which results in the mean-field-like
behaviour of the TFIM if approaching the phase transition. The incorrect mean-
field-like behaviour near the phase transition on the Euclidean lattice represented
by the mean-field value β4 = 1

2 is attributed to the exclusion of long-range correla-
tions caused by the TPS approximation (3.63) which is built up by the tensors W4
of the too low dimension. As a reference, the numerical TRG analysis [Xie et al.,
2012] gives correct βTRG

4 = 0.3295 on the Euclidean (4,4) lattice, which is also in
agreement with Monte Carlo simulations.
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Figure 5.2: The detailed dependence of the inverse effective magnetic exponent
β

(p)
eff

(h) on the magnetic field in the logarithmic form for the Euclidean (4,4) and
the pentagonal (5,4) lattice. The inset shows the effective exponent at wider mag-
netic field scale. The blue dashed line estimates behaviour of the correct effective
exponent for the Euclidean lattice.

A more detailed analysis of the influence of the TPS approximation near the
phase transition can be visualized by evaluating the effective (field dependent)
exponent β(p)

eff
(h), which converges to βp when approaching the phase transition

field h(p)
t

βp = lim
h→h(p)

t

β
(p)
eff

(h) = lim
h→h(p)

t

∂ ln〈S z
p(h)〉

∂ ln
(
h(p)

t −h
) . (5.3)

Figure 5.2 shows the dependence of β(p)
eff

(h) on the magnetic field in case of the
Euclidean (4,4) and the pentagonal (5,4) lattice. The effective exponent obviously
converges to the mean-field exponent βp = 1

2 for both lattice types if the phase
transition field is approached from the ordered phase, i.e., if ln(h(p)

t − h)→ −∞.
The inset shows the same dependence on larger scales. The critical exponent on
the square lattice (the black curve for p = 4) starts deviating at around h> 2.0 from
the expected exponent (estimated by the blue dashed curve), which is known to
converge to βTRG

4 = 0.3295 [Xie et al., 2012]. Knowing that β(p)
eff

(h) is expected to
converge to βp = 1

2 at the transition field h(p)
t , the value of h(p)

t can be determined
at high precision. It is performed by varying h(p)

t in (5.3) so that 1/β(p)
eff

(h) is as
close as possible to the value 2 as ln

(
h(p)

t −h
)
→−∞.
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p 4 5 6 7
h(p)

t 3.158034 3.263825 3.285405 3.291055
∆(p) 1×10−6 1×10−6 1×10−6 1×10−6

p 8 9 10 ∞

h(p)
t 3.292647 3.293113 3.293263 3.29332

∆(p) 2×10−6 2×10−6 5×10−6 1×10−5

Table 5.1: The phase transition fields h(p)
t of the TFIM including the estimated

errors ∆(p) with respect to the lattice parameter p.
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Figure 5.3: The phase transition field h(p)
t of the TFIM with respect to the lattice

parameter p. The horizontal dot-dashed line represents the estimated asymptotic
value h(∞)

t = 3.29332.

The phase transition fields h(p)
t , calculated according to the above mentioned

method, are summarized in table 5.1 together with their errors ∆(p). Notice that
∆(p) represents only the error of the method providing that the calculated mag-
netization 〈S z

p〉 is considered accurate. The most relevant value of the critical
magnetic field for the TFIM on the Euclidean (4,4) lattice by the TRG algorithm
yields h(4),TRG

t = 3.0439 [Xie et al., 2012]. The relative error of our result is thus
3.7%. The data are graphically plotted in fig. 5.3, whereas the error bars are too
small to be displayed.

The monotonically increasing and rapidly saturating curve h(p)
t allows us to

perform a meaningful extrapolation estimate of the transition field h(∞)
t on the



5.1. SPIN MODELS ON THE (P,4) LATTICES 89

Bethe lattice. The fitting function is proposed in the form

h(p)
t = h(∞)

t + a1 exp(a2 p) , (5.4)

where h(∞)
t , a1, and a2 are the fitting parameters, which were determined in the

following way. First we defined a function f (h), which returns the residual sum
of squares (RS S ) of the linear regression ln |h− h(p)

t | = ln |a1|+ a2 p. Then, h(∞)
t

was chosen as the argument, which minimizes the function f (h). The correspond-
ing linear regression ln |h(∞)

t − h(p)
t | = ln |a1|+ a2 p specifies the parameters a1 and

a2. If considering another way, h(∞)
t is such a value that the curve ln |h(∞)

t − h(p)
t |

is as close as possible to a line, where the closeness is measured by the RS S .
Applying this exponential fitting function to the critical magnetic fields h(p)

t for
p ∈ {6, . . . ,10} 2 , we calculated the asymptotic phase transition field of the TFIM
on the Bethe lattice h(∞)

t = 3.29332 as listed in table 5.1.
Another independent way of obtaining (and confirming) the phase transition

fields h(p)
t can be carried out by analyzing the magnetic susceptibility

χp = −
∂2E(p)

0

∂h2 . (5.5)

The functional dependence of the susceptibility on the magnetic field h is shown
in fig. 5.4. A non-diverging discontinuity of χp occurs at the identical phase tran-
sition fields h(p)

t , which we have determined above by the spontaneous magne-
tization analysis and are depicted by the vertical dot-dashed lines. The inaccu-
racy comes from performing the second derivative in (5.5) numerically, and the
additional improvement rests in decreasing the spacing interval δh, i.e, in shrink-
ing the distance between the magnetic fields, at which the ground-state energy is
evaluated by TPVF. In the limit δh→ 0, the magnetic susceptibility undergoes
a discontinuous jump at h(p)

t . It is obvious that there is no significant difference
between the phase transition magnetic fields h(p)

t obtained by the analysis of the
transverse magnetization 〈S z

p〉 and the magnetic susceptibility χp.
Except for the analysis of the phase transition by the spontaneous magnetiza-

tion 〈S z
p〉 and the magnetic susceptibility χp, the field dependence of the set of

the optimal free variational parameters W∗p(θ j) also provides helpful information
about the phase transition h(p)

t . The pairs of the optimal variational parameters
W∗p(θ j) coupled by spin-inversion symmetry continuously collapse onto a single
curve exactly at the phase transition h(p)

t determined by analysis of both the spon-
taneous magnetization and the magnetic susceptibility for all considered lattice

2We excluded h(4)
t from the fit, since TPVF is less accurate on the Euclidean lattice. The point

h(5)
t was also excluded in order to restrict the fit to the tail of the curve.
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Figure 5.4: The magnetic susceptibility χp of the TFIM as a function of the mag-
netic field h for the hyperbolic lattices with p ∈ {5, . . . ,10}. The vertical dot-dashed
lines serve as guides for the eye and correspond to the phase transitions h(p)

t .

geometries. However, due to the large number of the variational parameters N(p)
Ising,

we only plot the h-dependence of W∗p(θ j) in fig. 5.5 and 5.6 for the Euclidean (4,4)
and the pentagonal (5,4) lattice, respectively.

In the ordered phase at h < h(p)
t , the distinct optimized values of the coupled

parameters Wp(θ j), as specified in Tabs. 3.2 and 3.3, reflect the existence of the
spontaneous symmetry-breaking in the TFIM for both the lattice types. In the
disordered phase at h ≥ h(p)

t , the four-parameter description coincides with the
variational parameters W4(Θi) and W5(Θi). This confirms the relevance of the ad-
ditional symmetries in such systems, where the spontaneous symmetry-breaking
mechanism is not present, such as in the XY and Heisenberg systems at the zero
magnetic field.

II. XY and modified Heisenberg models

We study the XY and the modified Heisenberg models at zero magnetic field,
where these models are known to be critical in the Euclidean space. Therefore,
there is no preferred direction (the spin alignment) in the system on the Euclidean
lattice at h ≥ 0, and the spin-inversion symmetry is present. We expect that the
models on hyperbolic lattices also exhibit the spin-inversion symmetry. It enables
us to reduce the number of the free variational parameters Wp(θ j) within the TPVF



5.1. SPIN MODELS ON THE (P,4) LATTICES 91

1.30

1.40

1.50

W
4 

(θ
1 

)

W
4 

(θ
6 

)

1.08

1.12

1.16

1.20

W
4
 (θ

j 
)

W
4 

(θ
2 

)

W
4 

(θ
5 

)

2.90 2.95 3.00 3.05 3.10 3.15 3.20

h

1.00

1.04

1.08

1.12

W
4 

(θ
3 

)

W
4 

(θ
4
)

W
4
(Θ

1
)

W
4
(Θ

2
)

W
4
(Θ

3
)

W
4
(Θ

4
)

Figure 5.5: The magnetic field dependence of the variational parameters W4(θ j)
on the Euclidean (4,4) lattice. The dotted line marks the position of the transition
field h(4)

t ≈ 3.158.
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p
E(p)

0
XY Heisenberg

4 −1.08456618 −1.3089136
5 −1.08151200 −1.2912704
6 −1.08097046 −1.2925639
7 −1.08086301 −1.2918936
8 −1.08084068 −1.2919769
9 −1.08083585 −1.2919403

10 −1.08083478 −1.2919460
11 −1.08083453 −1.2919437
∞ −1.08083446 −1.291944

Table 5.2: The ground-state energies per bond E(p)
0 listed with respect to p for the

modified Heisenberg and XY models. The number of states m of the multi-spin
variables kept in renormalization process was m = 20 for 4≤ p≤ 10 and m = 10 for
p = 11. The asymptotic estimate of E(∞)

0 corresponds to the model on the Bethe
lattice.

minimization part down to N(p)
Heis as listed in table 3.1. Despite the significant re-

duction, the number of the free parameters N(p)
Heis still grows fast with respect to

the increasing lattice parameter p. The computational time of the minimization
algorithm is significantly prolonged due to (at least) linear dependence on the
increasing number of the free variational parameters. Also, the algorithm may
possibly be trapped in a local energy minimum and thus a series of initial condi-
tions has to be tested in order to obtain the global energy minimum (or, at least, a
sufficiently good approximation of it). For all these reasons, the calculations were
stopped at p = 11 with respect to the constraints of our computational resources
and time.

The ground-state energies E(p)
0 obtained by the TPVF algorithm for both the

XY and the modified Heisenberg models are summarized in table 5.2. The en-
ergies E(p)

0 remained identical even if the larger set of N(p)
Ising free variational pa-

rameters Wp(θ j) in TPVF was used, whereby the optimal values of the parameters
W∗p(θ j) coupled by spin-inversion symmetry were equal. These results witness the
spin-inversion symmetry of the models on hyperbolic lattices. Recall that E(p)

0
represents only an upper estimate of the true ground-state energy E(p)

0 .

The energies E(4)
0 calculated by TPVF on the Euclidean (4,4) lattice for both

the XY and the Heisenberg models are higher if compared to the results of the
Monte Carlo simulations EXY,MC

0 = −1.09765, EHeis,MC
0 = −1.33887 [Sandvik and
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Figure 5.7: The ground-state energy E(p)
0 of the XY model with respect to the lat-

tice parameter p ∈ {4,5, . . . ,11}. The inset shows the zoomed-in energy including
the details of the fitting function.

Hamer, 1999, Sandvik, 1997] (the respective relative errors are 1.2% and 2.2%).
Again, because of the mean-field-like character of the TPS approximation, the
TPVF algorithm is expected to be more accurate whenever a hyperbolic lattice
geometry is considered [Daniška and Gendiar, 2015, Krčmár et al., 2008a], since
any quantum spin model on hyperbolic lattice belongs to the mean-field univer-
sality class.

Figure 5.7 illustrates the monotonous and quickly saturating energy curve E(p)
0

for the XY model with respect to the lattice parameter p. The inset depicts the tail
of the curve in detail together with an exponential fit analogous to (5.4) applied
to the five energies E(7)

0 , . . . ,E(11)
0 . The parameters of the fit E(∞)

0 , a1, and a2 are
listed in the inset of fig. 5.7, where the dot-dashed line represents the estimate of
the ground-state energy per bond of the quantum XY model on the Bethe lattice
E(∞)

0 = lim
p→∞

E(p)
0 = −1.08083446.

Analogously, the ground-state energies E(p)
0 of the Heisenberg model are plot-

ted in fig. 5.8. Again, rapid convergence of the energy to the asymptotic values is
obvious from the data. We assume that the physical origin of the non-monotonic
convergence (saw-like pattern) of E(p)

0 may be attributed to the fact that the modi-
fied Heisenberg model on the lattices with even p is a unitary transformation of the
antiferromagnetic Heisenberg model, while this is not the case if p is odd. How-
ever, a detailed analysis indicates that the exponential fitting function in (5.4) can
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Figure 5.8: The ground-state energy E(p)
0 of the modified Heisenberg model with

respect to the lattice parameter p ∈ {4,5, . . . ,11}. The fitting function parameters
are shown in the inset.

successfully describe the data, if applied separately onto two sets: those with even
p ∈ {6,8,10} (the lower branch shown in the inset) and the odd p ∈ {5,7,9,11} (the
upper branch). The fitting parameters of the two regressions are listed in the inset
of fig. 5.8. The lower and the upper branches yield the energies E(∞)

0 −1.2919443
and E(∞)

0 −1.2919440, respectively. With respect to an independent application of
additional analogous fits, we found E(∞)

0 = −1.291944 (all the digits are valid) to
be considered as the correct estimate of the ground-state energy per bond of the
Heisenberg model (both the modified and the antiferromagnetic versions) on the
Bethe lattice.

We have not found any theoretical reasoning for the exponential convergence
of the ground-state energies E(p)

0 yet. However, if a power-law fitting function was
applied instead, we obtained a less accurate fitting and greater RS S .

5.2 Spin models on the (4,q) lattices

5.2.1 The model
In this section we apply the TPVF algorithm to study the quantum phase transition
of the transverse field Ising model in the thermodynamic limit on the (4,q) lattices,
where 4 ≤ q ≤ 70. Hence, we investigate the influence of the varying coordination
number q on the ground-state properties, which is a complementary problem to
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Figure 5.9: Construction of the planar density matrix ρ̂ according to (5.8). The
black-filled objects represent the multi-spin variables ξi,ηi which are summed
over in (5.8). The double-layer structure in the centre corresponds to the tensor
W4({σ′})W4({σ}), which is surrounded by four tensors C and T in the identical
alternating arrangement as in fig. 3.7.

the previous study on the (p,4) lattices. The number of the effective states which
are kept after the renormalization procedure was set to m = 10 in all calculations.

In our analysis, we focused on the von Neumann entropy of the system given
by formula (4.14). We introduce two kinds of the entropy - the linear entropy
S linear and the planar entropy S planar, which differ in the definition of the density
matrix used in (4.14). The linear entropy S linear is produced by assuming the
standard reduced density matrix ρ, given by the relation (3.32) equivalent to the
partial trace of the tensor product C4, i. e.,

S = −Tr(ρ log2 ρ). (5.6)

The planar entropy is
S = −Tr(ρ̂ log2 ρ̂), (5.7)

where ρ̂ is the "planar" density matrix, calculated as

ρ̂
(
{σ′}|{σ }

)
= W4({σ′})W4({σ})×

×
∑

ξ1,ξ2,ξ3,ξ4
η1,η2,η3,η4

4∏
i=1

[
C({σ′iσi}, ξi,ηi)T({σ′iσi},ηi, {σ

′
i+1σi+1}, ξi+1)

]
, (5.8)

where ξ4+1 ≡ ξ1, σ4+1 ≡σ1 and {σ}= {σ1σ2σ3σ4}. The construction of the planar
density matrix ρ̂ is graphically illustrated in fig. 5.9. This newly defined object
represents a reduced quantum density matrix ρ̂ = Tr′|Ψp〉〈Ψp| of the TPS |Ψp〉,
where the partial trace Tr′ is taken over the whole lattice but the four spins σ1, σ2,
σ3, σ4 in the centre.
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Figure 5.10: Graph of the the linear entropy S linear with respect to the magnetic
field h for (4,q) lattices, where 4≤ q≤ 30. The sampling step is ∆h = 0.001 around
the phase transition, otherwise ∆h = 0.1.

5.2.2 Numerical results

We plot the curve of the linear entropy S linear with respect to the magnetic field
h for selected (4,q) lattices in fig. 5.10. The peak of the curve marks the phase
transition field h(4,q)

t . Analogous graph with the identical position of the transition
fields h(4,q)

t can be obtained also for the planar entropy S planar. In order to perform
more precise screening of the region near the phase transition fields h(4,q)

t , we sam-
pled the magnetic field by step ∆h = 0.001 there. The peak of the curve shifts to
the right and its maximum decreases as q increases. To examine this dependency
in a more precise manner, we located the maximum of the linear entropy S linear(h)
with respect to the magnetic field h. We determined the transition field h(4,q)

t as the
magnetic field h which yielded the optimal value of S linear(h). We plot the peak
value of the two entropies S MAX(q) ≡ S (h(4,q)

t ) with respect to h(4,q)
t and the coor-

dination number q in fig. 5.11. The apparent linearity of the curves S MAX(q) in the
log-log scale suggests that the dependency S MAX(q) has a polynomial character.

Figure 5.12 depicts the phase transition field h(4,q)
t as a function of the coordi-

nation number q. A detailed analysis, cf. the inset in fig. 5.12, suggests that the
best description of the data can be obtained by a polynomial fitting function. The
parameters of the optimal fitting function are shown in the graph. Note that, ac-
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cording to the fit, as q increases, the transition field h(4,q)
t tends to the asymptotic

value h(4,q→∞)
t = 4. The observed polynomial curve for h(4,q)

t represents a new
feature if compared to the results of the classical Ising model on the (p,q) lattices,
where a linear dependence of the transition temperature T (q)

pt ∝ q for large q was
detected [Serina et al., 2016].



Conclusions

In this work we focused on numerical analysis of the phase transition phenomena
of both classical and quantum spin systems on hyperbolic lattices. The hyperbolic
lattices are constructed by tessellation of regular p-sided polygons with coordina-
tion number q, and we refer to them by using the notation (p,q).

The presented task is highly non-trivial, since the number of the lattice sites
increases exponentially with the diameter of the hyperbolic lattice. This exponen-
tial increase limits efficiency of the standard numerical tools such as the Monte
Carlo simulations or exact diagonalization. Looking for an appropriate approach
to deal with this challenging problem, we bet on a system-specific reformula-
tions of the Corner transfer matrix renormalization group (CTMRG) algorithm,
which was already successfully applied to classical spin systems on the (p,4)
lattices. In this work we presented a similar analysis in the complementary sit-
uation represented by the triangular (3,q) lattices. In addition, we investigated
the thermodynamic property of the Ising model on infinite sequence of weakly
curved (3,qn) lattices, where qn represents the averaged coordination number and
n = 0,1,2, ...,∞. As n increases, the (3,qn) lattice flattens out approaching the
triangular lattice (3,6) = (3,q∞). Next, we introduced the Tensor product varia-
tional formulation (TPVF) algorithm [Daniška and Gendiar, 2015], which can be
considered as a generalization of CTMRG to investigate quantum spin systems.
Being interested in comparison of the phase transition phenomena in the classical
and quantum case, we applied the TPVF algorithm to quantum spin models on
the series of (p,4) and (4,q) hyperbolic lattices. The conclusions made from our
studies of both classical and quantum systems are summarized in the following
two sections.

I. Classical Ising model on triangular (3,q) and weakly curved (3,qn) lattices

First, we presented a detailed analysis of the phase transition phenomena for the
Ising model on the Euclidean (3,6) and the hyperbolic (3,7 ≤ q ≤ 107) lattices.
This work, which investigates the effect of the varying coordination number q on
the thermodynamic properties of the system, forms a supplement to the previous
studies [Krčmár et al., 2008a,Ueda et al., 2007,Krčmár et al., 2008b,Gendiar et al.,
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2008], where the influence of parameter p was studied on the (p,4) lattices. This
task required a reformulation of the existing CTMRG algorithm, where different
left and right transfer tensors were introduced, as explained in section 4.1.1.

The phase transition temperatures T (q)
pt were determined from the analysis of

the magnetization, internal energy, specific heat, and the von Neumann entan-
glement entropy. We have shown that the transition temperature T (q)

pt ∝ q as q
increases, which agrees with the mean-field behaviour [Baxter, 1982]. On hyper-
bolic lattice, the behaviour of the thermodynamic functions in the vicinity of the
transition temperature is ruled by the critical exponents α = 0, β = 1

2 , and δ = 3,
which are characteristic for the mean-field universality class. On the Euclidean
(3,6) lattice, the critical exponents α = 0, β = 1

8 , and δ = 15, known for the Ising
universality class, are reproduced. The mean-field nature of the hyperbolic sur-
faces is also characterized by the exponential decay of the reduced density matrix
eigenvalues and the correlation functions even at the transition temperature, which
is the direct consequence of the finiteness of the correlation length. As a typical
example of the non-diverging correlation length ξ at the phase transition, the pen-
tagonal (5,4) lattice has been analyzed in detail [Iharagi et al., 2010]. Due to
finite values of the correlation length even at the transition point, the term critical
point on the hyperbolic lattices is not appropriate, since the critical point is always
related to the divergence of the correlation length by definition.

In order to elucidate the origin of the mean-field universality induced by the
hyperbolic geometry, we have investigated the Ising model on the slightly curved
(3,qn) lattices. On this lattice geometry, the Gaussian curvature can be easily
manipulated which allows us to systematically approach the Euclidean (flat) ge-
ometry through an infinite series of weakly curved triangular lattices. Using a
slight modification of the CTMRG method, as applied to the Euclidean (3,6) lat-
tice, we calculated the thermodynamic functions deep inside the system around
the phase transition temperature. The curves of the spontaneous magnetization
and the specific heat for the hyperbolic (3,qn) lattices continuously approach the
curves for the Euclidean (3,6) lattice as the curvature decreases to zero. The effec-
tive critical exponents βeff and δeff on the hyperbolic lattices follow the respective
curves in the Euclidean case away from the transition point, however, they pro-
gressively bend to the mean-field values β = 1

2 , and δ = 3 as the transition point is
approached.

Assuming the previous studies [Krčmár et al., 2008a,Ueda et al., 2007,Krčmár
et al., 2008b, Gendiar et al., 2008] including the results presented here, we con-
clude that classical spin systems on any hyperbolic lattice belong to the mean-field
universality class. The mean-field-like behaviour observed in the hyperbolic ge-
ometry originates in the infinite Hausdorff dimension of the hyperbolic lattices
which obviously exceeds the critical value dc = 4 [Baxter, 1982, Yeomans, 1992].
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We assume that the CTMRG method does not affect the critical behaviour, since
it accurately reproduces all of the critical exponents on the 2D Euclidean lattices,
as has been shown in [Ueda et al., 2007, Krčmár et al., 2008a].

II. Quantum spin models on (p,4) and (4,q) lattices

Generalizing the original idea proposed in [Nishio et al., 2004] for the Euclidean
lattice, we introduced the TPVF algorithm [Daniška and Gendiar, 2015] as a
promising numerical tool for studying ground-states of quantum systems on the
hyperbolic (p,4) and (4,q) lattices in the thermodynamic limit. Approximating
the ground-state in the form of a uniform tensor product state (TPS), we receive a
variational problem which is solved by a combination of a modified CTMRG and
an optimization algorithm. The uniform TPS reduces the infinite number of the
variational parameters in the thermodynamic limit down to 2p. Considering sym-
metries present in the Hamiltonian of the model, the number of the free variational
parameters approximating the tensor product ground state is further significantly
shrunk.

First, applying the TPVF algorithm, we investigated three quantum spin-1
2

models (modified Heisenberg, XY, and transverse-field Ising model (TFIM)) on a
series of hyperbolic (p,4) lattices, where p ∈ {5, . . . ,11}. The key feature of this
study is the indirect analysis of the three models on the Bethe lattice with coor-
dination number four, which is represented by the limit p→ ∞. This problem
had not been addressed before. In order to assess accuracy of our results, the
Euclidean square lattice (p = 4) was also considered as a reference lattice, where
highly precise results obtained through various numerical methods are available.
The TPVF applied to the models on the square lattice is expected to be less accu-
rate than on the hyperbolic lattices. This is caused by the too low dimension of the
tensors in the TPS approximation which suppresses the quantum long-range cor-
relations on the square (4,4) lattice near the criticality. Thus, the TPVF algorithm
itself is a source of an improved mean-field approximation, which is a new feature
if compared to the classical case, where CTMRG produces correct results with no
approximation. Comparing our results with the reference study [Xie et al., 2012],
the ground-state energies E(4)

0 of the XY and the modified Heisenberg model and
the transition field h(4)

t in the TFIM on the Euclidean (4,4) lattice deviate from
the reference values by 1.2%, 2.2% and 3.7%, respectively. On the other hand,
the mean-field-like behaviour, induced by the hyperbolic structure of the lattice
(not the mean-field approximation of Hamiltonians), is natural, since the infinite
Hausdorff dimension of the hyperbolic surfaces exceeds the critical dimensional-
ity dc = 3 of quantum systems. Therefore, the improved mean-field approximation
of the TPS is not in conflict with the mean-field universality induced by the hy-
perbolic geometry.
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The ground-state energies E(p)
0 of the XY and the modified Heisenberg mod-

els have been studied in the absence of magnetic field on the series of the regu-
lar (p,4) lattices with 4 ≤ p ≤ 11. The resulting dependence of the ground-state
energy per bond E(p)

0 on the lattice parameter p differs considerably for the two
models. While the energies E(p)

0 of the XY model form a monotonically increasing
and exponentially saturated sequence with increasing p, the modified Heisenberg
model induces a saw-like dependence containing the separated upper (odd p) and
the lower (even p) branches, both of them converging exponentially fast to the
common asymptotic value E(∞)

0 which corresponds to the ground-state energy on
the Bethe lattice with the coordination number four. The saw-like pattern in case
of the modified Heisenberg model may be attributed to the fact, that if p is even,
the ground-state is antiferromagnetic, while if p is odd, the ferromagnetic state is
obtained.

Within the identical series of hyperbolic (p,4) lattices, we analyzed the phase
transition magnetic fields h(p)

t of the TFIM for 4 ≤ p ≤ 10 by the expectation value
of the spontaneous magnetization 〈S z

p〉, the associated magnetic exponent βp, the
magnetic susceptibility χp, and the optimized variational parameters W∗p(θ j). The
resulting phase transition magnetic fields h(p)

t form an increasing sequence, which
exhibits exponential convergence to the asymptotic value h(∞)

t . Analogous be-
haviour had also been observed for the phase transition temperatures T (p)

pt of the
classical Ising model on the identical series of hyperbolic lattices in studies [Ueda
et al., 2007, Krčmár et al., 2008a]. However, the physical interpretation of this
phenomenon is still missing. The linearity of the squared spontaneous magnetiza-
tion in the vicinity of the phase transition confirms the mean-field-like behaviour
induced by the hyperbolic geometry, in which the associated magnetic exponents
βp = 1

2 . The mean-field approximation of the TPS results in the mean-field ex-
ponent β4 = 1

2 for the quantum TFIM on the Euclidean (4,4) lattice, where the
reference value is βTRG

4 = 0.3295 [Xie et al., 2012].

Although the set of the calculated phase transition magnetic fields h(p)
t and

the ground-state energies E(p)
0 is restricted to 4 ≤ p ≤ 11, which is far from the

asymptotics p→ ∞, the fast convergence and the exponential character of h(p)
t

and E(p)
0 with increasing p enables us to estimate the respective quantities of the

quantum spin models on the Bethe lattice (p→∞). In particular, we conjecture
that the phase transition field of the TFIM on the Bethe lattice is positioned at
h(∞)

t = 3.29332 and the ground-state energies per bond of the XY and the Heisen-
berg models, respectively, occur at E(∞)

0 = −1.08083446 and −1.291944. The
latter value is common also to the antiferromagnetic Heisenberg model.

Finally, we presented the preliminary results of our studies of quantum models
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on the series of the (4,q) lattices. In this case the phase transition field h(4,q)
t of

the transverse field Ising model was determined by maximizing the von Neumann
entropy of the system. The calculated transition fields h(4,q)

t suggest the polyno-
mial character of the respective curve with respect to the coordination number q.
Assuming the polynomial fit, the transition fields asymptotically converge to the
value h(4,q→∞)

t = 4 as q tends to infinity. This outcome has no analogy in the clas-
sical Ising model on the (p,q) lattices, where, instead, the transition temperature
T (q)

pt grows linearly with increasing q if q is large. The polynomial dependence

of the peak value of the entropy S MAX
(
h(4,q→∞)

t

)
with respect to the coordination

number q was also detected. The origin of this polynomial behaviour has not been
clarified yet.
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