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Fyzikálny ústav Slovenskej akadémie vied
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Abstract

Quantum memory channels represent a very general, yet simple and comprehensible model for
causal processes. As such they have attracted considerable research interest, mostly aimed on
their transfer capabilities and structure properties. Most notably it was shown that memory
channels can be implemented via physically naturally motivated collision models.

Quantum cellular automata are a compelling model for simulation of physical processes. In
this work we establish a profound connection between quantum cellular automata and memory
channels. We show that the locally computable invariant of an automaton is equal to the lowest
dimension of ancillary system required for a memory channel implementing this automaton.
Further we define the class of memory channels with finite depth and show that all causal quan-
tum cellular automata can be implemented with such memory channels. For two dimensional
memory system and qubit input we show that the depth of such memory channels is less than
three.

We also define the concept of repeatable channels and show that only unital channels can be
implemented repeatably with pure memory channels. In the special case of qubit channels we also
show that every unital qubit channel has a repeatable implementation. We also briefly explore
the possibilities of stroboscopical simulation of channels and show that all random unitary
channels can be stroboscopically simulated. Particularly in qubit case, all indivisible qubit
channels are also random unitary, hence for qubit all indivisible channels can be stroboscopically
simulated.

Memory channels also naturally capture the framework of correlated experiments. We de-
velop methods to gather and interpret data obtained in such setting and in detail examine the
two qubit case. We also show that for control unitary interactions the measured data will never
contradict a simple unitary evolution. Thus no memory effects can be spotted then.
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Abstrakt

Kvantové kanály s pamät’ou predstavujú vel’mi všeobecný a predsa jednoduchý a zrozumitel’ný
model popisujúci kauzálne procesy. Pamät’ové kanály sú predmetom mnohých študíı, zväčša
zameraných na ich transportačné vlastnosti a štruktúru. Bolo ukázané, že pamät’ové kanály
môžu byt’ vytvorené pomocou fyzikálne prirodzene motivovaných zrážkových modelov.

Kvantové bunkové automaty patria medzi presvedčivé modely pre simuláciu fyzikálnych
procesov. V tejto práci predstav́ıme hlboké prepojenie medzi kvantovými bunkovými automatmi
a pamät’ovými kanálmi. Ukážeme, že lokálne spoč́ıtatel’ný invariant bunkového automatu je
rovný najmenšej dimenzii pamäte potrebnej pre pamät’ový kanál implementujúci tento automat.
Ďalej definujeme triedu pamät’ových kanálov s konečnou h́lbkou pamäte a ukážeme, že všetky
kvantové bunkové automaty môžu byt’ vytvorené pomocou takýchto pamät’ových kanálov. Pre
dvojdimenzionálny systém pamäte aj vstupu ukážeme, že h́lbka takéhoto pamät’ového kanála je
menšia ako tri.

Taktiež definujeme pojem opakovatel’ných kanálov a ukážeme, že iba unitálne kanály môžu
byt’ implementované opakovatel’ne pomocou unitárnych pamät’ových kanálov. V špeciálnom
pŕıpade qubitových kanálov tiež ukážeme, že každý unitálny kanál má opakovatel’nú imple-
mentáciu. V krátkosti preskúmame, aj možnosti stroboskopickej simulácie kanálov a dokážeme,
že všetky náhodné unitárne kanály su stroboskopicky simulovatel’né. Pre qubit sú všetky nedeli-
tel’né kanály aj náhodné unitárne, a teda všetky nedelitel’né qubitové kanály sú stroboskopicky
simulovatel’né.

Pamät’ové kanály prirodzene popisujú rámec korelovaných experimentov. Vyvinieme metódu
na zhromažd’ovanie a interpretáciu dát źıskaných v takomto modeli a podrobne analyzujeme dvo-
jqubitový pŕıpad. Taktiež ukážeme, že pre kontrolované unitárne interakcie namerané dáta nikdy
nebudú odporovat’ obyčajnému unitárnemu vývoju. V takom pŕıpade nie je možné pozorovat’
žiadne pamät’ové efekty.
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Chapter 1

Introduction

Quantum information science is young and rapidly developing research field with many impli-
cations towards applications and fundamental questions. It connects physics with computation
and information processing as well as raises questions about how and what can be read out from
a physical state.

Any physical process can be viewed as some sort of communication between sender and
receiver. Such information processing protocol is always affected by noise whose source is the
environment. The noise usually hinders us from acquiring certain information about the process
or message. It is thus crucial to identify the noise, and its consequences. When repeating
some experiment, the noise affecting each try is taken independently. This is usually justified
by assuming that the environment is not affected by the experiment. Such assumption allows
us to approach the noise in a systematic way. However in many real world applications this
assumption cannot be justified.

If the relaxation of environment is not perfect, the information from previous experiments
may still roam around inside the environment. This greatly hardens the evaluation of the experi-
ment, because repeated experiments cannot be treated independently anymore. The experiment
explicitly depends on the past experiments but naturally is still independent of the upcoming
experiments in future. Such scheme is called causal.

Quantum channels successfully describe independent experiments, whereas memory channels
stand as model for the latter case when the experiments are affected by the history of the
experiment. The important structure of causality underlies, and defines the concept of memory
channels as stands proven in the paper of Werner and Kretschmann [37]. They show that every
causal process is a collision model. That is a repetition of simpler processes, e.g. the single
experiments, which share a common system, the environment. The environment serves then as
the memory, it “remembers” the actions of previous processes. Memory channels are a more
general concept for describing repeating processes and experiments as compared to quantum
(memoryless) channels, and may better reflect the reality inside the laboratories. Most of the
recent research was naturally aimed towards the information transfer capacity of certain classes of
memory channels (see references in the introduction to Chapter 4). Our aim was to investigate
the structural properties of quantum memory channels and analyze the possibilities of their
estimation. In memoryless setting the information leaked into environment is irrevocably lost,
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CHAPTER 1. INTRODUCTION 2

whereas in memory seeting, this leaked information can leak back in future experiemnts, thus is
in principle available to the experimenter. On the other hand, the experimenter can obtain less
information about the initial state of environment, since he has only one copy of it, as opposed
to the memoryless case, where he has in principle infinitely many copies of the environment.

In this work we will also make a connection between memory channels and quantum cellular
automata. Quantum cellular automata, originally proposed by Feynman in [22], offer a promising
way towards quantum computations and simulations. This seemingly different concept, whose
key feature is the finite speed of information propagation, is deeply connected with memory
channels. We will show that every quantum cellular automaton can be consistently mapped to
a subclass of memory channels. It turns out then that memory channels, collision models and
quantum cellular automata are roughly the same objects motivated by different questions.

The work is organized as follows. Chapters 2 and 3 establish the language and basic notions
of quantum information and estimation methods. Chapter 4 introduces the model of memory
channels and quantum cellular automata. In Chapter 5 structural properties of memory channels
are proposed and analyzed and connection between memory channels and quantum cellular
automata is made. Some of this material was published in [58, 72] and some is in preparation
[27, 71]. Chapter 6 develops estimating protocols for memory channels, and illustrates them
on a simple two dimensional example. Results from this chapter are also in preparation to be
published in near future in [73].



Chapter 2

Basics of quantum information

In this we will introduce the basic language of quantum information. All this can be found
in standard textbooks on this subject [44, 49] and [28, 48, 5] for more in depth mathematical
foundations. The notation and language will be mostly compatible with [28].

2.1 Notations and symbols

Definition of these symbols can be found in Appendix A.1.
H,Hi,H[a,b],M - Hilbert space of some system,
T (H) - set of trace class operators on Hilbert space H
L(H) - set of bounded operators on H
T ∗, T - some transformation in Schrödinger picture/ Heisenberg picture
A, B, M - a C∗-algebra

!α

Preparation ρ Evolution E Measurement M

5
432

1

Figure 2.1: General experimenting scheme. Experimenter sets with some knob parameters !α of
preparation procedure which in turn specifies a quantum mechanical state ρ. The state is then
optionally evolved with evolution E and finally measured with measurement M with specific
outcome, in this case 1. The borders between preparation evolution and measurement can be
laid almost arbitrarily, for the purpose of description.
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CHAPTER 2. BASICS OF QUANTUM INFORMATION 4

2.2 States and effects

A quantum mechanical experiment (see Figure 2.1) can be divided into three parts. Preparation,
evolution and measurement. In preparation stage we feed our experimental apparatus with some
set of (classical) parameters !λ in order to produce some quantum mechanical state ρ. The same
set of these parameters will always produce the same quantum mechanical state of the system
ρ(!λ). In the sense that whenever we push the preparation button, a quantum state will be
produced, independent of previous preparations and the ensemble of all states prepared with
this fixed preparation is described by ρ(λ). The evolution stage is to much extent arbitrary and
can be made a part of preparation or measurement, depending on our needs. For now we let
the evolution to be trivial, until the next section. At the end we decide which measurement to
use and read out the outcome O ∈ Ω, where Ω is the set of all possible outcomes. Since QM
is a statistical theory, it predicts only probabilities p(O|ρ). We have to repeat such experiment
many times to acquire relevant statistics.

A quantum state ρ is then associated with certain preparation procedure and an effect EO

will then attach to this state the probability of outcome O when we conduct the measurement
EO(ρ) = p(O|ρ). The situation when a preparation procedure ρ was used and outcome O was
obtained is called an event.

Example 2.2.1 (Identity and zero effect). The identity effect I assigns probability 1 to every
state ρ, I(ρ) = 1. This describes a measurement with single outcome that will be always
registered. Similarly zero effect assigns zero probability to an event that never happens.

Suppose that we fix the measurement procedure but we alternate between two different
preparation procedures randomly. This should also define a possibly different but valid prepara-
tion procedure. Lets say that we choose the first preparation procedure with associated state ρ1
with probability q and the other procedure with state ρ2 with probability 1 − q. The resulting
preparation procedure will be associated with some state qρ1 + (1− q)ρ2, which is a mixture of
the two states. The probabilities assigned with effect E should be consistent with probabilities
measured with preparation procedures ρ1 and ρ2, thus

E(qρ1 + (1− q)ρ2) = qE(ρ1) + (1− q)E(ρ2) (2.1)

for any effect E and arbitrary 0 ≤ q ≤ 1. To summarize:

• an effect is an affine mapping from the set of states to the interval [0, 1]

• the set of states is a convex set.

2.2.1 States

Now we can define the mathematical representation of the set of physical states. At this point
actual quantum mechanics comes into play. The set of states, in the Hilbert space formulation
of QM, is described by positive trace class operators of unit trace, also called density matrices

S(H) := {ρ ∈ T (H)|ρ ≥ O,Tr(ρ) = 1}, (2.2)
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we identify the set of states in quantum mechanics with S(H). This is a convex set. Every state
from this set has a canonical decomposition

ρ =
∑

i

pi|ψi〉〈ψi|, (2.3)

where |ψi〉 are eigenvectors and
∑

i pi = 1.
A convex set has the property that whenever ρ1, ρ2 ∈ S(H) then also their convex linear

combination λρ1 + (1− λ)ρ2 for every λ ∈ (0, 1) is from this set. Every convex set is then fully
described by its extremal elements. Those are the elements for which no nontrivial decomposition
into a convex combination of different elements is possible.

The extremal points of S(H) are the 1-dimensional projections |ψ〉〈ψ| also called the pure
states. Each 1− d projection can be identified with a normalized vector in H, thus pure states
can be also viewed as vectors on H with unit norm up to global phase. Every other state is
then a mixed state. As can be seen from the canonical decomposition every state can be written
as convex combination of 1-dimensional orthogonal projections. This is however not the only
convex decomposition possible. In fact there are uncountably many other decompositions into
convex combination of non-orthogonal projections or some non extremal elements of the state
space which yield the same state.

Remark 2.2.2 (Classical state). In classical statistical mechanics we describe the state space
in a similar fashion but with an added requirement that all physically relevant states have to
be diagonal in some specific basis. While this may seem as a subtle change, it is the essence of
quantum versus classical debate.

In finite d-dimensional H the states of quantum system constitute of self-adjoint d×d square
matrices with unit trace. Self-adjoint matrices form a vector space over real numbers. Given a
basis in H as {|i〉}, there is a standard way how to construct basis in LS(H) ⊃ S(H) called a
traceless operator basis.

Example 2.2.3 (Self-adjoint operator basis). Operators τmn form a basis in LS(H), where

τmm =
1√

m(m+ 1)
(
m−1∑

k=0

|k〉〈k| −m|m〉〈m|), (2.4)

and for m = 0

τ00 =
1√
d
(
d−1∑

k=0

|k〉〈k|, (2.5)

and for m < n

τmn =
1√
2
(|m〉|n〉+ |n〉|m〉) (2.6)

τnm =
1√
2
i(−|m〉|n〉+ |n〉|m〉). (2.7)
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One can check that τab = τ †ab, Tr(τab) = 0 ∀(a, b) += (0, 0) and that 〈τab|τcd〉HS = Tr(τabτcd) =
δacδbd. Every state ρ in S(H) can then be written as

ρ =
1√
d
(τ0 +

d2−1∑

a=1

raτa) (2.8)

where τ00 =: τ0 and τa are τij in some fixed order.

Example 2.2.4 (Qubit). The simplest nontrivial Hilbert space is of dimension 2. Let the basis
of this space be denoted by normalized orthogonal vectors |0〉, |1〉. The traceless operator basis
then is

τ00 =
1√
2
I τ01 =

1√
2
X τ10 =

1√
2
Y τ11 =

1√
2
Z (2.9)

where

X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
(2.10)

are the Pauli matrices. A state ρ is then expressed as 1√
2
(τ00 + r01τ01 + r10τ10 + r11τ11) or more

common as ρ = 1
2(I+!r!σ), where !σ = (X,Y, Z) is the vector of Pauli matrices. In order to ρ ≥ O

we find out that ‖ r ‖ ≤ 1. The qubit state is defined by 3 parameters ri such that
∑

i riri ≤ 1.
The set of all qubit states thus forms a ball better known as Bloch ball where each state is
specified by a vector lying within this unit ball called a Bloch vector, see Figure 2.2. Pure
states are the states for which ‖ r ‖ = 1 and lie on the surface of the ball. Two pure states are
orthogonal if the Hilbert-Schmidt product of their density matrices is zero. Let ρ1 = 1

2(I+ !r!σ)
and ρ2 =

1
2(I+ !s!σ).

〈ρ1|ρ2〉HS = Tr(ρ1ρ2) =
1

2
(1 + risjTr(σiσj)) =

1

2
(1 + !r!s), (2.11)

therefore two pure states are orthogonal if their Bloch vectors are antipodal !r = −!s.

Definition 2.2.5 (von Neumann entropy). The von Neumann entropy S(ρ) of a state ρ ∈ S(H)
is given by following

S(ρ) := −Tr(ρ log ρ) = −
∑

k

pk log pk, (2.12)

where pk are the nonzero eigenvalues of ρ.

It is the quantum analog of the classical Shannon entropy. The von Neumann entropy has
following important properties:

• S is a concave function on the set of states, i.e. S(qρ1+(1− q)ρ2) ≥ qS(ρ1)+(1− q)S(ρ2);

• S is invariant under unitary conjugation S(UρU †) = S(ρ);
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ρ

x

y
z

Figure 2.2: States of qubit form a Bloch ball. Each point of this ball is a valid physical state
from a 2-dimensional Hilbert space.

• S(ρ) = 0 iff ρ is a pure state.

A unique state ρM which maximizes the von Neumann entropy is called a maximally mixed state.
Such state is proportional to identity ρM = 1

dI and the von Neumann entropy of such state is

S(ρM ) = −
d−1∑

k=0

1

d
log

1

d
= log d, (2.13)

where d is the dimension of underlying Hilbert space.
Pure states have an additional structure called the superposition. Having two pure states

|ψ〉 and |φ〉 we can form another pure state |θ〉 = α|ψ〉+ β|φ〉 which is called a superposition of
|ψ〉 and |φ〉. Such combination of pure states is not allowed in classical mechanics and gives rise
to many if not all quantum phenomena.

2.2.2 Effects

When we defined the state space in previous subsection we also made a step toward defining
the effects. From the beginning of this section we know that an effect is a linear mapping from
S(H) to the interval [0, 1]. Thus an effect is a linear functional on S(H) which by linearity can
be smeared over the whole T (H). The dual space of T (H) is L(H) and that is the native space
of effects. So every effect can be associated with an operator E ∈ L(H) such that

E(ρ) = Tr(Eρ), (2.14)

where I ≥ E ≥ O in order to obtain a valid probability from interval [0, 1]. Let denote the set
of effects by E(H).

Example 2.2.6 (Qubit effects). Since effects are positive operators we can expand them in the
traceless operator basis, thus every qubit effect can be written as

E = (Iα+ !a!σ). (2.15)

Eigenvalues of this operator are λ± = α ± ‖ a ‖ therefore E is effect if and only if λ− ≥ 0 and
λ+ ≤ 1. Notice that this also implies ‖ a ‖ ≤ 1.
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2.2.3 Observables

Each measurement device can have n possible different outcomes. Each outcome is represented
by an effect Ej such that the probability of outcome j when ρ ∈ S(H) was prepared is Tr(Ejρ).
Formally let Ω be a nonempty set of outcomes. A σ-algebra on Ω is a collection F of subsets of
Ω such that

• ∅ ∈ F and Ω ∈ F

• if X ∈ F then Ω!X ∈ F

• if X1, X2, . . . ∈ F then
⋃

iXi ∈ F .

F represents all possible questions “Was the observed outcome in this subset of possible out-
comes? ”.

Definition 2.2.7 (POVM). A positive operator valued measure is a mapping A : F .→ E(H)
such that

• A(∅) = O

• A(Ω) = I

• A(
⋃

iXi) =
∑

iA(Xi) for any set Xi of disjoint sets in F .

A POVM is thus a prescription which assigns to every possible set of outcomes appropriate
effect. However for all practical purposes in this work it is enough to think of POVM as a direct
outcome - effect assignment. In this sense Ω is just the set of possible outcomes. Hence since
A(Ω) = I also

∑n
i=1Ei = I for a measurement where every outcome is registered. An observable

is then simply a POVM1.

2.2.4 Bipartite systems

So far we have considered only one system in Hilbert space with arbitrary dimension. Let us
have two independent quantum systems A and B in separate Hilbert spaces A and B. The
Hilbert space of composite system A+B is then obtained by tensor product A ⊗ B. If the
state of system A is ρA and of the system B, ρB, the joint system is then again obtained
by tensor product ωAB = ρA ⊗ ρB. We call such states factorized. Similarly for effects. If
we have an effect EA and EB assigned to outcomes OA, OB the composite effect on A ⊗ B is
EA ⊗ EB. The probability assigned to EA ⊗ EB should respect the independent nature of the
events p(OA, OB|ρA, ρB) = p(OA|ρA)p(OB|ρB) and this is true:

p(OA, OB|ρA, ρB) = Tr[(EA ⊗ EB)(ρA ⊗ ρB)] = Tr(EAρA)Tr(EBρB)

= p(OA|ρA)p(OB|ρB). (2.16)

1Observables as self-adjoint operators are then POVMs with all effects being orthogonal projections. They are
sometimes referred to as projection valued measures, PVMs.
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However with the structure of the tensor product we have also introduced a state space which
is by far larger than a state space of factorized density matrices. Not every density matrix in
A ⊗ B is of the aforementioned form. States which cannot by written in this form describe
correlated systems. If the state can be written as convex combination of factorized states, then
it is called separable. Finally states which are not separable or factorized are called entangled
and describe systems with quantum correlations Pure states can be only entangled or factorized.

We have thus a way how to describe joint systems, however through this journey we have lost
the knowledge of how to describe single systems which are part of a larger system. If a state is
not factorized the legitimate question is then what are the local states of respective subsystems?

Given that we have some ωAB ∈ S(A⊗ B) which is not factorized we denote ωA and ωB the
local states of respective subsystems even if we do not know now what they are. We require
that any measurement outcome probability obtained only on one of the subsystems has to be
recovered by the density matrix of the subsystem:

Tr[ωAB(EA ⊗ I)] = Tr(ωAEA). (2.17)

The state ωA is called a partial trace of ωAB over system B and is denoted by

ωA = TrBωAB =
∑

i

〈i|BωAB|i〉B (2.18)

with some basis in B, {|i〉B}.
Let the basis of A⊗B be {|i〉A⊗|j〉B} where {|i〉A/B}, are bases of respective subspaces and

let the state ωAB have an expansion in this basis

ωAB =
∑

klmn

ωkl,mn|k〉A〈l| ⊗ |m〉B〈n|, (2.19)

then the density matrix ωA is
∑

i

〈i|BωAB|i〉B =
∑

iklmn

ωkl,mn|k〉A〈l| ⊗ 〈i|m〉B〈n|i〉

=
∑

ikl

ωkl,ii|k〉A〈l|. (2.20)

Example 2.2.8 (Schmidt decomposition). Let us have a pure state |ψ〉 in S(H⊗H) with a
basis in (both) H: {|i〉}, such that |ψ〉 =

∑
j
√
pj |jj〉. Let denote the partial trace over the first

and second subsystem Tr1 and Tr2 respectively. The density matrix of |ψ〉 is

|ψ〉〈ψ| =
∑

ij

√
pij |ii〉〈jj|, (2.21)

and the local density matrix of both subsystems is

Tr1(|ψ〉〈ψ|) =
∑

i

pi|i〉〈i| = Tr2(|ψ〉〈ψ|). (2.22)

This is a so called Schmidt decomposition. Every pure state in A ⊗ B (where A doesn’t have
to be equal to B) can be written for a suitably chosen basis in A and B {|i〉A/B} as(2.21) and
the density matrices of subsystems are diagonal in these bases. Moreover for any density matrix
ρ ∈ S(H) there exists such |ψ〉 ∈ S(H⊗H) of the aforementioned form.
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The entropy of a pure state is zero. However if this state is bipartite, the entropy of its
separate parts needs not be zero if the composite state is not factorized. This reflects that the
information inside the local states is not enough to describe the whole information of the bipartite
state. The reason is that in the description of local states we cannot include correlations which
might be present. This property of von Neumann entropy is called subadditivity. Mathematically

S(ωAB) ≤ S(ρA) + S(ρB), (2.23)

end the equality arises only when systems A and B are not correlated.

2.3 Evolution

In quantum mechanics we have learned that Schrödinger equation governs the time evolution of
a quantum state

i" ∂
∂t

|ψ〉 = H|ψ〉, (2.24)

where H is a self-adjoint operator, a hamiltonian. If this hamiltonian is time independent we
can give a formal solution to this

|ψ(t)〉 = eiHt/"|ψ〉 =: U(t)|ψ〉, (2.25)

where U(t) is some unitary operator for every t. For a general ρ ∈ S(H) this yields unitary
conjugation ρ(t) = U(t)ρU †(t). This is the Schrödinger picture. Alternatively we can look on
the evolution of observables: A(t) = U †(t)AU(t) in Heisenberg picture. Both pictures are equiv-
alent, however some times it is more insightful to use Heisenberg picture, mostly when infinite
dimensional systems are considered and sometimes the Schrödinger picture is more intuitive.
Another asymmetry which favors the Heisenberg picture is that the states in big Hilbert spaces
are hard to describe in terms of localization. This is in general also true for observables, how-
ever physically for us it usually makes sense to think about measurements and measurement
apparatuses which are precisely localized, and physically feasible to construct. It seems that
nonlocal states are far more easily produced than nonlocal measurements. In this work we will
use both pictures at our advantage. A map in Heisenberg picture T will have a Schrödinger
picture equivalent T ∗ with an asterisk connected via identity

Tr[T ∗(ρ)B] = Tr[ρT (B)], (2.26)

for any observable B and any state ρ.
If we have our state space defined as S(H) then possibly every map T ∗ : S(H) .→ S(H) could

be a valid evolution. Such evolution should have thus following properties

• linearity; T ∗(ρ1 + λρ2) = T ∗(ρ1) + λT ∗(ρ2)

• trace preserving; Tr[T ∗(ρ)] = Trρ

• positive; T ∗(ρ) ≥ O.
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This turns out to be not enough. Lets say we have a map T ∗ which is positive. This
guarantees that T ∗(ρ) ≥ O for every positive ρ ∈ H. This does not guarantee us that IK ⊗
T ∗(ω) ≥ O for every ω ∈ K ⊗H where K is a Hilbert space with arbitrary dimension.

Maps that satisfy this condition IK ⊗ T ∗(ω) for arbitrary K are called completely positive.
Notice that due to linearity the action can be shifted from the state space S(H) to the trace
class operator T (H).

Definition 2.3.1 (Channel). A linear trace preserving mapping in Schrödinger picture T ∗ :
T (A) .→ T (B) which is at the same time completely positive is called a channel.

In Heisenberg picture the trace preserving condition translates to unitality on observables.
We call a mapping T unital if it preserves the identity operator: T (I) = I.

Definition 2.3.2 (Channel). A linear unital mapping in Heisenberg picture T : L(B) .→ L(A)
which is at the same time completely positive is called a channel.

In previous lines we have adopted convention that states entering some evolution (inputs)
live in Hilbert space A and states which are produced after the evolution (outputs) live in
Hilbert space B. The Hilbert spaces A and B can be different, but unless explicitly stated we
will consider them as isomorphic. However we will still maintain the distinction in naming the
input Hilbert space as A and the output space B for better readability. Note that Heisenberg
picture describes the evolution against the flow of time from observables on outputs in B to
observables on inputs in A.

To show that not every positive map is also completely positive see next example.

Example 2.3.3 (Positive but not completely positive). Let us have a linear qubit map E :
S(H) .→ S(H) defined on (not normed) traceless operator basis:

E(I) = I E(X) = X E(Y ) = Y E(Z) = O. (2.27)

This map projects the states in Bloch ball onto its xy-plane and thus is positive. Lets take a
bipartite pure state |ψ〉 = 1√

2
(|01〉+ |10〉) whose density matrix is

|ψ〉〈ψ| =





0 0 0 0
0 1

2
1
2 0

0 1
2

1
2 0

0 0 0 0



 =
1

4
(I+X ⊗X + Y ⊗ Y − Z ⊗ Z). (2.28)

Then

I⊗ E(|ψ〉〈ψ|) = 1

4
(I+X ⊗X + Y ⊗ Y ) =





1
4 0 0 0
0 1

4
1
2 0

0 1
2

1
4 0

0 0 0 1
4



 . (2.29)

However this is not positive, hence projection to plane is not completely positive. As it will turn
out later a projection to a line is completely positive.



CHAPTER 2. BASICS OF QUANTUM INFORMATION 12

We do not know whether all channels are actually physical. Schrödinger equation gives us
only unitary evolution on single system, however the structure of state space does not put such
hard constraints on evolution. Stinespring’s key result [64] tells us that every completely positive
linear map T ∗ can be thought of as a unitary evolution on a larger Hilbert space.

Theorem 2.3.4 (Stinespring’s dilation theorem). Let B be a unital C∗-algebra and let T :
B .→ L(A) be a completely positive unital map. Then there exists a Hilbert space K, a unital
†-homomorphism2 π : B .→ L(K) and an isometry V : A .→ K such that

T (b) = V †π(b)V. (2.30)

for all b ∈ B. The triple (π, V,K) is called Stinespring representation of channel T . If the closed
linear span of π(B)VA equals K then such representation is called minimal.

The Stinespring’s dilation theorem is very powerful and does not even require separability
of Hilbert space.

For finite d-dimensional B where we identify L(B) with B we get that K = M⊗B, for some
finite dimensional Hilbert space M, isometry V can be written as V = U |0〉 where U is unitary3,
|0〉 is some pure state in M and the mapping π(b) will become π(b) = IM ⊗ b so that

Tr[ρT (b)] = Tr[(|0〉〈0| ⊗ ρ)U †(IM ⊗ b)U ]

= Tr[U(|0〉〈0| ⊗ ρ)U †(IM ⊗ b)] = Tr[T ∗(ρ)b]. (2.31)

In Schrödinger picture this has a nice interpretation. Any channel T ∗ : T (A) .→ T (B) can be
realized as a composition of three maps:

1. take input state ρ and attach to it a pure state of some environment M: |0〉, to get
|0〉〈0| ⊗ ρ;

2. let the composite system evolve with unitary interaction U , U(|0〉〈0| ⊗ ρ)U †;

3. trace out the environmental degrees of freedom to obtain the output, T ∗(ρ) = TrM[U(|0〉〈0|⊗
ρ)U †].

The last step can can be seen from

Tr[T ∗(ρ)b] = Tr[U(|0〉〈0| ⊗ ρ)U †(IM ⊗ b)]

=
∑

iµ

〈µi|U(|0〉〈0| ⊗ ρ)U †(IM ⊗ b)|µi〉

=
∑

iµ

〈µi|U(|0〉〈0| ⊗ ρ)U †(IM ⊗ b)|µi〉

= Tr[TrM
(
U(|0〉〈0| ⊗ ρ)U †)b], (2.32)

for some basis {|µ〉} in M and {|i〉} in B, hence

T ∗(ρ) = TrM[U(|0〉〈0| ⊗ ρ)U †]. (2.33)

2π(b†) = π(b)†
3In case A and B were not isomorphic U would remain an isometry.
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Remark 2.3.5 (Kraus representation). The unitary U : M⊗A .→M⊗B can be written as

U = |i〉〈j| ⊗Aij , (2.34)

where Aij are some linear operators Aij : A .→ B. Then

TrM[U(|0〉〈0| ⊗ ρ)U †] =
∑

i

〈i|(U(|0〉〈0| ⊗ ρ)U †)|i〉

=
∑

iklmn

〈i|k〉〈l|0〉〈0|m〉〈n|i〉AklρA
†
nm

=
∑

i

Ai0ρA
†
i0 = T ∗(ρ). (2.35)

This is the so called Kraus representation of a channel T ∗ : T (A) .→ T (B) with Kraus operators
Ak := Ak0. This way we can completely remove the explicit environment from the description
of channel and instead use only the set of Kraus operators {Ak} which has to satisfy the trace
preserving condition of channel

Tr[ρ] = Tr[T ∗(ρ)] = Tr[
∑

k

AkρA
†
k]⇒

∑

k

A†
kAk = IA. (2.36)

In Heisenberg picture we get T : L(B) .→ L(A) through the duality relation
∑

k Tr[AkρA
†
kb] =∑

k Tr[ρA
†
kbAk]:

T (b) =
∑

k

A†
kbAk, (2.37)

where we see that the trace preserving condition transforms to unitality
∑

k

A†
kIBAk = IA. (2.38)

The Kraus operators are not unique. As can be seen from the Stinespring’s representation
the unitary U can be replaced for (w ⊗ I)U with an arbitrary unitary w : M .→M,

Tr[(w ⊗ I)U(|0〉〈0| ⊗ ρ)U †(w† ⊗ I)(IM ⊗ b)]

= Tr[(w† ⊗ I)(w ⊗ I)U(|0〉〈0| ⊗ ρ)U †(IM ⊗ b)]

= Tr[U(|0〉〈0| ⊗ ρ)U †(IM ⊗ b)]. (2.39)

This freedom translates to freedom on Kraus operators:

Âk =
∑

i

wkiAi. (2.40)

The new Kraus operators Âk form the same channel as operators Ak. It was shown by Kraus
[36, 35] that any channel T ∗ : T (A) .→ T (B) can have a Kraus representation with number of
Kraus operators n such that n ≤ d2 where d = max

(
dim(A), dim(B)

)
.
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Remark 2.3.6 (Uniqueness of minimal Stinespring dilation). Steinspring’s representation is also
highly non-unique. However it can be shown that minimal Stinespring’s representation is unique
up to isometry in the following sense. Let us have two different Stinespring’s representations of
the same channel T , (π, V,K) and (π1, V1,K)1,

T (b) = V †π(b)V = V †
1 π1(b)V1. (2.41)

Assume that the first representation is minimal. Then we can conclude that dimK ≤ dimK1

and there exist a well defined isometry W : K .→ K1 with prescription

W (π(b)V ψ) := π1(b)V1ψ, (2.42)

for all b ∈ B and ψ ∈ A. By setting b = I we get

WV = V1, (2.43)

and the intertwining relation

Wπ = π1W (2.44)

as bonus.

Definition 2.3.7 (Choi-Jamiolkowski operator). Let us have a channel T ∗ on d-dimensional
Hilbert space H with some basis {|i〉}. We call the operator χ(T ∗) =

∑d−1
i,j=0 |i〉〈j| ⊗ T ∗(|i〉〈j|)

the Choi-Jamiolkowski operator of the channel T ∗.

Note that

Tr2[χ(T
∗)] =

d−1∑

i,j=0

|i〉〈j|Tr[T ∗(|i〉〈j|)], (2.45)

due to the trace preserving quality of T ∗ we get

d−1∑

i,j=0

|i〉〈j|Tr[T ∗(|i〉〈j|)] =
d−1∑

i,j=0

|i〉〈j|δij

=
d−1∑

i=0

|i〉〈i| = I, (2.46)

where by Tr2 we denote the partial trace over the second subsystem. Since T ∗ is completely
positive, the Choi-Jamiolkowski operator is positive4. The virtue of Choi-Jamiolkowski operator
is that it is unique, what makes it a good representation for optimization in the space of quantum
channels. Moreover, the relation is isomorphic, meaning that every positive operator χ in
L(H⊗H) whose partial trace over one subsystem is Tr2χ = I is a Choi-Jamiolkowski operator
of some channel.

4The operator
∑

ij |i〉〈j|⊗ |i〉〈j| is positive, and remains positive whenever completely positive mapping occurs
on its subparts.
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A channel is a linear map acting on a real vector space of self-adjoint operators. Lets
denote by {τj} the traceless operator basis. We can view a channel as an affine mapping on the
generalized Bloch vector !r from equation (2.8),

!r .→ !a+ Â!r, (2.47)

with some vector !a and operator A. It can be further encapsulated in one operator
(

1
!r

)
.→

(
1 0
!a Â

)(
1
!r

)
. (2.48)

Let

A =

(
1 0
!a Â

)
, (2.49)

then

Aij = Tr[τiT
∗(τj)]. (2.50)

For unitary channels A is from special orthonormal group, ATA = I, det(A) = 1 and !a = 0
because of unitality.

Example 2.3.8 (Contraction to a line). Let us have a qubit channel E∗ : T (A) .→ T (B) defined
on the operator basis

E∗(I) = I E∗(X) = X E∗(Y ) = O E∗(Z) = O. (2.51)

The vector representation is by far the easiest to acquire, let τ = 1/
√
2(I, X, Y, Z), then

Aij = Tr[τiE
∗(τj)]⇒

A =





1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0



 . (2.52)

The Choi-Jamiolkowski operator is also quite straightforward. Knowing that

1∑

i,j=0

|i〉〈j| ⊗ |i〉〈j| = 1

2
(I⊗ I+X ⊗X − Y ⊗ Y + Z ⊗ Z), (2.53)

we get

χ(E∗) =
1

2
(I⊗ I+X ⊗X)

=
1

2





1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1



 . (2.54)
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To get the Kraus representation is a bit more involving. Expanding the Kraus operators in
operator basis

Ak =
∑

a

akaτa, (2.55)

we get

E∗(ρ) =
∑

k

3∑

a,b=0

akaakbτaρτb

=
3∑

a,b=0

xabτaρτb. (2.56)

where xab =
∑

k akaakb. Then observe

χ(E∗) =
∑

k

3∑

a,b=0

akaakb

1∑

i,j=0

|i〉〈j| ⊗ (τa|i〉〈j|τb)

=
3∑

a,b=0

xab

1∑

i,j=0

|i〉〈j| ⊗ (τa|i〉〈j|τb)

=
3∑

a,b=0

xab|ψa〉〈ψb|, (2.57)

where |ψa〉 =
∑1

i=0 |i〉 ⊗ τa|i〉 are orthonormal vectors. The matrix x is the Choi-Jamiolkowski
operator of channel E∗ in basis {|ψa〉}, therefore it is positive and diagonalizable, thus we can
write

xab =
3∑

k=0

UakλkUbk (2.58)

where λk are eigenvalues of χ(E∗), and

E∗(ρ) =
3∑

a,b=0

xabτaρτb =
3∑

k,a,b=0

λkUakτaρUbkτb. (2.59)

We then get

Ak =
3∑

a=0

√
λkUakτa. (2.60)

For channel E∗ we obtain xab from the Choi-Jamiolkowski operator, xab = 〈ψa|χ(E∗)ψb〉:

x =





1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0



 . (2.61)
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Since this is already diagonal with only one nonzero eigenvalue 1 with multiplicity 2, we know
that Kraus operators will be first two members of operator basis:

E∗(ρ) = τ0ρτ0 + τ1ρτ1 =
1

2
(ρ+XρX). (2.62)

Now we can write the Stinespring dilation of this channel. We have only two Kraus operators,
thus a qubit Hilbert space M is sufficient. The isometry V will then be

V =

(
τ0
τ1

)

E∗(ρ) = Tr2[V ρV
†] (2.63)

It can be checked that this dilation is minimal. This is not very surprising since the environmental
overhead is the smallest nontrivial Hilbert space of dimension 2. To this V many unitaries can
be formed with different |O〉 such that

U |O〉 = V. (2.64)

One such interesting unitary interaction is Ucnot together with |O〉 = 1/
√
2(|0〉+ |1〉) where

Ucnot = |0〉〈0| ⊗ I+ |1〉〈1| ⊗X

=





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



 . (2.65)

Remark 2.3.9. If the state of environment in some (not minimal) unitary Stinespring dilation
of channel T ∗ : T (A) .→ T (B) is complete mixture, then the channel T ∗ is unital. Let T ∗(ρ) :=
TrM

(
U(1/dMIM ⊗ ρ)U †) for some unitary U : M⊗A .→ M⊗ B, where dM = dimM. Then

T ∗(IA) = 1/dMTrM
(
U(IM ⊗ IA)U †) = 1/dMTrM(IM ⊗ IA) = IA.

Definition 2.3.10 (Contractive map). a map T ∗ is called contractive if

‖ T ∗(ρ1 − ρ2) ‖tr ≤ k‖ ρ1 − ρ2 ‖tr, (2.66)

for some k < 1. If this inequality holds only for k ≤ 1, then the map is non-expansive.

Every channel is non-expansive, but not all channels are contractive. Due to Banach fixed
point theorem, contractive channels have exactly one unique fixed point.

An important norm can be defined on the set of all linear maps.

Definition 2.3.11 (Norm of complete boundedness). Let us have a linear mapping T ∗ : T (A) .→
T (B). The norm of complete boundedness, or the cb-norm is then defined as

‖ T ∗ ‖cb = max
ρ

‖ IH ⊗ T ∗(ρ) ‖tr
‖ ρ ‖tr

, (2.67)
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where ρ ∈ T (H⊗A) for arbitrary H in Schrödinger picture and

‖ T ‖cb = max
G

‖ IH ⊗ T (G) ‖∞
‖ G ‖∞

, (2.68)

where G ∈ L(H⊗A) for arbitrary H in Heisenberg picture.

The cb-norm can be also defined as the largest difference between the overall probabilities
in two statistical quantum experiments differing only by one use of T ∗. These experiments may
involve entangling the systems on which the channels act with arbitrary further systems.

2.4 Measurement

Untill now we have considered only measurement as an observable which maps states to prob-
ability distributions on measurement outcomes. We might be interested in the state after the
measurement has occurred. For this we will need the notions of a measurement model and
instruments. These ideas were first formalized by Ozawa [46, 45]. A comprehensive reference on
quantum measurements is the monograph by Busch et al [9]. A measurement of some quantum
system can be realized by coupling the system to some other quantum system, called a probe,
interaction and then measurement of the probe.

Definition 2.4.1 (Measurement model). Let A : F .→ E(H) be an observable (PPOVM) on
our system of concern. A measurement model M is a quadruple M = (K, ρ1, V ∗, F ), where

• K is a Hilbert space of the probe.

• ρ1 is the initial state of the probe.

• V ∗ is a channel, V ∗ : T (H⊗K) .→ T (H⊗K), which describes the measurement interac-
tion between the probe and the system.

• F is an observable of the probe with the outcome space (Ω,F) taking values in E(K). We
call it the pointer observable describing the measurement of probe.

If the following probability reducibility condition holds, then M is a measurement model (memo)
for the observable A:

Tr[ρA(X)] = Tr[V ∗(ρ⊗ ρ1
)(
I⊗ F (X)

)
] ∀X ∈ F , ρ ∈ S(()H). (2.69)

We could have just measured the system itself, without attaching the probe, however this
is usually how the measurements work in reality. A direct measurement of a particle often
completely destroys the particle, e.g. photon absorption.

A measurement model also defines the state of system after measurement. Let us have a
measurement model M = (K, ρ1, V ∗, F ) which defines an observable A with outcome space
(Ω,F). The state of system after measuring event X ∈ F is

ρ̃X =
1

Tr(V ∗(ρ⊗ ρ1)I⊗ F (X))
TrK(V

∗(ρ⊗ ρ1)I⊗ F (X)). (2.70)
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We call the ρ̃X a conditional output state. We can introduce an operation

IM
X (ρ) = TrK(V

∗(ρ⊗ ρ1)I⊗ F (X)), (2.71)

and the conditional output state is

ρ̃X =
1

Tr(IM
X (ρ))

IM
X (ρ). (2.72)

The mapping IM
X has following properties

(C1) for each X ∈ F , IM
X is linear, completely positive and trace non-increasing

(C2) Tr(IM
Ω (ρ)) = 1 and IM

∅ (ρ) = O for all ρ ∈ S(H)

(C3) If {Xj} is a sequence of mutually disjoint sets, then

Tr(IM
∪jXj

) =
∑

j

Tr(IM
Xj

).

These properties can be abstracted and lead to following definition.

Definition 2.4.2 (Instrument). A mapping I from outcome space (Ω,F) to the set of trace
non-increasing CP-maps on H is called an instrument if it satisfies the properties (C1)-(C3).

We see that every measurement model M defines an instrument IM and we say that IM

is instrument induced by M . Furthermore, due to Ozawa’s theorem [46], for every instrument
there exists a corresponding measurement model.



Chapter 3

Process estimation

In this short chapter we will introduce some tools for interpreting the data obtained from quan-
tum mechanical experiments. We will start by inverting the statistics to assess the preparation
procedure, i.e. the state estimation. Then we will extend this notion to process estimation.
The estimation of processes is essentially the same as estimation of states since every completely
positive map can be via Choi-Jamiolkowski isomorphism connected with appropriate (unnor-
malized) state on a larger Hilbert space. Thus the estimation of quantum process can be viewed
as estimation of its Choi-Jamiolkowski state. Since the statistics obtained in experiments are
finite, we don’t have exact probabilities, the inverted map is not necessarily completely positive.
If we consider this just to be the effect of finite statistics we can use Bayesian approach and
search for a channel with highest likelihood in the set of all channels. This will naturally yield a
valid physical map. In reality this is a hard problem of finding global maximum/minimum and
has to be solved numerically, with all disadvantages of this approach. It is important that all
these approaches assume to have in principle infinitely many independent copies of the state or
process. For more information and references about estimations see Ref. [47].

3.1 State estimation

Assume that we have a experimental setup capable of preparing some unknown state ρ ∈ S(H).
To reconstruct the density matrix of this state we need to measure some observable A to get
probability distribution over all effects of the observable. Let Ek correspond to primitive effects
of the observable A. Then we try to measure the probabilities p(ρ)k = Tr(ρEk) by counting the
events when particular outcome has occurred. If we want to completely determine the state ρ
we need to have a one to one correspondence between the state and the measured probability
distribution. This leads to a notion of an informationally complete observable introduced by
Prugovečki [53]

Definition 3.1.1 (Informationally complete observable). Observable A is informationally com-
plete if

ΦA(ρ1) = ΦA(ρ2)⇒ ρ1 = ρ2, (3.1)

where ΦA(ρ) is probability distribution over outcomes of observable A for state ρ.

20
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Informational completeness assures us that whenever we measure some particular probability
distribution, then this probability distribution corresponds to a unique state. In such case we
are able to invert the probabilities to obtain ρ. Suppose A is informationally complete. Every
effect can be expanded in the traceless operator basis

Ek =
∑

j

Qkjτj (3.2)

and so can be the state ρ

ρ =
∑

j

rjτj . (3.3)

The probability pk is then

p(ρ)k = Tr(ρEk) =
∑

jl

QkjrlTr(τlτj) =
∑

l

Qklrl, (3.4)

where we used the orthonormality of the traceless operator basis. This can be written in matrix
form as !p(ρ) = Q.!r. To reconstruct the state we make a left inversion

Q−1!p(ρ) = !r. (3.5)

The condition of informational completeness ensures that Q is left invertible.

Example 3.1.2 (S-G along three axes). A common measurement is a Stern Gerlach measure-
ment along some axis, lets say z-axis. In ideal case this is a PVM with two outcomes with effects
being the density matrices of eigenstates of Pauli matrix Z:

Ez+ = |0〉〈0| =
(

1 0
0 0

)
, Ez− = |1〉〈1| =

(
0 0
0 1

)
. (3.6)

This is not an informationally complete observable. For example the eigenstates of X, |x+〉 =
1/
√
2(|0〉+ |1〉) and |x−〉 = 1/

√
2(|0〉 − |1〉) yield equal probability distributions over Ez+, Ez−,

pz+(x+) = pz+(x−) = pz−(x+) = pz−(x−) = 1/2. We can add two S-G measurements along
remaining orthogonal axes to get an informationally complete observable. The added effects are

Ex+ = |x+〉〈x+ | = 1

2

(
1 1
1 1

)
, Ex− = |x−〉〈x− | = 1

2

(
1 −1
−1 1

)
, (3.7)

along the x-axis and

Ey+ = |y+〉〈y + | = 1

2

(
1 −i
i 1

)
, Ey− = |y−〉〈y − | = 1

2

(
0 i
−i 1

)
, (3.8)

along the y axis. We have to normalize the effects when combining more measurements into
one observable. The resulting observable will have the effects {qxEx±, qyEy±, qzEz±}, where qk
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represents the portion of measurements along each axis. Let us use the qubit traceless operator
basis from (2.9) {τ0, τ1, τ2, τ3}. The matrix Q then is

Q =
1

3
√
2





1 1 0 0
1 −1 0 0
1 0 1 0
1 0 −1 0
1 0 0 1
1 0 0 −1




, (3.9)

where we assume the order

!p = (px+, px−, py+, py−, pz+, pz−)
T . (3.10)

This observable is in fact informationally overcomplete and we need any four linearly independent
rows from the matrix. This is a bit inconvenient since in real application various rows will give
slightly different results, depending on the size of your statistics.

The class of informationally complete observables is broad. Some observables might be
better then the other simply because they use less outcomes. Minimal informationally complete
observables are those which use the smallest outcome space. This is for d-dimensional Hilbert
space, the smallest informationally complete observable has d2 outcomes, that is the dimension
of the operator space. From the set of all minimal informationally complete observables we may
select a special class of symmetric informationally complete observables.

Definition 3.1.3 (SIC observable). An observable A on Hilbert space H is symmetric infor-
mationally complete (SIC) if:

1. A is minimal, ie. has d2 outcomes k ∈ (1, 2, . . . d2);

2. each effect Ek is a rank-1 operator;

3. Tr(Ek) = α, where α is constant for all k;

4. Tr(EkEl) = β, where β is constant for all k += l.

SIC observables are interesting for the high symmetry and efficiency in estimation protocols.
It is not known whether there exists a SIC observable in every finite dimensional Hilbert space.
Numerical studies have shown that there are SIC observables in all dimensions up to 67 [63]. The
constants α and β are fixed by the dimension of Hilbert space H: α = 1/d and β = 1/(d2(d+1)).

Example 3.1.4 (SIC qubit observable). The most efficient qubit observable needs at least four
effects, three of them are independent, for three independent parameters characterizing the qubit
state. The effects have trace TrEk = 1/2 and have rank 1, thus they can be parametrized as
Ek = 1

4(I+ !rk!σ). The second condition Tr(EkEl) = 1/12 gives

1

12
= Tr(EkEl) =

1

8
(1 + !rk!rl)⇒ !rk!rl = −

1

3
. (3.11)
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As a result vectors !rk point into corners of a tetrahedron. One possible choice can be

!r1 =
1√
3
(1, 1, 1) !r2 =

1√
3
(1,−1,−1)

!r3 =
1√
3
(−1, 1,−1) !r2 =

1√
3
(−1,−1, 1), (3.12)

and the matrix Q from (3.2) is Qkj = !rkj .

Sometimes we don’t need to fully estimate a state, but instead just test a discrete set of
alternatives. For example we have a state ρ which is known to be either ρ1 or ρ2. The problem
is to answer which of these two it is. If we have only single copy of this state, we can either
decide for a strategy where the probability of a wrong identification will be minimal or the
probability of wrong identification will be zero, but the probability of inconclusive outcome will
be greater than zero. The former strategy is called minimal error discrimination and the latter
unambiguous discrimination.

In minimal error discrimination strategy the probability of error is proportional to the trace
norm of operator ρ1 − ρ2 (see cf. chapter 3 in [28])

perror =
1

2
(1− 1

2
‖ ρ1 − ρ2 ‖tr), (3.13)

where

1

2
‖ ρ1 − ρ2 ‖tr =: D(ρ1, ρ2) (3.14)

is the trace distance between two states. Trace distance has a clear operational meaning. The
larger the trace distance is, the smaller the probability of error becomes and hence the easier it
is to discriminate between the two states. Naturally, if we are given more copies of the state ρ,
it becomes easier to discriminate between the two possibilities, hence

D(ρ⊗n
1 , ρ⊗n

2 ) ≥ D(ρ1, ρ2), (3.15)

where n is the number of copies of ρ we are given.
Another common way of measuring the difference between quantum states is the fidelity of

two states ρ1 and ρ2

F (ρ1, ρ2) = Tr(|√ρ1
√
ρ2|) = Tr

√√
ρ1
√
ρ2. (3.16)

This quantity provides an upper bound on the optimal success probability for the unambiguous
discrimination of pair of states.

3.2 Process estimation

Let us have an unknown process T ∗ : T (A) .→ T (B). If we can prepare state |I〉 ∈ S(A⊗A)
such that

|I〉 = 1√
d

d−1∑

j=0

|j〉|j〉, (3.17)
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then

I⊗ T ∗(|I〉〈I|) = 1

d
χ(T ∗) (3.18)

is the scaled Choi-Jamiolkowski operator of channel T ∗. This can be measured using state
estimation on the bipartite system. More generally, any estimation procedure of T ∗ : T (A) .→
T (B) consists of preparation of a state ρ ∈ S(K ⊗A), application of the map IK ⊗ T ∗(ρ) and
some measurement of observable A on the Hilbert space K ⊗ B with effects En. Repeating this
procedure many times for various input states ρk and measurement observables Al with effects
Ekn, one then measures conditional probabilities of events p(Eln|ρk, Al)

p(Eln|ρk, Al) = Tr(IK ⊗ T ∗(ρk)Ekl =
p(Eln,ρk, Al)

p(ρk, Al)
, (3.19)

where p(ρk, Al) is the probability that we have chosen preparation k and measurement l and
p(Eln,ρk, Al) is the overall probability of observing event composed of preparation k and effect
Eln. The overall probabilities still contain information about details of the estimation scheme.
You may choose to repeat the procedure for certain preparations more often then for the other
as well as you can use for each preparation a different measurement. The conditional proba-
bilities p(Eln|ρk, Al) are free of this information, they depend only on the process. From these
probabilities we can then reconstruct desired parameters.

It is possible to do the complete process estimation using only local states and one local,
informationally complete measurement. Let us have some fixed set of states {ρk} ∈ S(A) and
an informationally complete observable A in B with effects En. Using the channel many times
one measures the probabilities

pn|k := p(En|ρk) = Tr
(
T ∗(ρk)En

)
. (3.20)

Again we can define the matrix Q as in (3.2) and a matrix S such that

En =
∑

j

Qnjτj

ρk =
∑

i

Skiτi (3.21)

where {τi} is the traceless operator basis in A and in B if they have same dimensions. One can
then write

pn|k =
∑

ij

QnjSkiTr
(
T ∗(τi)τj

)
=

∑

ij

QnjSkiAij

⇒ p = SAQT (3.22)

where Aij is the vector representation of channel T ∗. The matrix A can be reconstructed by
inverting the matrices Q and S as in previous section. For this we need that the set of states
{ρk} spans the whole operator space, then the matrix S is invertible.
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As with states, we can also do process discrimination. Minimum error discrimination of two
processes, T ∗

1 , T
∗
2 then falls down to discrimination of the output states T ∗

1 (ρ) and T ∗
2 (ρ). We can

use a strategy when we prepare an input state ρ ∈ S(H⊗A) and discriminate states IH⊗T ∗
1 (ρ)

and IH ⊗ T ∗
2 (ρ). Thus the distinguishability of two processes will be proportional to the largest

trace distance of states IH ⊗ T ∗
1 (ρ) and IH ⊗ T ∗

2 (ρ), that is the cb-norm (2.67).

3.3 Maximum likelihood

Both methods from previous two sections require measuring probabilities. This can never be
done perfectly with finite statistics. In real experiment we measure the number of occurrences
nk of some event k. For large enough statistics the probability is then assumed to be nk/N where
N is the number of all events. Due to the small errors in probabilities the resulting inversion
might not be a physical state or process. We can then ask what process or state describes the
measured data best. In such case we can use the maximum likelihood method to estimate the
parameters of a process or state. We construct the likelihood function as

L(R,D) = p(D | R) (3.23)

where R is the set of parameters of the statistical model we try to estimate and D represents
the measured data. Likelihood function is then the probability of measuring data D given that
the statistical model has parameters R. Maximizing this function over the allowed set of model
parameters will give us the parameters R such that this probability is maximal.

Main problem with this method is that the likelihood function tends to be quite complex,
and finding the global maximum is a very hard task, especially when the maximum lies on
the border of the parameter space. On the other side it has lot of nice properties. It uses all
measured data, no post selection is needed. It behaves well asymptotically, for large statistics it
converges to the real parameters of the model. By construction, the result is always a physical
map or state.

3.4 Teleportation experiment

In an actual experiment of group in Heidelberg under supervision of Prof. Jian-Wei Pan, a
scheme for teleportation was tested. Teleportation is a scheme for communicating one quan-
tum state from site A to site B. Without going into details of the protocol, the result is an
ideal channel from sender to receiver. At the end one has to assess how much the prac-
tical realization did deviate from an ideal channel, and thus how successful the teleporta-
tion was. In this experiment, six preparations were used: {H,V, P,N,R,L}, corresponding
to various light polarizations. Ideally ρH , ρV should be the horizontal and vertical polariza-
tions, |0〉 and |1〉, ρP , ρN should be the |+〉 = 1/

√
2(|0〉 + |1〉), |+〉 = 1/

√
2(|0〉 − |1〉) and

finally ρR, ρL the |R〉 = 1/
√
2(|0〉 + i|1〉), |L〉 = 1/

√
2(|0〉 − i|1〉). However the preparations

are not ideal and we have to estimate them. Three projective measurements with outcomes
H,V , P,N and R,L polarizations were used where EH = 1/2(I + Z), EV = 1/2(I − Z),
EP = 1/2(I + X),EN = 1/2(I − X), ER = 1/2(I + Y ) and EL = 1/2(I − Y ), this is equiv-
alent to the ones in example 3.1.2 . The measured data is summarized on figure 3.1.
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Prep. Out. Count Tel. count Prep. Out. Count Tel. count
H H 1305 53 V H 33 7

V 29 0 V 1067 56
P 613 30 P 709 27
N 670 20 N 516 42
R 718 30 R 497 30
L 592 28 L 652 38

P H 759 25 N H 548 20
V 596 23 V 557 32
P 1426 55 P 26 7
N 25 6 N 1052 47
R 674 36 R 586 45
L 686 51 L 542 20

R H 635 21 L H 657 25
V 672 29 V 506 41
P 777 45 P 588 33
N 576 26 N 591 40
R 1369 49 R 39 4
L 49 7 L 1084 49

Figure 3.1: Experimental data for teleportation protocol. (H,V), (P,N) and (R,L) correspond to
qubit preparations and measurements along three perpendicular axes. In column “Count” data
for measurement on preparations is placed, nk,l, and in column “Tel. count” measured data for
teleported preparations, n(k,l).The teleported data have much lower count due to probabilistic
nature of the protocol used.

Two datasets are shown. One for estimating the preparations, where no teleportation of the in-
puts has occurred and one for teleportation of the preparations. The counts for the teleportation
are much lower due to probabilistic nature of the protocol.

Since the data for preparation estimation is overcomplete for each preparation, it is best to
choose the maximal likelihood method to find the prepared states. Each preparation k is a qubit
state parametrized by a three dimensional vector !rk such that

ρk =
1

2
(I+ rk,xX + rk,yY + rk,zZ). (3.24)

The likelihood function is then the probability that preparation k with parameters !rk will yield
measured set of counts {nk,l}, l ∈ {V,H,N, P,R, L}:

L(!rk, {nk,l}) =
∏

l

p
nk,l

l|k , (3.25)

where

pl|k = Tr(ρkEl) (3.26)
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is the probability of measuring effect El when preparation k with parameters !rk was input.
Maximizing over the parameters !rk we obtain the result1. Alternatively it is numerically easier
to, instead of maximizing the function L, which contains very small numbers for large counts to
minimize − logL =

∑
l nk,l log 1/pl|k. Either way, using this method we obtain following results

ρH =

(
0.98 −0.02− i0.05

−0.02 + i0.05 0.02

)
ρV =

(
0.03 0.08 + i0.07

0.08− i0.07 0.97

)

ρP =

(
0.56 0.48
0.48 0.44

)
ρN =

(
0.5 −0.48− i0.02

−0.48 + i0.02 0.5

)

ρR =

(
0.49 0.07− i0.47

0.07 + i0.47 0.51

)
ρL =

(
0.56 +i0.47
−i0.47 0.44

)
. (3.27)

Then we can continue in same manner with process estimation. We parametrize the process
T ∗ by its Choi-Jamiolkowski state

χ(T ∗) =
1∑

a,b=0

1/2|a〉〈b| ⊗ T ∗(|a〉〈b|) (3.28)

and the probability of event (k, l) is then

p(k, l) = Tr(T ∗(ρk)El) = Tr(χ(T ∗)ρTk ⊗ El), (3.29)

with the likelihood function

L(χ, n(k,l)) =
∏

(k,l)

p(k, l)n(k,l) . (3.30)

This yields

χ(T ∗) =




0.46 0.04− i0.05 −0.02− i0.04 0.42− i0.04
0.04 + i0.05 0.04 0.03 + i0.01 0.02 + i0.04
−0.02 + i0.04 0.03− i0.01 0.06 −0.04 + i0.05
0.42 + i0.04 0.02− i0.04 −0.04− i0.05 0.44



 .

(3.31)

For comparison the Choi-Jamiolkowski state of ideal transfer in this representation is

χ(I) =
1

2





1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1



 . (3.32)

1Actually one can use directly the overall probabilities of events, since this just changes the multiplicative
constant in front of the likelihood function, but doesn’t change the position of maxima in the parameter space.
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For numerical minimization of the function − logL(χ, n(k,l)) we used downhill simplex method,
also known as Nelder-Maeds method.

A separate problem is to introduce “error bars” on the result. A commonly used procedure
is to perform Monte-Carlo simulation of the experiment, with events distributed according to
Poisson distribution with mean values of the actual measured data. Then from these datasets
estimate the state or process, and the error in terms of a distance measure, for example fidelity
of the Choi-Jamiolkowski state.

To obtain the error bars of the preparation procedures we made 10000 simulations. Results
are summarized in table 3.2.

Preparation Mean fidelity [%] 5σ interval [%]
H 98 ±2
V 97 ±3
P 98 ±2
N 98 ±2
R 97 ±2
L 97 ±3

Figure 3.2: Fidelity of preparation procedures.

The fidelity of the teleportation was 85± 12%(5 sigma) with respect to ideal transfer, where
we sampled 1044 simulations to obtain the distribution, see figure 3.3. This is well above the
classical threshold of 2/3, which can be achieved without entanglement.

0.65 0.70 0.75 0.80 0.85 0.90
Fidelity

50

100

150

Counts

Figure 3.3: Distribution of fidelities of 1000 simulations of the experiment. The 5 sigma interval
covers the whole data set.



Chapter 4

Quantum memory channels

Schrödinger equation governs the evolution of a closed quantum system. Such evolution is uni-
tary. It is difficult if not impossible to experimentally achieve such ideal situation. Unavoidable
interaction between the system under consideration and environment occurs leading to a non-
unitary evolution of the system. Such non-unitary evolution is described by a quantum channel
- a linear, completely positive and trace preserving map in Schrödinger picture on quantum
states or equivalently by linear, completely positive and unital map in Heisenberg picture on
observables. Stinespring theorem gives us full justification for this step, because it tells us that
every quantum channel can be extended to a unitary evolution on a larger Hilbert space.

In this chapter we will introduce the model of quantum channels with memory, memory chan-
nels. Quantum memory channel is a simple quantum channel of some system, where the system
has an inner structure and additional physical requirement of causality is placed on the channel.
The system is an ordered, infinite sequence of subsystems and the causality condition requires
that information can move only in one way. Information stored in a particular subsystem can
then affect evolution only of subsystems which follow in sequence after. This can be interpreted
as a simple collision model where some quantum device sequentially processes a sequence of quan-
tum signals. The research of memory channels is mostly focused on investigation of transmission
rates for particular classes of memory channels [37, 42, 43, 2, 4, 23, 32, 31, 13, 16, 15, 10, 69, 19].
Recently, attention has been paid to an interesting class of the so-called bosonic memory chan-
nels [24, 11, 57, 56, 50, 41, 39, 61, 40] and also to memory effects in the transmission of quantum
states over spin chains [51, 3, 52, 55].

4.1 Memory channel as general causal process

As we have already mentioned a memory channel is just a special case of a simple quantum
channel on a specially structured input. The aforementioned structure of input is as follows.
The input is a chain of ordered quantum systems each with a finite dimensional Hilbert space
Ak where k ∈ Z denotes the ordering. This can be understood as infinite sequence of quantum
particles or cells as in the case of quantum cellular automata. Since this sequence is potentially
infinite, we will start by describing the channel in Heisenberg picture.

Every subsystem comes with an algebra of observables Ak = L(Ak). If we would like to

29
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A
−5 A

−4 A
−3 A

−2 A
−1 A0 A1 A2 A3 A4 A5

T

B
−5 B

−4 B
−3 B

−2 B
−1 B0 B1 B2 B3 B4 B5

Figure 4.1: A causal process has the property that any information that is stored at the output
B0(bottom green) could only originate from inputs on the left from this site (upper green region).

denote algebras associated to sets of subsystems Λ ⊂ Z we follow this notation: if Λ is a
finite subset of Z then AΛ =

⊗
k∈ΛAk. AΛ is then just a simple tensor product of selected

subsystems. In case of infinite Λ ⊂ Z we associate with AΛ the C∗-closure of increasing family
of finite dimensional algebras AΛf for finite Λf ⊂ Λ. This is also called a quasi-local algebra [5].
From now on AZ will be abbreviated as Z and we will also use the shorthand A− and A+ for the
left and right hand chain halves A(−∞,0] and A[1,∞) when it comes in handy. For clarity we will
also make difference between input algebras A and output algebras B even if we consider them
isomorphic. The terms B[a,b],B± and similar are then defined analogously. Also we will denote
the Hilbert space of outputs with Bk even though it is isomorphic to Ak

Definition 4.1.1 (Causal process). Causal process is a channel (in Heisenberg picture) T : Z .→
Z such that for every z ∈ Z

T (b(−∞,z] ⊗ IB[z+1,∞)) = T (b(−∞,z])⊗ IA[z+1,∞), (4.1)

where B(−∞,z] ∈ B(−∞,z] and IB[z+1,∞) is the identity operator in B[z+1,∞) and IA[z+1,∞) is the
identity operator in A[z+1,∞).

Remark 4.1.2 (Notation). To avoid too many identical subscripts we adopted following con-
vention. For any causal channel T (B), if we would like to address its transformation on a
subpart localized in region [a, b] we could write T[a,b](B[a,b]), however we omit the first subscript
and write only T (B[a,b]). When we see T (·) we need to know where the · is localized to correctly
understand the transformation. This goes also for Schrödinger picture where the transformation
will be specified by the localization of inputs.

The equation (4.1) just reflects the causality condition placed on the channel T . It means
that whatever you can measure on the output with b(−∞,z] can be measured on inputs up to the
z-th particle with T (b(−∞,z]) ∈ A(−∞,z]. This is illustrated on Figure 4.1 where it is shown that
a single localized output cell is smeared over infinitely many input cells localized left from the
original cell.

We can also write this definition in Schrödinger picture. Since the associated Hilbert space
A(−∞,∞) is not separable there are necessarily problems with describing the whole state space.
However describing finite sets of subsystems is possible. Thus we can write that a causal process
is a sequence of channels (in Schrödinger picture) T ∗ : T (A[1,z]) .→ T (B[1,z]) for every z ∈ N
such that

T ∗(ω[1,x]) = Tr[x+1,y][T
∗(ω[1,y])], (4.2)
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ξ ∈ S(M) S∗

1 S∗

2 · · · S∗

n ξ′ ∈ S(M)

S(H1)

S(H1)

S(H2)

S(H2)

S(Hn)

S(Hn)

ω[1,n] ∈ S(H[1,n])

T ∗(ω[1,n]) = ω′

[1,n]

Figure 4.2: Environment particle ξ is colliding causally with n particles of input sequence, where
each collision is described by a channel Si

for every x < y, x, y ∈ N and every ω[1,x], ω[1,y], such that

ω[1,x] = Tr[x+1,y](ω[1,y]), (4.3)

where Tr[a,b] denotes partial trace over the interval.

Example 4.1.3 (Shift of a chain). The channel σx (in Heisenberg picture) is defined on a
translationally invariant chain of quantum systems with Hilbert spaces Aj ≡ A and appropriate
observable algebras Aj ≡ A and Bj ≡ B. The σx is defined by

σx(λ
a
j ) = λ

a
j−x (4.4)

for all λay ∈ Ay where {λay}a form the operator basis in Ay. This shift channel just shifts the
chain by x sites to the left. In Schrödinger picture it can be defined as

σ∗x(ω[1,n]) = ω[1−x,n−x]. (4.5)

A memory channel is a general causal process. A physically more compelling insight might
be conveyed through the view of collision models in next section.

4.2 Collision model

Let us look on a situation where an infinite sequence of quantum systems is colliding one at a
time with some environment. This situation is illustrated on figure 4.2.

The environment is described by a single quantum system in Hilbert space M in state ξ.
This environment sequentially collides with subparts of the input signal of length n. The i-th
collision is described by a channel S∗

i : T (M) ⊗ T (Ai) .→ T (Bi) ⊗ T (M). The input signal is
then processed with a channel T ∗:

T ∗(ω[1,n]) = TrM[S∗
[1,n](ξ ⊗ ω[1,n])], (4.6)
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where S∗
[1,n] is an n-fold concatenation of subsequent collisions,

S∗
[1,n] = (I[1,n−1] ⊗ S∗

n) · · · (I1 ⊗ S∗
2 ⊗ I[3,n]) · (S∗

1 ⊗ I[2,n])
= S∗

n · · ·S∗
2 · S∗

1 . (4.7)

Note that in the definition of collision a swap of environmental system and input is included
by default. Though this makes things a tiny bit less readable for the first time, it simplifies
significantly the notation for concatenation of collisions as can already be appreciated in equation
(4.7).

If S∗
i = S∗ for all i the we call such collision model translationally invariant. If all S∗

i are
unitary we call such collision model pure. In previous lines we have assumed implicitly that
the environment and the input signals are initially uncorrelated. We would like to stress that
this does not need to be the case, however it won’t change the picture and the message of this
section. One thing needs to be said though, that the description by channel T ∗ is possible only
when the memory is initially uncorrelated with the input signal, otherwise T ∗ wont be a channel,
though the way how to acquire the output of the memory channel will remain the same.

It is easy to see that this channel is causal from the construction of the model. Each
subsequent collision can change only the environment or the colliding signal, all signals which
collided before cannot be affected by subsequent inputs. However the inputs which follow after
can be affected, where the effect is mediated through the environmental particle ξ. This is
also the motivation to call this environment memory, because it “remembers” the inputs from
“past” and mediates their effect in “present”. From now onmemory will refer to the environment
system in the appropriate collision model.

Let us continue with a very basic example of a simple swap interaction where the memory
and colliding input are simply swapped.

Example 4.2.1 (Swap collision). Let σ∗ : T (M)⊗T (A) .→ T (B)⊗T (M) be a translationally
invariant pure collision model with a qubit memory and a chain of qubits where the unitary
interaction is defined as

Uσ =





1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



 , (4.8)

with Uσ : A ⊗M .→ B ⊗M. Let the initial state of memory be ξ ∈ T (M) ≡ T (A), then the
transformation on first qubit in state ω1 ∈ T (A1) reads

T ∗(ω1) = TrM[σ∗1(ξ ⊗ ω1)] = TrM[Uσ(ξ ⊗ ω1)U †
σ]

= TrM[ω1 ⊗ ξ] = ξ. (4.9)

The state of memory after first collision is

ξ′ = Tr1[Uσ(ξ ⊗ ω1)U †
σ] = ω1. (4.10)
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The transformation on first n qubits is then straightforward:

T ∗(ω[1,n]) = TrM[σ∗[1,n](ξ ⊗ ω[1,n])]
= TrM[(I[1,n−1] ⊗ FUσ) . . . (FUσ ⊗ I[2,n])

(ξ ⊗ ω[1,n])(U †
σF

† ⊗ I[2,n]) . . . (I[1,n−1] ⊗ U †
σF

†)]

= TrM[ξ ⊗ ω[1,n]] = ξ ⊗ ω[1,n−1], (4.11)

where F swaps the memory and the system and is included for the nice concatenation properties.
This way the memory system is the last subsystem after transformation and first at the begining.
Note that in this case F = U = U † = F † and the interaction seems trivial, however the position
of memory system has changed. Thus the state of memory system after n collisions will be
ξ′ = ωn. This is in fact the shift channel σ∗1 from Example 4.1.3.

Another interesting example consists of control-U interaction.

Example 4.2.2. [Controlled U collision] Let us have again a translationally invariant pure
collision model γ∗ : T (M) ⊗ T (A) .→ T (B) ⊗ T (M) with memory living in Hilbert space M,
dimM = dM and chain of qudits in Hilbert space A, dimA = d. Where the collision is described
by unitary

Uγ =
dM−1∑

i=0

|i〉〈i| ⊗ Ui, (4.12)

with Uγ : A⊗M .→ B ⊗M and where {|i〉} is the basis of M and Ui are some unitaries on A.
The transformation on inputs reads

T ∗(ω[1,n]) = TrM[γ∗[1,n](ξ ⊗ ω[1,n])]

= TrM[(Ui
⊗nω[1,n]U

†
j

⊗n
)⊗ (|i〉〈i|ξ|j〉〈j|)]

=
dM−1∑

i=0

〈i|ξ|i〉U⊗n
i ω[1,n]U

†
i

⊗n
, (4.13)

and the state of ξ after nth collision will be

〈i|ξ′|j〉 = 〈i|ξ|j〉Tr[U⊗n
i ω[1,n]U

†
j

⊗n
]. (4.14)

Note that the diagonal elements of memory do not change because

Tr[U⊗n
i ω[1,n]U

†
i

⊗n
] = Trω[1,n] = 1. (4.15)

Example 4.2.3 (Memoryless channel). Let us have a collision model E∗
k : T (M) ⊗ T (Ak) .→

T (Bk)⊗ T (M) with memory living in Hilbert space M, dimM = dM where

E∗
k (ξ ⊗ ωk) = (Ik ⊗ P ∗

k )
(
Uk(ξ ⊗ ωk)U †

k

)
, (4.16)
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A
−2 A

−1 A0 A1 A2 A3

T

I I B0 B1 B2 B3

=

A
−2 A

−1 A0 A1 A2 A3

R

I I B0 B1 B2 B3

S0 S1 S2 S3

Figure 4.3: Representation of structure theorem where causal process T is constructed as a
collision model with memory initializer R. Note that the figure is in Heisenberg picture and
therefore has to be read against the arrows which represent time.

for all ξ ∈ T (M), ωk ∈ T (Ak) and some Uk : M ⊗ Ak .→ Bk ⊗ M and P ∗ a completely
depolarizing channel on M such that

P ∗
k (m) = ξk+1, (4.17)

for all m ∈ T (M) where ξk is a predefined sequence of states in T (M).
This interaction will produce a transformation on the input sequence

T ∗(ω[1,n]) = (T ∗
1 ⊗ . . .⊗ T ∗

n)(ω[1,n]), (4.18)

where

T ∗
k (ωk) = TrM[Uk(ξk ⊗ ωk)U †

k ] (4.19)

are channels which act on every subsystem of input signal independently. We call such action
memoryless since the behavior of channel is not affected by any of the inputs and the action
is independent on every subsystem. If we would like to make such model pure, we would need
to provide for each P ∗

k a separate dilation space and that would result into infinite resources
needed for memory system.

We see that every collision model then defines a causal process on input signals therefore a
memory channel. It would be interesting to know whether all causal processes can be connected
to an appropriate collision model. In [37] structure theorem is proved which tells us that such
collision model exists for every translationally invariant causal process. A weaker structure
theorem for finite sequences was also proved in [21] and this proof does not require translational
invariance. In the next section we will present the structure theorem.

4.3 Structure theorem

We will present the structure theorem and its proof as it is stated in [37] with a minor change,
we drop the assumption of translational invariance.

Theorem 4.3.1 (Structure theorem). Let T : Z .→ Z be a causal channel. Ignore the outputs
on its left half chain B−. Then there exists a memory observable algebra M and an initializing
channel R : M .→ A− such that for all n ∈ N

T (I− ⊗ b[1,n]) = (R⊗ I[1,n])S[1,n](b[1,n] ⊗ IM) (4.20)
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for all b[1,n] ∈ B[1,n], where S[1,n] is the n-fold concatenation of a collision model (in Heisenberg
picture) Si : Bi ⊗M .→M⊗ Ai

Proof. Let H− be the Hilbert space associated with universal representation of the left half chain
B−. Further let (K, π, V ) be the minimal Stinespring dilation for T |B− :

T (b) = V †π(b−)V ∀b− ∈ B− (4.21)

with Stinespring isometry V : H− .→ K. From Stinespring’s representation (4.21) and the
causality property (4.1) we can conclude that

V †π(b− ⊗ IB[1,n])V = T (b− ⊗ IB[1,n]) = T (b−)⊗ IA[1,n]
= (V † ⊗ IA[1,n])(π(b−)⊗ IA[1,n])(V ⊗ IA[1,n]) (4.22)

for all b− ∈ B−. Since V is minimal dilation for T so is V ⊗ IA[1,n] for T ⊗ IA[1,n]. We know then
that there exists an isometry W[1,n] : K ⊗H[1,n] .→ K defined by

W[1,n](π(b−)⊗ IA[1,n])(V ⊗ IA[1,n])ψ− ⊗ ψ[1,n]
:= π(b− ⊗ IB[1,n])V ψ− ⊗ ψ[1,n] (4.23)

for all b− ∈ B−, ψ− ∈ H− and ψ[1,n] ∈ H[1,n] such that

π(b− ⊗ IB[1,n])W[1,n] = W[1,n](π(b−)⊗ IA[1,n]) (4.24)

for all b− ∈ B−, and

W[1,n](V ⊗ IA[1,n]) = V. (4.25)

Now let M := π′(B−) be the commutant of the observable algebra B− and let S[1,n] :
B[1,n] ⊗M .→ L(K)⊗ A[1,n] be defined by

S[1,n](b[1,n] ⊗m) := W †
[1,n]π(b[1,n])mW[1,n] (4.26)

for all b[1,n] ∈ B[1,n] and m ∈ M. The memory initializing channel R : M .→ A− is then given
by

R(m) := V †mV ∀m ∈M. (4.27)

In order to justify this choice we need to show that

S[1,n](B[1,n] ⊗M) ⊂M⊗ A[1,n]. (4.28)
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Since B[1,n] and M commute with B− we see from (4.24) that

S[1,n](b[1,n] ⊗m) · (π(b−)⊗ IA[1,n])

= W †
[1,n]π(I

B
− ⊗ b[1,n])mW[1,n](π(b−)⊗ IA[1,n])

= W †
[1,n]π(I

B
− ⊗ a[1,n])mπ(b− ⊗ IB[1,n])W[1,n]

= W †
[1,n]π(I

B
− ⊗ a[1,n])π(b− ⊗ IB[1,n])mW[1,n]

= W †
[1,n]π(b− ⊗ IB[1,n])π(I

B
− ⊗ b[1,n])mW[1,n]

= (π(b−)⊗ IA[1,n])W
†
[1,n]π(I

B
− ⊗ b[1,n])mW[1,n]

= (π(b−)⊗ IA[1,n]) · S[1,n](b[1,n] ⊗m) (4.29)

for all b[1,n]∈B[1,n]
, b− ∈ B− and m ∈M, implying that S[1,n](b[1,n]⊗m) commutes with π(b−)⊗

IA[1,n] from which (4.28) follows. The next thing we need to show is that S[1,n] has the right
concatenation properties:

R(m) = (R⊗ IA[1,n])S[1,n](IB[1,n] ⊗m) and

T (b[1,n]) = (R⊗ IA[1,n])S[1,n](b[1,n] ⊗ IM), (4.30)

however this directly follows from definitions of S[1,n], R and (4.25). For the translationally
invariant case to obtain the result we set Si = S := S[1,1]. In the translationally non-invariant
case we need to parcel the S[1,n] into separate Si, what can be done via the weaker structure
theorem presented in [21]. The proof again uses the uniqueness of minimal Stinespring’s dilation
and the same tools used in this proof. The structure theorem is visualized on figure 4.3.

For every causal channel there exists a collision model S[1,n] and appropriate channel initial-
izer R which has an equivalent input output behavior. This is an important result which proves
that collision models are a highly general concept.

4.4 Quantum cellular automata

The idea of generalizing the notion of classical cellular automata to quantum settings, can be
traced back to Feynman where he in his paper [22] argued that quantum computation might
out power the classical one. Various approaches have been considered for generalizing cellular
automata to quantum regime [66, 14, 65, 20, 26]. In this section we will introduce the approach
of Werner et al. [54, 62, 1, 25] and in following chapter we will show that it bears an explicit
connection to memory channels.

Cellular automata are transformations of certain cell structure by a set of local rules. In
quantum setting a single cell will refer to single quantum system in finite dimensional Hilbert
space Ak with d(k) = dimAk and the cell structure will then be formed by observable algebras
L(Ak) = Ak resulting into the quasi-local algebra as in Section 4.1. This also favors the Heisen-
berg picture as preferable when dealing with such transformations. In the whole work we will



CHAPTER 4. QUANTUM MEMORY CHANNELS 37

deal only with one dimensional automata, also index of a cellular automata is defined only in
1D.

It is evident from the above that since cellular automata act on the same structure as memory
channels, that they will be closely related. The relation will be made more evident throughout
the rest of this chapter and in the following chapter also.

Definition 4.4.1 (Quantum cellular automaton). Quantum cellular automata (QCAs) are local
automorphisms of the quasi-local algebra C : Z .→ Z. By automorphism we mean that they
preserve the algebraic structure of Z:

C(x · y) = C(x) · C(y), (4.31)

for all x, y ∈ Z and by locality1 we understand that

C(BΛ1) ⊂ AΛ2 , (4.32)

where Λ2 is finite for every finite Λ1.

Due to the automorphic property if C is a QCA then also C−1 is also QCA. Hence quantum
cellular automata are always reversible.

One example of a quantum cellular automaton we have already seen in the shift channel σx
in Example 4.1.3. Since a QCA doesn’t need to be causal σx is a QCA even for k < 0, when the
causality condition is not met.

Example 4.4.2 (Clifford QCA). A Clifford QCA is such QCA which maps tensor products
of Pauli operators to tensor products of Pauli operators. As an example we take following
(translationally invariant) qubit example defined by these local rules:

αC(Xj) = Xj−1ZjXj+1

αC(Zj) = Xj . (4.33)

Note that αC(Yj) is already fixed by the automorphism property of αC

αC(Yj) = αC(iXjZj) = iαC(Xj)αC(Zj) = −Xj−1YjXj+1, (4.34)

It is also easy to check that [αC(aj), αC(ak)] = 0 for all j += k. αC is not causal, however we can
use the shift channel σ1, and σ1 ◦ αC will be a causal QCA. Since every QCA is local, this trick
can be employed in every QCA to make it causal. Thus QCA’s can be thought of as special case
of memory channels.

QCA form a group in the sense that composition of two QCAs is a QCA and since QCA is
an automorphism there exists an inverse which is also automorphism and is also local.

1The notion of locality is in some papers referred to as “causality” since it creates a cone where the information
can propagate after several time steps. However since the term causality is already used for causal processes and
moreover we would like to speak also about causal QCA we stick to the term local. This problem arises only
because the natural time in QCA is usually the time step used to transform the whole cell structure. But in this
work we are interested only in one such time step, and introduce the time parameter within the cell structure, in
the ordering of cells. This is completely natural from the point of memory channels and causal processes. If this
footnote just confuses you and otherwise the notion of causality and locality in this work are clear to you, just
ignore this footnote.
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4.4.1 Index of a QCA

As was shown in [25] for every QCA α we can calculate index of a QCA, ind(α). This can be
computed from a sufficiently large portion of the automaton (it can be computed locally) and
is constant along the chain (it can be computed locally on any sufficiently large portion). This
quantity also respects the group structure of QCAs, ind(α1 ◦ α2) = ind(α1)ind(α2). In order to
define and calculate the index we need to fix few things first.

Definition 4.4.3 (Nearest neighbor automaton). Nearest neighbor automaton (nn-QCA) α is
such that

α(Bj) ∈ A[j−1,j+1] (4.35)

for every j ∈ Z.

Any QCA can be made nn-QCA by suitably regrouping the cells into larger disjoint blocks.
Next we will define support algebras. Support algebras should somehow quantify how much

of one algebra is contained in another. The definition is due to Zanardi [70], where it is called
interaction algebra. However we will use the term used in [25], since it better reflects the purpose
of the object in this setting.

Definition 4.4.4 (Supportalgebra). Let A ⊂ X1 ⊗ X2 be a subalgebra of finite C∗-algebras X1

and X2. The smallest C∗-subalgebra C1 ⊂ X1 such that A ⊂ C1 ⊗ X2 is called a support algebra
of A on X1 and denoted C1 = S(A,X1).

Given a basis {xµ} ⊂ X2, so that every a ∈ A has a unique expansion a =
∑

µ aµ ⊗ xµ with
aµ ∈ X1, the S(A,X1) is generated by all such elements aµ. Now we can approach the definition
of ind(α) due to [25].

Definition 4.4.5 (Index of a QCA). Let α be a nn-QCA on a cell structure Ak. Define

R2k = S
(
α(B2k ⊗B2k+1),A2k−1 ⊗ A2k

)
(4.36)

R2k+1 = S
(
α(B2k ⊗B2k+1),A2k+1 ⊗ A2k+2

)
. (4.37)

Rk ≡ L(Rk) and dimRk = r(k). The index of α is the defined as

ind(α) =
r(2k)

d(2k)
=

d(2k + 1)

r(2k + 1)
, (4.38)

where d(k) = dimAk. Index of any QCA is hence a nonzero positive rational number.

From the definition it is not evident that Rk ≡ L(Rk). The proof is taken form [25] and is
included here to make the presentation self-contained. In following we will need also this lemma:

Lemma 4.4.6. Let A1 ⊂ X1 ⊗ X2 be and A2 ⊂ X2 ⊗ X3 be subalgebras such that A1 ⊗ I3 and
I1 ⊗ A2 commute in X1 ⊗ X2 ⊗ X3. Then S(A1,X2) and S(A2,X2) commute in X2.
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Proof. Pick bases {xµ} ⊂ X1 and {b′ν} ⊂ X3 and let a ∈ A1 and a′ ∈ A2. We may uniquely
expand a = xµ ⊗ aµ and a′ = a′ν ⊗ x′ν . By the assumption we have

0 = [a⊗ I3, I1 ⊗ a′] =
∑

µν

xµ ⊗ [aµ, a
′
ν ]⊗ x′ν . (4.39)

Since xµ ⊗ x′ν create basis in X1 ⊗X3 the expansion is unique so we must have that [aµ, a′ν ] = 0
∀ µ,ν. This property transfers to the algebras generated by aµ and a′ν and hence also to
aforementioned support algebras.

The even support algebras R2k mark the information which flows to the left and the odd
R2k+1 the information which travels to the right. The Rk commute because they are either
localized in disjoint regions (as for example R2k and R2k+1) or by the virtue of Lemma 4.4.6
and automorphism property of α. Clearly we know since α is nnQCA that

α(B2k ⊗B2k+1) ⊂ R2k ⊗R2k+1. (4.40)

Hence the Rk together generate algebra which contains the whole algebra α(Z) which is the
same as Z since α is automorphic. If any Rk had a nontrivial center, i.e., if there would be an
element X ∈ Rk which commutes with the whole Rk different from I, this X would be also in
the center of Z. However it is known that this center is trivial [5]. Therefore each Rk has to
have trivial center and is isomorphic to algebra of r(k)× r(k) complex matrices.

The full proof together with the definition of index and much more is in [25].

Example 4.4.7. Consider the channel σx defined in Example 4.1.3 which also happens to be
a QCA. Since this is not a nnQCA we will need to regroup it first. Let Bx

l = Bl.x ⊗Bl.x+1 ⊗
. . .⊗B[l.x+x−1] be the new cell grouping ordered by l ∈ Z. By definition of σx we have

σx(λ
B
l ) = λ

A
l−1, (4.41)

for a suitable basis {λBl } ⊂ Bx
l and {λAl } ⊂ Ax

l for all l ∈ Z. This is now a nnQCA. We can
proceed and calculate the index ind(σx). The support algebras are easy to calculate

R2l = S
(
σx(B2l ⊗B2l+1),A2l−1 ⊗ A2l

)
= A2l−1 ⊗ A2l

R2l+1 = S
(
σx(B2l ⊗B2l+1),A2l+1 ⊗ A2l+2

)
= C1. (4.42)

From this follows that

ind(σx) =
d(2l − 1)d(2l)

d(2l)
= d(2l − 1) ≡ d(l) = dx, (4.43)

where d = dimAk is the dimension of Hilbert space of the original cell and x ∈ Z.



Chapter 5

Memory

In this chapter we will stress out the nature and strength of the memory effects in memory
channels introduced in previous chapter. We will define forgetful memory channels and strictly
forgetful memory channels [72], and connect them with quantum cellular automata. We will
find out that the index of a QCA has the meaning of the minimal dimension of Hilbert space of
memory system in appropriate collision model. This part of work was done in collaboration with
group in Hannover under the supervision of Prof. Reinhard Werner. There have been several
attempts to address this topic for the memory overhead in quantum convolutional codes [30]
where the result is quite complicated and requires to find a longest path in a non-comutativity
graph. In our case we just need to calculate the index of the QCA which is simpler to calculate.
Finally we will address repeatability of channels in the quantum memory channel setting and
stroboscopic simulation of evolution of open systems.

5.1 Forgetfulness

In the proof of structure theorem in Section 4.3 we needed to establish a channel initializer
R which described the influence of the inputs from the remote past on the memory system.
This influence is in generally nontrivial however for certain class of memory channels it becomes
irrelevant in the long run. These memory channels should have the property that information
that is localized far in the past will not affect the behavior of channel in present. Channels
where the initializer R will become irrelevant are forgetful memory channels.

Definition 5.1.1 (Forgetful memory channel, Schrödinger picture). Let S∗
k : T (M⊗Ak) .→

T (Bk ⊗M) be a collision model of a quantum memory channel. Suppose ρ1, ρ2 ∈ T (M⊗A[1,n])
such that TrM(ρ1) = TrM(ρ2). Then S∗

[1,n] is forgetful iff

lim
n→∞

‖ TrB[1,n]
[S∗

[1,n](ρ1 − ρ2)] ‖tr = 0, (5.1)

for all ρ1, ρ2 such that TrM(ρ1) = TrM(ρ2) and where ‖A‖1 = Tr
√
A†A is the trace-norm.

This only means that the state of memory after many collisions depends only on the state
of inputs TrM(ρi) and not on the initial state of the memory TrB[1,n]

(ρi). The definition in
Heisenberg picture makes this only more evident

40
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Definition 5.1.2 (Forgetful memory channel, Heisenberg picture). Let Sk : Ak⊗M .→M⊗Ak

be a collision model of a quantum memory channel. Then let Ŝ[1,n] : M .→ M ⊗ A[1,n] be its

concatenation where the outputs are ignored Ŝ[1,n](m) := S[1,n](I[1,n] ⊗m) for all m ∈M. Then

S is forgetful iff there exists a sequence of quantum channels S̃[1,n] : M .→ A[1,n] such that

lim
n→∞

‖ Ŝ[1,n] − IM ⊗ S̃[1,n] ‖cb = 0. (5.2)

It can be proven that forgetful channels are dense in the set of all memory channels, see [37].
The main idea is to add a infinitesimally small amount of white noise on the memory system and
the channel will become forgetful. Such noise is present usually in real life applications hence
generally the channels will be forgetful. For such channels coding theorems can be proven and
channel capacities calculated. It is rather hard to prove that some memory channel is forgetful.

Channels for which the limit in (5.1) and (5.2) is attained for finite n <∞ are called strictly
forgetful memory channels or channels with finite depth of memory, where the depth of memory
is the number of times you have to use it to completely forget the state of memory.

Remark 5.1.3. In the case of pure memory channels which are strictly forgetful with depth of
memory δ, we can observe that the dimension of memory system and the dimension of the system
of δ consequent input cells have to be co-divisible in order to be strictly forgetful. Let m ∈ L(M)
have dimM = dM distinct eigenvalues. Then the operator Ŝ[1,δ](m) = S[1,δ](m⊗ I[1,δ]) has the
same eigenvalues with multiplicity dimA[1,δ] = dδ because S[1,δ] is unitary. Since we know that

the channel has finite depth, we can write S[1,δ](m ⊗ I[1,δ]) = IM ⊗ S̃[1,n](m). The operator

IM ⊗ S̃[1,n](m) has dδ eigenvalues with multiplicity dM but also it has dM eigenvalues with
multiplicity dδ. Hence dM and dδ have to be co-divisible.

Forgetfulness as defined, is very hard to prove. To illustrate some problems lets see next
example.

Example 5.1.4 (Partial swap interaction). Let us have a qubit-qubit translationally invariant
pure collision model specified by unitary interaction Uφ : M⊗A .→M⊗B:

Uφ = cosφI+ i sinφUσ, (5.3)

where Uσ is the same as in (4.8). For cosφ = 0, this is just a shift channel which is forgetful and
for cosφ = 1 it is a non-interacting ideal channel (however not forgetful). It has been proven
numerically in [59] for some interval of φ that partial swap is forgetful, the proof for the whole
interval except φ = kπ, k ∈ N is not known. Intuition tells us that whenever sinφ is nonzero
a portion of information from memory is transferred to output and therefore eventually the
memory will get reset after long enough time.

What we can say is that if we restrict our input signal to be factorized ω[1,n] =
⊗n

k=1 ωk
then the limit in equation (5.1) will be zero for any such ω[1,n].

Let ξk be the state of memory before k-th collision. Then we have

ξk+1 = C∗
k(ξk) = Trk[Uφ(ξk ⊗ ωk)U †

φ], (5.4)
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where C∗ : T (M) .→ T (M) is the so called concurrent channel which describes the dynamics of
memory

ξk = C∗
k−1 · · ·C∗

1 (ξ1). (5.5)

Limit in equation (5.1) now becomes

lim
n→∞

C∗
n−1 · · ·C∗

1 (ξ1 − ξ′1). (5.6)

We would like to show that this limit is zero. First we will show that any C∗
k is a strict

contraction of the Bloch ball. We will show this by contradiction. Since every channel is a
continuous mapping of a convex body into itself, it has to have a fixed point. Due to Banach
fixed point theorem, for contractive channels this fixed point is unique. Thus a mapping that is
not contractive has to have at least two fixed points. Due to linearity of channels also any linear
combination of these two points is a fixed point, making it a line of fixed points in the vector
space of all states. Hence there have to exist at least two states from the border of physical
state space which are fixed points of a not contractive channel. In qubit case this means that
these two points are pure. Let denote them ξa and ξb.

Looking back on partial swap interaction we must find that there has to be such ωk that

C∗
k(ξ

a) = ξa ⇒ Uφ(ξ
a ⊗ ωn)U †

φ = ξa ⊗ (WaωkW
†
a )

C∗
k(ξ

b) = ξb ⇒ Uφ(ξ
b ⊗ ωn)U †

φ = ξa ⊗ (WbωkW
†
b ), (5.7)

for some qubit unitaries Wa, Wb. Since partial swap commutes with V ⊗V where V is arbitrary
qubit unitary we may fix ξa = |0〉M.

The input state ωk can be also taken pure. If it would be mixed we could find at least two
pure states (eigenstates of ωk) with the needed property due to linearity. There is only one pure
state ωk = |0〉k such that C∗

k(|0〉M) = |0〉M. However for this input state |0〉k the concurrent
channel C∗

k has only one fixed point |0〉M, and therefore C∗
k is contractive for any ωk.

Since the dynamics of memory is then a composition of contractive channels the limit in
(5.6) is zero. Similarly we could do this proof for any input sequence ω[1,n] such that it would be

composed of finite factorized parts of length l: ω[1,n] =
⊗n/l

k=0 ω[k.l+1,k.l+l−1]. The concatenation

of partial swaps then commutes with V ⊗l+1 hence we can again fix ξa = |0〉M. Similarly we will
come to the conclusion that ω[k.l+1,k.l+l−1] =

⊗k.l+l−1
x=k.l+1 |0〉. However again C∗

k induced by this
input sequence is contractive and we come to the same conclusion that after infinitely long input
sequence the memory will be set to a fixed state independent of the initial state, dependent only
on the input sequence.

The conclusion we can draw from this is that the computationally challenging part in proving
forgetfulness of partial swap lies in sequences with infinitely long correlations. We might be
well satisfied with the constraints on input sequence being factorized, and we do not need this
memory channel to be forgetful in order to reset memory system. The long correlations however
do indeed change the dynamics of memory as can be seen on Figure 5.1.

Forgetfulness describes the ability of the memory channel to completely reset the state of
memory. If we are interested only in the input-output relations, this might be a too strict or
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Figure 5.1: a) The dynamics of memory system of a memory channel with partial swap interac-
tion Uφ=0.1 for differently structured input sequences. The blue spiral corresponds to factorized
inputs in state ωk = 0.81|0〉〈0|+ 0.19|1〉〈1|. The green curve is corresponds to inputs entangled
in pairs: ω[2k,2k+1] = 0.9|00〉 +

√
0.19|11〉 and the red curve corresponds to the input sequence

fully correlated across the chain: ω[1,n] = 0.9|0 . . . 0〉 +
√
0.19|1 . . . 1〉. These sequences were

chosen such that each local subsystem of input sequence is in the same state, hence the differ-
ence in dynamics is solely due to correlations. b) The distance from the final state where the
dynamics is converging is plotted. We can see that the correlated sequence exhibits recurrences
and converges more slowly compared to the factorized inputs.
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counterintuitive approach. Memory channels where there is no interaction with memory, hence
no memory effects are present, but the memory system is still included in the description of
model, will be non-forgetful. Eventually any forgetful channel can become non-forgetful if we
are “creative” enough to include some noninteracting memory into the model. We might relax
the definition of forgetfulness in following way.

Definition 5.1.5 (I-O forgetfulness). Let S∗
k : T (M⊗Ak) .→ T (Bk ⊗M) be a collision model

of a quantum memory channel. Suppose ρ1, ρ2 ∈ T (M⊗A[1,n+m]) such that TrM(ρ1) =
TrM(ρ2) = ω[1,n+m] for some finite m ∈ N. Then S∗

[1,n+m] is forgetful iff

lim
n +→∞

‖ T ∗
1 (ω[n,n+m])− T ∗

2 (ω[n,n+m]) ‖tr = 0 (5.8)

for every finite m ∈ N where T ∗
j (ω[n,n+m]) = TrM⊗B[1,n]

[S∗
[1,n+m](ρj)]. We can speak about strict

I-O forgetfulness, if this limit is attained for every n ≥ δ, where 0 ≤ δ <∞.

In Heisenberg picture the definition reflects only how much the initial memory state affects
the transformation in far future. I-O forgetfulness is weaker than forgetfulness in the sense that
the set of all forgetful channels Sff is a subset of I-O forgetful channels SI−O. Following example
is here to show that the difference between I-O forgetfulness and normal forgetfulness is not only
caused by the “noninteracting ancilla”.

The memory channel from Example 4.2.2 is not I-O forgetful, since the transformation
explicitly depends on diagonal elements of memory state. However we can add some noise to
the memory system to make it I-O forgetful but not forgetful.

Example 5.1.6 (I-O Forgetful but not forgetful). Let us have a translationally invariant qubit-
qubit collision model with collision S∗ : T (M⊗A) .→ T (B ⊗M)

S∗(m⊗ ω) = E∗ ⊗ I
(
Ucnot(m⊗ ω)Ucnot

†) (5.9)

where E∗ is the contraction to the x-axis from Example 2.3.8 and Ucnot is also defined there.
It is easy to see that this channel is not forgetful. The states |+〉M ⊗ |+〉 and |−〉M ⊗ |+〉 are
fixed points of channel S∗. Thus the x component of state in M will stay the same if the input
sequence is ω[1,n] = |+ . . .+〉.

It is a bit tedious to prove that it is I-O forgetful, the idea is that Ucnot takes into account
only the diagonal elements of memory and that E∗ resets them to 1

2 irrespective of the original
state, hence the effect of initial memory state will be zero after first use and all subsequent uses
will be independent of the initial state.

Here is the detailed proof. Lets write the joint state of memory and inputs ρ ∈ T (M⊗A1,n)
as

ρ = |i〉M〈j| ⊗ Ωij . (5.10)

This way the state of input sequence is TrMρ = Ω00 + Ω11 = ω[1,n]. The first collision will
transform ρ into

S∗
1(ρ) = E∗ ⊗ I[1,n][(Ucnot ⊗ I[2,n])ρ(Ucnot

† ⊗ I[2,n])]
= E∗(|0〉M〈0|)⊗ Ω00 + E∗(|0〉M〈1|)⊗ (Ω01X1)

+E∗(|1〉M〈0|)⊗ (X1Ω10) + E∗(|1〉M〈1|)⊗ (X1Ω11X1)

=
1

2
[IM ⊗ (Ω00 +X1Ω11X1) +XM ⊗ (Ω01X1 +X1Ω10), (5.11)
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because E∗(|i〉〈i|) = 1
2IM and E∗(|0〉〈1|) = E∗(|1〉〈0|) = 1

2XM. The output state clearly depends
on the initial memory state. If the initial memory state was |0〉M〈0|, which would mean that
Ω11 = 0, the transformation would read

T ∗(ω[1,n]) = ω[1,n], (5.12)

however if the initial state was |1〉M〈1|, then Ω00 = 0, the transformation would be

T ∗(ω[1,n]) = X1ω[1,n]X1. (5.13)

As we can already see the Ω01 and Ω10 will never enter the channel T ∗ because they will be
always attached to a traceless operator on memory system, we can ignore them (Ω01 = Ω10 = 0).
Now if we look on the composite state of memory and inputs sequence except first input we find
that

TrB1 [S
∗
1(ρ)] =

1

2
TrB1 [IM ⊗ (Ω00 +X1Ω11X1)]

=
1

2
IM ⊗ (TrB1 [Ω00] + TrB1 [X1Ω11X1])

=
1

2
IM ⊗ (TrB1 [Ω00 +Ω11]), (5.14)

where the last equality is due to invariance of partial trace under unitary conjugation on subsys-
tem which is being traced over, a consequence of invariance of trace under cyclic permutations.
This state is independent of the initial memory and hence the initial memory state will have no
effects after the first collision. Thus the whole memory channel is I-O forgetful, even strictly
I-O forgetful with δ = 1.

Lemma 5.1.7 (Equivalence class of collision models). Let S∗
k : T (M⊗Ak) .→ T (Bk ⊗M) be

a collision model of a quantum memory channel. Then memory channel with collisions

Ŝ∗
k = (Ik ⊗W †)S∗

k(W ⊗ Ik), (5.15)

where W : M .→M is an arbitrary unitary and Ik is the identity operation on k-th subsystem,
has the same I-O relation as the former memory channel.

Proof. This directly follows from the concatenation properties of the collision model. The con-
catenation of Ŝ∗

k will be

Ŝ∗
[1,n] = (I[1,n] ⊗W †)(I[1,n−1] ⊗ S∗

n)(I[1,n−1] ⊗W ⊗ In)

· · · (I[1,2] ⊗W † ⊗ I[3,n])(I1 ⊗ S∗
2 ⊗ I[3,n])(I1 ⊗W ⊗ I[2,n])

(I1 ⊗W † ⊗ I[2,n])(S∗
1 ⊗ I[2,n])(W ⊗ I[1,n]) =

(I[1,n] ⊗W †)(I[1,n−1] ⊗ S∗
n) · · · (I1 ⊗ S∗

2 ⊗ I[3,n])(S∗
1 ⊗ I[2,n])(W ⊗ I[1,n]).

(5.16)

Since the partial trace is invariant under unitary conjugations of the system being traced over,
the trace over memory system will be tha same as for plain S∗

k without the unitary W .
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5.2 Finite depth memory channels

We will add another slightly different notion of forgetfulness. The notion of memory depth was
already used for strictly forgetful channels, where it marks the maximal number of uses of the
memory channel needed to forget. Now we will formalize memory channels with finite depth as
those possessing this property, but we will require only I-O strict forgetfulness and require it
only for factorized input sequences. This will also implicitly bind us to the Schrödinger picture,
where the factorization of input sequence is more natural. The reason is that when using such
memory channel for communication or estimation, it is much easier to construct uncorrelated
sequences.

Definition 5.2.1 (Finite depth). Let S∗
k : T (M⊗Ak) .→ T (Bk ⊗M) be a collision model of

a quantum memory channel. Let the input sequence restrict to ω[1,n] =
⊗n

k=1 ωk. Assume two
different initial states of memory ξ1, ξ2 ∈ T (M) Then S∗

[1,n] has finite depth δ if

‖ T ∗
1 (ω[δ+1,n])− T ∗

2 (ω[δ+1,n]) ‖tr = 0 (5.17)

for every finite n > δ where T ∗
j (ω[δ+1,n]) = TrM⊗B[1,δ]

[S∗
[1,n](ξj ⊗ ω[1,n])].

Strictly I-O forgetful, hence also strictly forgetful, memory channels have automatically finite
depth. Note that finite depth is defined only on factorized inputs. However, next lemma shows
that this can be trivialy shifted to any state of inputs and memory, hence finite depth also
implies strict I-O forgetfulness.

Lemma 5.2.2. If a memory channel has finite depth, then it is strictly I-O forgetful.

Proof. Let us have a collision model S∗
[1,n] : T (M⊗A[1,n]) .→ T (B[1,n] ⊗M) such that it has

finite depth δ. Then

Tr[S∗
[1,δ+1+m]

(
(ξ1 − ξ2)⊗ ω1 ⊗ · · · ⊗ ωδ+1+m

)
(I[1,n] ⊗ b[δ+1,δ+1+m] ⊗ IM)] = 0

(5.18)

holds for every ξ1, ξ2 ∈ S(M), ωk ∈ S(Ak), b[δ+1,δ+1+m] ∈ B[δ+1,δ+1+m] and m ∈ N. Any
ρ1 ∈ S(M⊗A[1,δ+1+m]) can be written as a (not necessary convex or positive) sum of factorized
sequences ξ1 ⊗ ω1 ⊗ · · · ⊗ ωδ+1+m since they provide an over-complete operator basis. Due to
linearity it has to be than true that

Tr[S∗
[1,δ+1+m]

(
ρ1 − ρ2

)
(I[1,n] ⊗ b[δ+1,δ+1+m] ⊗ IM)] = 0

(5.19)

for any ρ1, ρ2 ∈ S(M⊗A[1,δ+1+m]) such that TrMρ1 = TrMρ2.

This is a very interesting result since it greatly simplifies the conditions for for strict I-O
forgetfulness. It is enough to check only all factorized sequences.

As we have seen in previous section, the memory might be composed of some part which
does not affect the transformation on inputs, we will call this the irrelevant part of memory.
Let us fix a collision model S∗

k : T (M⊗Ak) .→ T (Bk ⊗M) with the initial state of memory
ξ = 1/

√
dM(τ0 + !m!τ) and constrain the input sequence to factorized states, ω[1,n] =

⊗n
k=1 ωk.

Then we can define the irrelevant subspace.
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Definition 5.2.3 (Irrelevant degrees of freedom). A traceless operator ς = !s!τ is called irrelevant
if for every n ∈ N

TrM[S∗
[1,n](ς ⊗ ω[1,n])] = O (5.20)

holds. The space that all such ς span is called the irrelevant subspace of memory and we will
denote it by IS∗ .

One can see that any two initial memory states ξ1, ξ2 such that ξ1 − ξ2 ∈ IS∗ have the same
I-O relation, ie. produce the same channel T ∗(ω[1,n]). Note that the space IS∗ can be only
spanned by traceless operators because for any operator with nonzero trace the equation (5.20)
does not hold because of trace preserving property of S∗.

Since the input is factorized, the memory evolves through composition of series of concurrent
channels (see Example 5.1.4) C∗

k : T (M) .→ T (M)

ξ .→ C∗
n · · ·C∗

1 (ξ). (5.21)

The finite depth property can be then expressed as

C∗
δ · · ·C∗

1 (ξ1 − ξ2) ∈ IS∗ (5.22)

for all ξ1, ξ2 ∈ S(M).
For every memory channel with finite depth δ, inputs separated by δ uses evolve under

factorized transformation

T ∗(ωk ⊗ ωk+δ+1) = T ∗(ωk)⊗ T ∗(ωk+δ+1). (5.23)

This has to be so because neither initial state of memory nor ωk can have an effect on the
transformation. Let us move to the easiest case study.

5.2.1 Qubit-qubit case study

In this case study, we will consider only pure, translationally invariant memory channels with
qubit memory interacting with qubit subsystem, dimM = dimA = dimB = 2. The collision
will be described by an unitary interaction FU , where F is the swap as usual. The U can be
parametrized in following way [34]:

U = (W2 ⊗ V2)D(W1 ⊗ V1), (5.24)

where Wi : M .→ M and Vi : A .→ A are unitaries on appropriate Hilbert spaces and D is
2-qubit unitary of a special form

D = ei
∑3

k=1
1
2αkσk⊗σk , (5.25)

where σ1 = X, σ2 = Y and σ3 = Z are the Pauli matrices and αk ∈ R. Since σk ⊗ σk commute
the D can be written as

D =
3∏

k=1

(cos(αk/2)I+ i sin(αk/2)σk ⊗ σk). (5.26)
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This is a very nice parametrization for our task since it separates the local transformations from
the interacting part. We can substitute W1 for identity for our purposes, because of the I-O
invariance of collision models from Lemma 5.1.7 by suitably choosing W = W †

1 . Since W2 can
be any unitary this will not change the description.

Lets fix initial memory in state ξ ∈ S(M) =: ξ1. We restrict our inputs to be of factorized
form, ω[1,n] =

⊗n
k=1 ωk uncorrelated to ξ. Firstly concentrate our attention to identifying the

relevant and irrelevant subspace. The transformation on first input will be

T ∗(ω1) = TrM[U(ξ1 ⊗ ω1)U †] = V2TrM[D
(
ξ1 ⊗ (V1ω1V

†
1 )

)
D†]V †

2

=: V2T̂
∗(V1ω1V

†
1 )D

†]V †
2 . (5.27)

The irrelevant subspace is fully determined by T̂ ∗ since only there interaction with memory
system occurs. Lets fix the operator basis for qubit as usual τ = 1/

√
2(I, X, Y, Z). Assume that

ξ1 = 1/
√
2(τ0 + !m!τ). Then channel T̂ ∗ is

T̂ ∗(ω1) = TrM[D(ξ1 ⊗ ω1)D†], (5.28)

what in vector representation looks A(T̂ ∗)ij = Tr[D(ξ1 ⊗ τj)D†(I⊗ τi)]:

A(T̂ ∗) =





1 0 0 0
m1s2s3 c2c3 m3c2s3 −m2s2c3
m2s1s3 −m3c1s3 c1c3 m1s1c3
m3s1s2 m2c1s2 −m1s1c2 c1c2



 , (5.29)

where ci = cosαi and si = sinαi. We see that for any nonzero operator ς = !m!τ to be irrelevant
we need si = 0 for all i = 1, 2, 3. This implies that αi = kiπ where ki ∈ N. However if this holds
then D is a product of two equal Pauli matrices, i.e. no interaction at all. We conclude that
the irrelevant subspace is trivial unless the whole interaction is of factorized form. Then the
irrelevant subspace is maximal, meaning that the relevant subspace is spanned only by identity.

Now we will move on to the concurrent channel. Lets denote

ξk+1 := C∗
k · · ·C∗

1 (ξ1) = C∗
k(ξk) (5.30)

the state of memory after k-th collision, where C∗
k are the concurrent channels

C∗
k(ξk) = Trk[U(ξk ⊗ ωk)U †]. (5.31)

After applying the parametrization (5.24) we get that

C∗
k(ξk) = W2Trk[D

(
ξk ⊗ (V1ωkV

†
1 )

)
D†]W †

2 , (5.32)

where we see that V2 doesn’t affect the transformation on memory. Since the irrelevant subspace
is trivial we require

C∗
δ · · ·C∗

1 (ς) = O (5.33)
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for any ς = !m!τ a memory channel of depth δ. In vector representation this means that if we
define

A(C∗
k) =

(
1 0

!ck C̃k

)
(5.34)

then

!m .→ C̃δ · · · C̃1 !m+
δ−1∑

k=1

C̃δ · · · C̃k+1!ck + !cδ. (5.35)

If we need the equation (5.33) to hold we need that

C̃δ · · · C̃1 = O (5.36)

because only then the right hand side of (5.35) will be independent of !m. A necessary condition
for that is that any C̃k has to be singular, since we can have input sequences ω[1,n] = ω

⊗n with

arbitrary ω. Any C̃k looks in vector representation as

C̃k = R2




c2c3 wk,3c2s3 −wk,2s2c3

−wk,3c1s3 c1c3 wk,1s1c3
wk,2c1s2 −wk,1s1c2 c1c2



 , (5.37)

where we have used that V1ωkV
†
1 = 1/

√
2(I + !wk!τ) and R2 = A(W2) is the rotation due to

unitary W2. Since det(C̃k) = (c1c2c3)2+wk,1(s1c2c3)2+wk,2(c1s2c3)2+wk,3(c1c2s3)2, this matrix
is singular for arbitrary !wk only when cj = 0 for two different j. Lets say that c1 = c2 = 0 and
c3 += 0, then

C̃k = R2




0 0 ±wk,2c3
0 0 ±wk,1c3
0 0 0





= ±




0 0 wk,1c3R2,12 ± wk,2c3R2,11

0 0 wk,1c3R2,22 ± wk,2c3R2,21

0 0 wk,1c3R2,32 ± wk,2c3R2,31



 . (5.38)

Under further investigation we find that condition (5.36) can hold for arbitrary factorized input
sequence only if R2,32 = R2,31 = 0. Since R2 is rotation this also implies that R2,33 = ±1 and

R2 =

(
S 0
0 ±1

)
, (5.39)

where S is rotation in the xy-plane. Such unitaries commute with Z thus

W2 = eβZ . (5.40)

Furthermore the depth of such memory channel is necessary δ = 2 since we can check that

C̃k+1C̃k = O, (5.41)
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for any factorized input sequence. So if c1 = c2 = 0 and c3 += 0 and W z
2 = eβZ then any U z

δ=2 of
form

U z
δ=2 = (W z

2 ⊗ V2)D(IM ⊗ V1), (5.42)

with arbitrary Vk defines a collision model with memory depth δ = 2: S∗
k(ξ ⊗ ωk) = FUδ=2(ξ ⊗

ωk)U
†
δ=2F . Similarly you will get the same thing for Uy

δ=2 with c1 = c3 = 0 and c2 += 0 and
W y

2 = eβY and Ux
δ=2 with c2 = c3 = 0 and c1 += 0 and W x

2 = eβX . Furthermore it is easy to
check that if an two qubit unitary U corresponds to a memory channel with depth of memory
2 then also U † has depth of memory 2. Lets say that U is of the U z

δ=2 type, then

U † = (IM ⊗ V †
1 )D

†(W z†
2 ⊗ V †

2 ). (5.43)

Since the I-O relation is invariant under conjugation of memory, we are able to move the inverse
of W2 back to the left side with suitable conjugation. Also the inverses of Vi can be arbitrary
and hence are of no interest now, so we can omit the daggers on them. Thus

U † = (W z†
2 ⊗ V1)D

†(IM ⊗ V2). (5.44)

We can also ignore the dagger on W z
2 since it does not change the type of the unitary, it only

changes the sign in front of β. If D is such that c1 = c2 = 0 then also D† will fulfill this condition,
because the dagger operation only introduces sign changes in front of αi and this won’t affect
the cosines in condition, thus

U † = (W z
2 ⊗ V1)D(IM ⊗ V2), (5.45)

which is of depth 2 again.
We will also get finite depth if we set c1 = c2 = c3 = 0, then C̃k = O automatically and

δ = 1. It follows then that

Uδ=1 = (W2 ⊗ V2)F (W1 ⊗ V1), (5.46)

with arbitrary Wk and Vk where F is the two qubit swap unitary. Trivially since the local
unitaries are arbitrary and F self-adjoint, U †

δ=1 has also memory depth 1.
Interesting thing is that there is no translationally invariant pure memory channel in this

situation with finite depth higher than 2. If we would drop the translational invariance this would
stop to hold. Imagine a pure qubit-qubit memory channel S∗

k : T (M⊗Ak) .→ T (Bk ⊗M) such
that every

S∗
m∆ = I, (5.47)

for fixed ∆ and m ∈ N, meaning that every ∆ step you would swap the entire memory with
your system. Naturally, such memory channel has depth at least δ ≤ ∆ for any ∆ < ∞ and
is even strictly forgetful. In translationally invariant case the intuition tells that you have to
erase at least one degree of freedom from the relevant subspace of memory at each collision.
Thus the depth should be bounded by the number of linearly independent traceless operators
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d2M − 1, where dM = dimM. Taking this to consequences we should then ask why there is no
δ = 3 in this qubit case? The answer is that such maps, which erase only one degree of freedom
are not completely positive for qubits, see Example 2.3.3. If we look onto classical case we
have discrete set of possible interactions - permutations of a set of four elements, which can be
represented by 24, 4× 4 permutation matrices, and states are diagonal, hence described by only
one traceless parameter ξ = 1/2(I + pZ). It can be easily checked that these interactions can
be grouped to three groups. First group would consist of factorized interactions - independent
evolution of memory and input. This group has δ = 0. Second group would be the swap like
interactions, with δ = 1 and third group are control unitary interactions (see Example 4.2.2),
where the memory is control and the input target or the other way round. Such interactions
have not finite depth. Thus the quantum case is slightly richer.

5.3 QCA as a finite depth pure memory channel

The structure of memory channels and QCAs is deeply connected. With appropriate shift
channel σx, any QCA can be made causal as was already noted in Example 4.4.2. Thus every
QCA is a memory channel up to a shift. Because of locality, any QCA is also a memory channel
with finite depth. However the structure of such memory channel is not obvious. Specifically
one does not know the size of memory environment we would need to use for a memory channel
implementation of QCA, which represents the resource overhead of the implementation. Even
the Stinespring dilation cannot help us much even to found a bound, since the transformed
system is infinite. In this section we will show that this memory system has dimensions equal
to the index of a considered (causal) automaton. Hence as such is constant along the line of
inputs and more importantly finite. This result was obtained during a scientific visit to a group
in Hannover and is still in preparation, [27]. Without further hesitation let us continue with the
theorem.

Theorem 5.3.1. Let α : B .→ A be a causal QCA, then there exists a collision model Sk :
Bk ⊗M .→M⊗ Ak with dimM = indα and dimM is the smallest possible.

Proof. Let us assume that α is a nearest neighbor causal automaton such that α(Bx) ⊂ Ax−1⊗
Ax. The causality property simplifies the relations of support algebras used for the computation
of index of a QCA. Following the definitions given in 4.4.5 we get

R2k = S
(
α(B2k ⊗B2k+1),A2k−1 ⊗ A2k

)
(5.48)

R2k+1 = S
(
α(B2k+1),A2k+1

)
, (5.49)

where R2k remained untouched. In R2k+1 due to causality

α(B2k) ∪ A2k+1 ⊗ A2k+2 = I (5.50)

and

α(B2k+1) ∪ A2k+1 ⊗ A2k+2 ⊂ A2k+1. (5.51)
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From subsection 4.4.1 we know that

α(B2k ⊗B2k+1) ≡ R2k ⊗R2k+1. (5.52)

Further we necessarily get that

α(B2k) ⊂ R2k, (5.53)

this means that α(B2k) is fully localized only in R2k. Since R2k is a full matrix algebra B2k is
also and α is automorphism, then R2k is isomorphic to

R2k ≡ B2k ⊗M, (5.54)

for some algebra M such that

[α(B2k),M] = O. (5.55)

ThusM is composed of all elements inR2k such that they commute with α(B2k) and secondlyM
is isomorphic to L(M) of some Hilbert space M. Furthermore the dimension of M is constant
along the chain since

indα =
r2k
d2k

=
md2k
d2k

= m := dimM, (5.56)

it is equivalent to the index of α. Since

α(A2k ⊗ A2k+1) ≡ R2k ⊗R2k+1, (5.57)

also

d2kd2k+1 = r2kr2k+1, (5.58)

because α is automorphic. However since r2k = md2k we get that

d2k+1 = mr2k+1, (5.59)

thus

α(B2k+1) ≡M⊗R2k+1. (5.60)

As you might have already noticed due to causality the definition of R2k+1 for every odd support
algebra can be defined for every cell, without overlaps. To avoid confusion we will denote

R̃k = S
(
α(Bk),Ak

)
. (5.61)

Then

α(Bk) ≡M⊗ R̃k. (5.62)
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Every single cell thus can be decomposed to a part whose localization will remain unchanged, the
α(B̃k) = R̃k ⊂ Ak and a part which will be causally shifted to the preceding cell α(B̂k) ⊂ Ak−1:

Bk ≡ B̃k ⊗ B̂k. (5.63)

Note that the tensor product is not necessarily in the same basis as the tensor product of
Bk⊗Bk+1, since this relation emphasizes the isomorphic property. The important thing is that
the parts have to commute, because α is automorphism:

[α(B̃k), α(B̂k)] = O

⇒ [α(B̃k), α(B̂k)] = α([B̃k, B̂k]) = [B̃k, B̂k] = O. (5.64)

The memory structure can be then uncovered by defining a unitary Uk : M⊗Ak .→ Bk⊗M
as

U †
k(b̃k ⊗ IM)Uk = IM ⊗ ãk (5.65)

for every b̃k ∈ B̃k such that α(b̃k) = ãk ∈ Ak and

U †
k(b̂k ⊗ IM)Uk = m(b̂k)⊗ IAk (5.66)

for every b̂k ∈ B̂k and such m(b̂k) ∈M that b̂k .→ m(b̂k) is automorphic, and finally

U †
k(IBk ⊗m)Uk = IM ⊗ âk(m) (5.67)

for all m ∈M, where again the relation m .→ âk(m) represents automorphism. To successfully
construct the collision model structure we have to ensure that what was encoded by Uk inside
the memory region has to be moved by Uk−1 to Ak−1 to comply with the local rules of α such
that b̂k .→ m(b̂k) .→ âk−1(m) = α(b̂k):

U †
k−1U

†
k(IBk−1 b̂k ⊗ IM)UkUk−1 = IM ⊗ âk−1 ⊗ IAk , (5.68)

for every b̂k ∈ B̂k and such âk−1 ∈ Ak−1 that α(b̂k) = âk−1.

We have thus identified in each cell in nearest neighbor grouping a part of the cell whose
localization will not change under the action of the automaton, the B̃k part, and the part which
is causally shifted to the left, the B̂k part and the causal shift can be viewed as a pure memory
channel. The local rules fix the interaction completely up to the unitary freedom on memory
system, which cannot be avoided, but doesn’t matter at all. The whole idea is illustrated on
figure 5.2. The memory channel structure can be also employed within the individual cells in
nn-grouping due to the structure theorem. The nn-grouping scheme could be chosen arbitrarily,
hence the memory requirement has to stay constant also inside the nn-grouping blocks.

Since QCAs are reversible, one can also construct a causal inverse of α, α′, which is inverse
up to shift,

α ◦ α′ = σk, (5.69)
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Â2 Ã2
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Figure 5.2: The flow of information in a causal QCA. Each cell can be split into a part whose
localization will remain in the original cell, those parts are denoted by algebras with a hat, and
a part whose localization is shifted by one cell to the left, those parts are denoted by algebras
with tilde. The shifts are then employed as a collision model, where the size of memory algebra
is equivalent to the size of the moving parts.
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Â1 Ã1
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Â3 Ã3

U3

U ′

3

U3

U ′

3

B̃3 B̂3
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Figure 5.3: Causal inverse of automaton α such that α′ ◦ α(Bk) = Ak−1

where k is the size of the minimal nn-block (which is in turn determined by the depth of memory
of the transformation). Note that we are stating things in Heisenberg picture and therefore
decoding inverse α′ comes before encoding transformation α and the input algebra A of α′ is
the output algebra B of α. This is however only matter of convention. The construction of such
causal inverse is clarified on figure 5.3. As can be seen from the picture, for inverse the roles
of tildes and hats is interchanged and the memory requirement is now determined by the tilded
part which travels across the cells. If the nn-grouping is chosen to contain smallest possible
blocks, then the memory requirement is exactly equal to the tilded part. Taking this back to
collision models one can see that if we have a pure collision model with finite depth, which
describes some communication between two parties, then it can be regarded as some encoding
scheme. For this encoding there exists a perfect deterministic decoding scheme and what is
more it can be used “on the fly”, you do not have to wait until the communication has ended
to decode. You can start the encoding after the first nn-block is already transferred or after δ
uses where δ is the depth of the transformation α.

Example 5.3.2 (Nontrivial example). Let us have a quantum cellular automaton α on a qubit
chain with following local rules,

α(Xk) = c2Xk−1 − s2Zk−2Xk−1Zk − cs(Zk−2Yk−1 + Yk−1Zk)

α(Zk) = Zk−1, (5.70)
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where c = cosφ and s = sinφ for some angle φ. Since α is automorphism, α(Yk) = −iα(ZkXk)
is fixed and the QCA is fully defined.

The automaton as defined is translationally invariant, but is not in nn-grouping so we have
to regroup it into larger blocks, of two qubits. Let the new grouping be denoted as B(k) =
B2k ⊗B2k+1. First we will need to calculate the index. For this it is enough to calculate the
R̃(k) from the equation (5.61)

R̃(k) = S
(
α(B(k)),A(k)

)
. (5.71)

Lets have an operator basis in B(k) as {τ(k),i}. Then we have to solve the system of linear
equations

∑

i

tiα(τ(k),i) = I(k−1) ⊗ Ω(k), (5.72)

where Ω(k) ∈ A(k) is some arbitrary operator. All such possible operators Ω(k) span the algebra

R̃(k) and all operators
∑

i tiτ(k),i span the algebra B̃(k) from (5.63). For this particular example

we find that B̃(k) is isomorphic to a qubit algebra and is spanned by the operators

X̃(k) = cX2k+1 + sY2k+1Z2k

Ỹ(k) = cY2k+1 − sX2k+1Z2k

Z̃(k) = Z2k+1 (5.73)

plus the identity. Hence The index of α is ind(α) = d(k)/2 = 2 where d(k) is the dimension of

Hilbert space B(k). The traveling part of B(k), B̂(k) is then the commutant of B̃(k) in B(k).
Finding this commutant is again equivalent to solving a set of linear equations

∑

i

tiα(τ(k),i) = Ω(k−1) ⊗ IA(k)
, (5.74)

for arbitrary Ω(k−1) ∈ A(k−1). Solving this we find that B̂(k) is also isomorphic to a qubit algebra
and is spanned by the operators

X̂(k) = cX2k + sY2kZ2k+1

Ŷ(k) = cY2k − sX2kZ2k+1

Ẑ(k) = Z2k (5.75)

plus the identity. The memory is of dimension 2 with operator algebra spanned by {IM, XM, YM, ZM}.
Then we can reconstruct U(k) : M⊗A(k) .→ B(k) ⊗M from equations (5.65)-(5.67) as

U †((̃·)(k) ⊗ IM
)
U(k) = IM ⊗ α(̃·)

U †((̂·)(k) ⊗ IM
)
U(k) = (·)M ⊗ IA(k)

U †(IB(k)
⊗ (·)M

)
U(k) = IM ⊗ α(̂·)(k), (5.76)
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where · is to be replaced with one of {I, X, Y, Z}. The solution to this is

U(k) = diag(1, eiφ, ei2φ, eiφ, eiφ, ei2φ, eiφ, 1), (5.77)

what can be further decomposed as

U(k) =
(
IB2k ⊗ diag(1, eiφ, eiφ, 1)

)(
diag(1, eiφ, eiφ, 1)⊗ IA2k+1

)
, (5.78)

thus the memory channel corresponding to α employs the interaction Uk : M⊗Ak .→ Bk ⊗M
where

Uk = diag(1, eiφ, eiφ, 1) =





1 0 0 0
0 0 eiφ 0
0 eiφ 0 0
0 0 0 1



 . (5.79)

This memory channel has depth of memory δ = 2 and is among the solutions from previous
section.

To construct the decoding inverse α′ we have to find such operators bx, by, bz ∈ B such that

α(bx) = Xk , α(by) = Yk , α(bz) = Zk , (5.80)

then we define α′ as

α′(Xk+δ) = bx , α′(Yk+δ) = by , α′(Zk+δ) = bz. (5.81)

The solution for this example is

bx = c2Xk+1 − s2ZkXk+1Zk+2 + cs(ZkYk+1 + Yk+1Zk+2)

bz = Zk+1 (5.82)

and due to automorphic property of α′ the by is already fixed at by = −ibzbx hence the local
rules for α′ are

α′(Xk) = c2Xk−1 − s2Zk−2Xk−1Zk + cs(Zk−2Yk−1 + Yk−1Zk)

α′(Zk) = Zk−1, (5.83)

which is surprisingly almost the same as α but with φ .→ −φ. Hence the interaction for the
inverse collision model is the inverse of interaction in original collision model U ′

k = U †
k .

As a result in [37] proves that all pure memory channels with finite dimensional memory have
ideal quantum capacity, however the construction of the inverse is not local. We have shown here
that for strictly forgetful memory channels the causal inverse is also a strictly forgetful memory
channel with finite dimensional memory. For translationally invariant maps the dimension of
memory is δd where δ is the memory depth and d is the dimension of the primitive cell. This gives
us hope that a similar scheme could work for forgetful channels, since such channels represent
causal transformations which are not local however still could represent automorphism of quasi-
local algebra. Intuition tells us that forgetful channels could achieve “approximate” locality
and also an “approximate” inverse could exist where the approximation would get better as
one would enlarge the “approximate” nn-grouping. Also some similar scheme could be used for
memory channels which are not pure, but are still local, and this should be usually the case
because entanglement tends to be hard to preserve and correlations should drop to effective zero
in number of collisions.
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5.4 Repeatable channels

In this section we will turn our attention in a slightly different direction. Until now we have
discussed the effects of memory and how to counter them. Now we will try to find such memory
channels which from some perspective do not exhibit any memory. Generally speaking a causal
transformation T ∗ exhibits memory if

T ∗(ω[1,n]) += T ∗ ⊗ · · · ⊗ T ∗(ω[1,n]). (5.84)

Now let us have a pure memory channel with finite dimensional memory ξ ∈ S(M), with
factorized input sequences ω[1,n] = ω1⊗· · ·ωn ∈ S(A1)⊗· · ·⊗S(An) and collision Uk : M⊗Ak .→
M⊗Bk. Since the input sequence is factorized, the transformation on any ω[a,b], T

∗(ω[a,b]) is a
valid channel, ie. completely positive mapping. Let denote T ∗

[a,b] the channel T
∗ acting on ω[a,b].

Then we restate the relation 5.84 in a more readable way:

T ∗
[1,n] += T ∗

1 ⊗ · · · ⊗ T ∗
n (5.85)

for a general memory channel. One can now be interested in the possibility of repeating some
transformation G∗ many times. The transformation may be a part of an experiment for example
and experiments by their nature should be repeated many times. So there is a valid question
which transformations G∗ can be repeated in principle. From the example 4.2.3 of memoryless
channels we have learned that if we need to repeat a channel G∗ infinitely many times we
need a memory system containing infinitely many particles at least of dimension of the minimal
Stinespring’s dilation for the channel G∗. This means that unless the dilation environment is
trivial we need infinitely many particles and we consider this unphysical. However the dilation
space is trivial only for unitary transformations. From this perspective the perfectly repeatable
transformations G∗ which require finite dimensional memory are only unitary.

There is not much we can do unless we lower the constraints on the repeatability of trans-
formation. This is expressed in following definition:

Definition 5.4.1 (Repeatable transformation). A channel G∗ is repeatable if there exists a
pure memory channel with finite dimensional memory, such that when constrained to factorized
inputs ω[1,n] = ω1 ⊗ · · ·ωn we have

T ∗
k = G∗ (5.86)

for all i ∈ Z where T ∗
k is local transformation on k-th site.

Note that it stil holds that T ∗
[a,b] += G∗ ⊗ · · · ⊗G∗. We only require that locally the transfor-

mation on each site is equal G∗. As an example we can show that all random unitary channels
are repeatable by explicitly constructing a corresponding memory channel. A random unitary
channel G∗

ru : T (A) .→ T (B) is of form:

G∗
ru(ω) =

∑

i

piUiωU
†
i , (5.87)

for any pi > 0 such that
∑

i pi = 1 and arbitrary set of unitaries Ui : A .→ B. The memory
channel which employs these channels in repeatable fashion is the γ∗ already used in Example
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4.2.2. The memory channel exploited the unitary interaction Uγ = F (
∑dM−1

i=0 |i〉〈i| ⊗ Ui) where
we got

T ∗
ω[1,n]

=
dM−1∑

i=0

〈i|ξ|i〉U⊗n
i ω[1,n]U

†
i

⊗n
, (5.88)

where ξ ∈ S(M) was the initial state of memory. We compute T ∗
i = Tr∀l -=kT ∗ and get that

T ∗
k (ωk) =

∑

i

piUiωkU
†
i , (5.89)

where we assigned pi = 〈i|ξ|i〉. Note that we do not even need the input sequence and the
memory system to be factorized and this result will still hold true. Thus all random unitary
channels are repeatable. Note that if a channel is repeatable it does not mean that it is always
employed in repeatable fashion. The repeatability merely admits such option.

We can show that a necessary condition for a channel to be repeatable is that it has to be
unital, ie. preserves the identity operator.

Theorem 5.4.2. If a channel G∗ is repeatable, then it is unital.

Proof. Let us assume that we have a pure memory channel with finite dimensional memory
system in initial state ξ ∈ S(M) with dimension dM = dimM which employs a channel G∗ in
repeatable fashion. Assume factorized input sequence. Then

S(ξ) +
n∑

i=1

S(ωi) = S
(
U[1,n](ξ ⊗ ω1 ⊗ · · ·ωn)U †

[1,n]

)
. (5.90)

From equation 2.23 we know that the entropy of the whole is always less or equal to the entropy
of the parts. Thus

S
(
U[1,n](ξ ⊗ ω1 ⊗ · · ·ωn)U †

[1,n]

)
≤ S

(
C∗
[1,n](ξ)

)
+

n∑

i=1

S
(
G∗(ωi)

)
, (5.91)

where C∗
[1,n](ξ) is the final local state of memory after concurrent evolution and G∗(ωi) is the

local state of i-th particle after collision. Joining these two relations we get

n∑

i=1

S(ωi)− S
(
G∗(ωi)

)
≤ S

(
C∗
[1,n](ξ)

)
− S(ξ). (5.92)

This means that the entropy loss on inputs cannot be greater than the entropy gain on memory
system. The right hand side of (5.92) is bounded from above, because the dimension of memory
is finite. The lowest entropy one can get on memory system is 0 and the highest entropy is
log dM of a maximal mixture. Thus

n∑

i=1

S(ωi)− S
(
G∗(ωi)

)
≤ log dM. (5.93)
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Assume that all inputs are equal, ωi = ω. Then

n
(
S(ω)− S

(
G∗(ω)

))
≤ log dM, (5.94)

for every n ∈ N. For n → ∞ we have to get that S(ω) − S
(
G∗(ω)

)
≤ 0, what means that

the transformation G∗ cannot be entropy decreasing. This also means that such transformation
has to preserve the complete mixture because complete mixture is the unique state which has
the highest entropy. Since complete mixture is just scaled identity the map G∗ has to preserve
identity and therefore it has to be unital. It can be also shown that unital channels are entropy
non-decreasing, see Appendix B.1.

In qubit case all unital channels are also random unitary hence in qubit case unitality implies
repeatability. Let us note that the concept of repeatability is similar to the concept of quantum
cloning [60] in a sense that the channels (just like copies in quantum cloning) are not com-
pletely independent if measurements are taken into account. The impact of measurements on
repeatability of quantum memory channels deserves further investigation, and will be partially
addressed in the next chapter.

5.5 Simulation of indivisible qubit channels in collision models

Dynamics of open quantum systems is often modeled by the so-called master equations [38, 33].
For a comprehensive reference on evolution of open quantum systems see [17]. The idea is to
get a time dependent channel describing the evolution, such that ρ(t) = E∗

t (ρ), where ρ is the
state of system at time t = 0 (thus E∗

t=0 = I). Often a Markovian approximation is made, where
we assume that the environment is large and effectively doesn’t change during the interaction
with the system. In this approximation the one parametric class of channels E∗

t has a semigroup
property: E∗

s ◦ E∗
t = E∗

s+t. Such evolution can be stroboscopically simulated using a simple
collision model.

ρ S∗

1 S∗

2 · · · S∗

n
C∗

[1,n](ρ)

ω[1,n]

Figure 5.4: The system ρ evolves in discrete time steps in a collision model effectively simulating
some evolution of an open system interacting with an environment.

Definition 5.5.1 (Stroboscopic simulation). We say that a collision model S∗ : T (M)⊗T (A) .→
T (B)⊗ T (M) stroboscopically simulates time evolution E∗

t if

C∗
[1,n] = E∗

n∆, (5.95)
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for all n ∈ N and some ∆ > 0 and where C∗
[1,n] is the concurrent channel on memory

C∗
[1,n](ρ) = Tr[1,n]

(
S∗
[1,n](ρ⊗ ω[1, n])

)
, (5.96)

where Tr[1,n] denotes partial trace over outputs 1, . . . , n. See for reference figure 5.4.

It is not important that the collision model is a memory channel. The inputs act only as
an environment to the open system, which happens to be the memory system and we are not
interested in the input-output relation of the memory channel. We focus only on the concurrent
part. Stroboscopic simulation then simulates an evolution of open quantum system by discrete
collisions with some structured environment, and approximates the continuous evolution with
discrete time steps.

All Markovian evolutions are stroboscopically simulable. Let E∗
t : T (M) .→ T (M) be a

Markovian evolution of some system with Hilbert space M. Then let U : M⊗A .→M⊗A be
a Stinespring’s dilation of channel E∗

∆:

E∗
∆(ρ) = TrA

(
U(ρ⊗ |0〉〈0|)U †), (5.97)

for some |0〉 ∈ A. Then if we engineer environment in state ω[1,n] = |0〉⊗n we get that

C∗
[1,n] = E∗

∆
⊗n = E∗

n∆, (5.98)

because of Markovianity of E∗
t . For any Markovian evolution we constructed a stroboscopic

simulation with arbitrary small time steps. A natural property of Markovian evolutions which
is also implicitly used in their stroboscopic simulation is their divisibility of any channel E∗

t (if
it is not unitary evolution).

Definition 5.5.2 (Channel divisibility). A channel E∗ is called divisible if it can be written as
a composition of two non-unitary channels:

E∗ = E∗
1 ◦ E∗

2 . (5.99)

It is important that the channels E∗
1 and E∗

2 are not unitary. Otherwise we would get that
all channels are trivially divisible.

We say that a channel E∗ is stroboscopically simulable if there exists a stroboscopic sim-
ulation of a continuous time evolution E∗

t such that E∗
t=1 = E∗. It is an interesting question

whether also indivisible channels are stroboscopically simulable.
As a partial result we are able to say that every random unitary channel is stroboscopically

simulable. For this we have to fix a right interaction and an appropriate state of environment.
Let us have a random unitary channel

E∗(ρ) =
d−1∑

k=0

pkVkρV
†
k , (5.100)

where Vk is unitary and
∑

k pk = 1. Let Hk be a Hamiltonian of Vk such that eiHk = Vk. Fix
then dimA = d and interaction U : M⊗A .→M⊗A

U =
d−1∑

k=0

e
i
nHk ⊗ |k〉〈k|. (5.101)
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Finally set the state of n environmental particles to be ω[1,n] =
∑d−1

k=0
√
pk|k〉⊗n. This will yield

a stroboscopic evolution after m collisions

C∗
[1,m](ρ) =

∑

k

pke
im
n Hkρe−

im
n Hk , (5.102)

giving us thus that

C∗
[1,n] =

∑

k

pke
iHkρe−iHk = E∗. (5.103)

One can replace this stroboscopic simulation by a continuous time evolution where

E∗
t (ρ) =

∑

k

pke
itHkρe−itHk , (5.104)

thus the steps can be arbitrarily small.
As was first reported in [68], all indivisible qubit channels are of form:

E∗(ρ) = pxXρX + pyY ρY + pzZρZ, (5.105)

pxpypz > 0, hence all indivisible qubit channels are stroboscopically simulable. On figure 5.5
stroboscopic evolution of universal NOT evolution E∗

NOT(ρ) = 1/3(XρX+Y ρY +ZρZ) is shown.
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Figure 5.5: The collision model simulating the continuous time evolution towards the universal
NOT gate (shrunk Bloch sphere inversion). In particular, the transformation of the Bloch sphere
(lines capture the time evolution of eigenstates of Z operator) is depicted for the time interval
t ∈ [0, 1]. For t = 2/3 the channel E∗

t=2/3 is not invertible (detE∗
t=2/3 = 0) and at this time the

Bloch sphere is mapped onto a two-dimensional disk. Let us note that images of eigenstates of
Z operator are internal points of the disk. In fact, the whole disk is the image of pure states
only. An animation of this evolution can be found at [74].



Chapter 6

Estimation of memory channels

6.1 Process estimation in memory settings

Given a quantum box which accepts one quantum input and produces a quantum output we
would like to estimate the action of such box. The box has some internal workings described
by the memory degrees of freedom and the interaction between the memory an the input. We
will concentrate on the most natural case when the interaction is fixed, hence the model is
described by a translationally invariant memory channel. The initial state of the memory is
unknown. After we use our box once, on the second time we face a different quantum box,
with different internal state of memory, which affects the transformation. We cannot access the
memory degrees of freedom at any time, making the uses explicitly dependent on the history.
Thus when collecting events not only you need to store the number of occurrences, also the
ordering of the events may contain important information. The question is how to approach
such data.

To our best knowledge, there is no general way how to do parameter estimation in memory
settings. There has been some interesting studies of hamiltonian estimations with restricted
access [6, 7, 8, 18, 29, 67]. In these works the task was to estimate coupling strengths of
interaction between a set of particles. This set was divided into two subsets, one of which had
the experimenter full control and the rest, which was inaccessible to experimenter, and served
as the memory system. If the subset under control of experimenter possessed a certain simple
property, called infectivity, the experimenter was able to manipulate the inaccessible part, in
order to supplement its relaxation to a desired state, and then obtain the coupling strengths of
the particular model. The work [18] didn’t require the relaxation of inaccessible part, due to
the symmetry of interaction.

Other studies [12] focused on discrimination of combs, where combs are in principle memory
channels with finite length input. They assumed that the experimenter is able to replicate the
comb perfectly, thus this task is equivalent to discrimination of memoryless channels with causal
structure. This structure gives additional resources to the experimenter. One can vary the input
states according to outputs of previous inputs, and thus introducing a different distance measure
on such processes. As a result this distance measure allows a larger set of channels to be perfectly
distinguishable than the usual cb-norm.

63
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Figure 6.1: Estimation scheme of a memory channel. The inputs ωi are drawn from a finite
set of preparations, ωi(k) means i-th input is preparation number k. Then the output ω′

i(k)
is produced and measured with some outcome l. The result of estimation is then a string of
events, where event is a pair (k, l), preparation - outcome.
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Figure 6.2: Inputs are grouped to sequences of equal preparations. Independent of measurement
the result of estimation will be an almost perfect channel.

An estimation scheme of a memory channel is depicted on figure 6.1. The data from esti-
mation are collected in the string of pairs preparation - outcome. Such estimation scheme can
be interpreted as a single measurement of the memory system. This tells us that the string of
observed events cannot contain more information about the initial state of the memory than
one can obtain from a single measurement of the memory system. This is in contrast with
memoryless channels where, depending on the interaction, some nontrivial information can be
obtained about the initial state of memory. Thus the observed string of events only contains
information about the inputs, measurements taken and the interaction.

To illustrate the difficulties with estimation caused by the memory effects, let us have look
on following two examples. They serve as motivation as well as to show the complications we
have to face, when we do not have the ability to repeat experiments independently.

Example 6.1.1 (Shift channel). As was noted in previous chapters (see examples 4.1.3, 4.2.1),
a simple shift channel σ∗1 on a qubit chain is modeled by a concatenated swap collision with
a qubit memory. We will use an estimation procedure illustrated on figure 6.1. Let us have
6 preparations k ∈ {x+, x−, y+, y−, z+, z−, } producing the eigenstates of respective Pauli
matrices with ±1 eigenvalues. Assume that we order the inputs so that first n inputs will be
ωi(x+), 0 < i ≤ n then ωi(x−), n < i ≤ 2 ∗ n and so on, see figure 6.2. Since ω′

i = ωi−1 for all
i > 0 and fix ω0 ≡ ξ, the resulting estimation will converge to an ideal channel. Because most of
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Figure 6.3: Inputs are grouped to sequences of alternating orthogonal preparations. Indepen-
dent of measurement the result of estimation will be a perfect NOT, a not completely positive
mapping, hence unphysical.

the time ω′
i = ωi, only when i = jn for some integer j it does not hold. As the statistics grows

with n these cases become insignificant very fast. The result of estimation is independent of the
details of measurement because of swap interaction.

We could choose a different strategy. We could first alternate x+, x− inputs then alternate
y+, y− and so on. This strategy is depicted on figure 6.3. Surprisingly we will find that any input
state goes to its orthogonal state. The result of estimation would be a non-completely positive
mapping, a perfect NOT gate. We can see that the ordering of inputs can have significant impact
on the result of estimation.

Yet, using a third strategy, we can choose the input states randomly, according to some
discrete distribution with probabilities pk of input being ωi(k). This models a situation when
the memory channel is used for communication, different preparations correspond to distinct
“letters” and are distributed more or less randomly. In this case we find out that on average the
output state of any input ωi is ρ =

∑
pkωi−1(k), the same as the average state of input. Thus

the result of estimation would be a contraction to single state ρ. This is a completely positive
mapping.

For memoryless channels the ordering is not important, and you cannot possibly run into
such problems. As we will see in next example not only ordering of inputs causes trouble.

Example 6.1.2 (Control not channel). Let us have a memory channel with control not interac-
tion Ucnot, initial qubit memory state ξ and first input ω1 = 1/2(I+Z) in the positive eigenstate
of Pauli matrix Z. Let the first measurement by also a perfect S-G measurement along the
z-axis. Let p± denote the probabilities of measuring the qubit aligned or anti-aligned with the
z-axis. Then

p+ = Tr(Ucnot(ξ ⊗ ω1)U †
cnot(IM ⊗ E+)) = 〈0|ξ|0〉

p− = Tr(Ucnot(ξ ⊗ ω1)U †
cnot(IM ⊗ E−)) = 〈1|ξ|1〉 (6.1)

where E± = 1/2(I± Z) are the effects of measurement observable. If the positive outcome was
measured then the state of memory after collision is ξ = 1/2(I+Z) and if the negative outcome
occurred the state would be ξ = 1/2(I − Z). However if memory is in one of those two states,
the channel will behave exactly as unitary one. For the positive result it will be ideal channel
and for the negative result the inputs will experience rotation by Pauli matrix X. The state
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of memory will remain untouched after the first collision. The first outcome will decide how
the channel will behave afterwords. The result of estimation will be either an ideal channel or
unitary rotation by X with probabilities depending on the diagonal of initial state of memory.

In the example we have observed the impact of ordering on the result of estimation. In the
first case we used sequences of equal inputs. By the ordering we introduced a correlation. The
state of memory before collision was in most cases the same as the input. In this sense input
and state of memory were correlated. This happened also in the case of second ordering, when
the state of memory before interaction was perpendicular to input. This relation of memory
and colliding input was there put by hand, by means of the ordering. Thus it would be best to
put the least “information” into the ordering. This can be achieved by the third option, when
we have chosen the ordering to be random. In fact, if we choose random ordering the result of
estimation will be always a completely positive map with a direct connection to interaction.

For further argumentation let us assume that we have a box with initial memory system M
in state ξ ∈ S(M) and an interaction S∗ : T (M⊗A) .→ T (A⊗M). Moreover we have at hand
a set of distinct preparations {k .→ ρk ∈ S(A)} and a measurement with effects El. The idea
is very simple. If the input states occur randomly during the process of estimation, the average
state of memory entering the collision, is independent of the input state entering the collision.
The state of memory conducts a classical random walk. At each step the memory gets kicked,
and the kick depends on the chosen input state k and the outcome of measurement l. This kick
is described by an instrument Ik,l. The random walk is then just a series of these instruments.
Lets denote

ξi =
I{k,l}ij=1

(ξ)

Tr
(
I{k,l}ij=1

(ξ)
) (6.2)

the state of memory after i-th collision, where I{k,l}ij=1
represents the concatenation of instru-

ments of first i kicks. The set of ξi then represents a particular trajectory of evolution of memory
state conditioned to the measured outcomes and particular sequence of input chosen. We can
now define the mean state of memory as

ξ =
n∑

i=1

1

n
ξi, (6.3)

where n is the size of statistics. Since we throw inside the testing states randomly, the average
state of memory entering a collision with a fixed testing state is for n → ∞ also ξ. This is the
same as sampling a random sample from the set of all ξi. For illustration see simulations of such
estimation procedure on figures 6.4 and 6.5.

This leads to

p(k, l) = Tr
(
S∗(ξ ⊗ ρk)(El ⊗ IM)

)
, (6.4)

where p(k, l) is the probability of measuring event (ρk, El). All measured probabilities of events
agree with a memoryless channel:

E∗
1 (ρ) = TrM

(
S∗(ξ ⊗ ρ)

)
, (6.5)
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Figure 6.4: Simulation of distribution of the states of memory during a process estimation.
Memory system is a qubit, interacting with chain of qubits. The interaction is a randomly
chosen two qubit unitary. Testing states are 4 pure states corresponding to effects of a qubit
SIC measurement chosen with equal probabilities and SIC measurement was also used to measure
the outputs. a) Occurrence of memory states ξi in a solid angle on Bloch sphere, b) the same
shown on an actual Bloch sphere. Size of statistics: 100000 events.
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Figure 6.5: The same experiment as in figure 6.4. First row shows occurrences of memory states
ξi entering a collision with a fixed SIC testing state. We can see that this distribution is very
similar for all four SIC testing states. Second row shows the same occurrences of memory states
ξi after the collision with the fixed input state. These distributions are different for every testing
state, and when added together they will reconstruct the distribution of entering states.
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for all ρ ∈ S(A). From the measured data we can actually obtain a series of maps

E∗
[1,m](ρ) = TrM

(
S∗
[1,m](ξ ⊗ ρ[1,m])

)
, (6.6)

just by grouping the inputs to larger clusters, and redefining m uses of the memory channel to
one use. These maps possibly hold more information about S∗ as only E∗

1 , because they reflect
how the inputs get correlated. As was already observed in Example 6.1.2 not all information
about the interaction can be always obtained.

For finite statistics, the accuracy of the maps E∗
[1,m] deteriorates very fast, since the number

of possible events grows exponentially with m. Another issue is that though we know that state
ξ exists, we do not know it. If at least one of the concurrent mappings induced by testing states,

C∗[k](ξ) = TrA
(
S∗(ξ ⊗ ρk)

)
, (6.7)

is contractive, then the composite concurrent channel induced by an infinite input sequence
projects memory to exactly one state, irrespective of initial state and thus events separated by
infinite number of uses become uncorrelated. Due to contractiveness, the state space of memory
is compressed exponentially, thus events separated by finite but large enough sequences will be
negligibly correlated. The average memory state will be then the fixed point of the average
concurrent mapping

C
∗
(ξ) = TrA

(
S∗(ξ ⊗ ρ)

)
. (6.8)

In the case of a pure memory channel with finite dimensional memory and additionally a
distribution of testing states such that

∑
k pkρk = 1/ dimAIA, i.e. the average input state

is a maximal mixture, then also the average output state has to be maximal mixture. The
argumentation is exactly the same as in theorem 5.4.2, the entropy drop of the output is bounded
by the dimension of memory and since this is finite, it has to be zero for infinitely many uses.
Thus the average state of memory has to be such that the channel E∗

1 is unital. In many cases
of pure memory channels it means that the average memory is also a maximal mixture, because
maximal mixture always induces a unital channel, see 2.3.9. However as we will se in the next
section, the converse does not hold. For control unitary interactions, arbitrary state of memory
induces a unital channel.

6.2 Control unitary interaction

In example 6.1.2 we have seen that the result of estimation was a unitary channel, in spite of
that the interaction of memory and input was not factorized. In this section we will prove that
this will be true whenever the interaction is a control unitary interaction, i.e. whenever

U =
dM−1∑

i=0

|i〉〈i| ⊗ Ui, (6.9)

where Ui are unitaries on A. And this result will be irrespective of details of the estimation
procedure. The proof is as follows. Fix any estimation procedure. Given a memory channel, we
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can also define a probability distribution on all possible outcomes that could come out of the
estimation procedure. If we would repeat the same experiment, same initial memory state and
same input sequence, infinitely many times the outcomes of the estimation will be distributed
according to this probability distribution.

The only relevant parameters of memory are the diagonal elements of memory state ξ in
the {|i〉} basis as was already observed in (4.13). If, say 〈0|ξ|0〉 = 1 and all others are zero
the probability distribution over possible outcomes, P0, is as if the box was memoryless unitary
evolution U0 and similarly for other diagonal elements with distributions Pi. Due to linearity of
the whole procedure, for a general state ξ the probability distribution over possible outcomes,
Pξ, will be the convex combination of Pi

Pξ =
dM−1∑

i=0

〈i|ξ|i〉Pi. (6.10)

Thus only outcomes belonging to unitary channels Ui have solid probabilities. If the estimation
procedure was informationally complete and statistics infinite, the result of estimation will be a
memoryless unitary channel Ui with probability 〈i|ξ|i〉. For any finite statistics such estimation
cannot disprove that the channel is not one of the Ui thus asymptotically will converge to the
anticipated result.

In terms of the one shot measurement of the memory, the estimation is equal to measurement
of the memory in the basis {|i〉}, assuming all Ui are different. If the input is an eigenstate of
Ui, call it |ψ〉 and you measure on the output a perpendicular state |ψ⊥〉. Then the result of
estimation cannot be Ui, because it prohibits such events. The diagonal term ξii will be set to
zero after such event occurs. This has an interesting application. Given imperfect measurements
on A one can attain asymptotically a projective measurement on M in aforementioned basis, by
doing tomography of the memory channel. The off-diagonal terms of initial memory state go to
zero exponentially and the diagonal terms ξii are proportional to the probability of measuring
the particular chain of events in unitary channel Ui. In the limit of many uses, the memory will
be projected to one pure diagonal state.

Note that a special case of a control unitary interaction is factorized interaction

U = W ⊗ V =
dM−1∑

i=0

|ψi〉〈ψi| ⊗ eiφiV, (6.11)

where |ψi〉 and eiφi are the eigenvectors and eigenvalues of W . For these interactions the result
is completely obvious and natural.

We can use similar argumentation for a larger class of interactions of following form

U =
dM−1∑

i=0

|π(i)〉〈i| ⊗ Ui, (6.12)

where π(i) gives another member of the basis of memory. As in the previous case, the only
relevant parameters of memory are the diagonal elements in the {|i〉} basis. Now the pure
diagonal state of memory is not stationary but constantly cycles through the basis states. Thus



CHAPTER 6. ESTIMATION OF MEMORY CHANNELS 70

the sequence of events will correspond to a cyclical change of unitaries. In fact this is again a
control unitary channel if we group the inputs to larger sequences, this is when π · · ·π(i) = i
again, i.e. when the memory makes full cycle and returns to the original state. Then

U[1,n] =
dM−1∑

i=0

|i〉〈i| ⊗ Ui ⊗ Uπ(i) ⊗ Uπ(π(i)) ⊗ . . . , (6.13)

where n is the length of the cycle.

6.3 2D case study

We are going to thoroughly examine the simplest example when we have a two dimensional
memory system and sequence of two dimensional inputs combined with a unitary interaction.
Let us first start with unitary interaction of form

U = D = ei
1
2 (αxX⊗X+αyY⊗Y+αzZ⊗Z), (6.14)

with −π ≤ αi ≤ π. Given this U , our task is to estimate the angles αi. Due to the symmetries
of the problem, not all information can be obtained. Since we restrict ourselves to have access
only to the input - output part, and have no access to memory degrees of freedom, the class of
all interaction that will yield the same I-O relation is (see 5.1.7):

U = ei
1
2 (αxX

′⊗X+αyY ′⊗Y+αzZ′⊗Z) ≡ D′, (6.15)

where X ′ = γXγ† and others are just unitarily conjugated Pauli matrices with arbitrary unitary
γ. This implies that any two signs of the angles αi can be flipped simultaneously by choosing
one of the Pauli matrices as the unitary γ. Thus we can only estimate the sign of the product
of all three angles, αxαyαz, which is invariant under such conjugation. Furthermore the shift
by π of all three angles simultaneously introduces only a global phase on the unitary U , which
is undetectable.

We will use estimation scheme described in previous section 6.1, randomizing set of prepa-
rations and measurements. We have a set of testing preparations which prepare testing states
{ρk} that we input randomly with probabilities pk and a set of measurement observables. Fix
the average state of memory as

ξ =
1

2
(I+mxX +myY +mzZ), (6.16)

for suitable mx,my,mz. Then any probability p(k, l) of some event (k, l) is consistent with a
channel in vector representation

A(E∗
1 ) = A1 =





1 0 0 0
mxsysz cycz mzcysz −mysycz
mysxsz −mzcxsz cxcz mxsxcz
mzsxsy mycxsy −mxsxcy cxcy



 , (6.17)
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where the matrix is written with respect to the traceless operator basis of Pauli matrices and
ci = cosαi and si = sinαi.

The diagonal elements of the vector representation of channel E∗
1 are independent of the

average state of memory. Thus we can prepare the two testing states ρi,± = 1/2(I ± σi) with
random probability pi,+ = pi,− = 1/2 and a S-G experiment along the same axis with effects
Ei,± = 1/2(I ± σi) where σi is one of the Pauli matrices. The appropriate diagonal element is
then

A1
ii = 1/2Tr(E∗

1 (σi)σi) = 1/4
(
Tr(E∗

1 (ρi,+)Ei,+) + Tr(E∗
1 (ρi,−)Ei,−)

−Tr(E∗
1 (ρi,+)Ei,−)− Tr(E∗

1 (ρi,−)Ei,+)
)

= 1/2(p(i+,i+) + p(i−,i−) − p(i+,i−) − p(i−,i+)), (6.18)

where p(·,·) is the probability of measured event. If all A1
ii, then

cosαx =

√
A1

yyA
1
zz

A1
xx

cosαy = sgn(A1
zz)

√
A1

xxA
1
zz

A1
yy

cosαz = sgn(A1
yy)

√
A1

xxA
1
yy

A1
zz

, (6.19)

where cosαx can be always taken positive because of the π-shift symmetry mentioned earlier,
The sgn(A1

ii) is the sign of the diagonal element A1
ii. The last missing piece of information, the

sign of αxαyαz cannot be read out from the local channel. It can be obtained from the map
on two subsequent inputs, E∗

[1,2]. We do not need the whole E∗
[1,2]. It is enough to look at an

posterior mapping, the channel after fixed input ρi,±:

E∗
2 (ω|ρi,±) = Tr1

(
E∗
[1,2](ρi,± ⊗ ω)

)
. (6.20)

For example the vector representation of channel after the input ρx,+ is

A
(
E∗
2 (·|ρx,+)

)
=





1 0 0 0
m′

xsysz cycz m′
zcysz −m′

ysycz
m′

ysxsz −m′
zcxsz cxcz m′

xsxcz
m′

zsxsy m′
ycxsy −m′

xsxcy cxcy





=: A2|x+, (6.21)

where m′ describes the posterior average state of memory after the input ρx+:

m′
x = cyczmx + sysz

m′
y = cxczmx + sxcz

m′
z = cxcymx + sxcy. (6.22)
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If we also calculate A2|x− and subtract it from A2|x+ we will get

1

2
(A2|x+ −A2|x−) =: A2|X , (6.23)

where

A2|X =



0 0 0 0
s2ys

2
z 0 −c2yszsxmy −c2zsxsymz

s2xczszmz cxcyszsxmy 0 czsxsysz
−cys2xsymy) cxczsysxmz cysxsysz 0



 . (6.24)

The sign of αxαyαz is then obtained from the sign of A2|X
yz or A2|X

zy irrespective of the average
state of memory. The probabilities we need to measure are

A2|x+
yz = 1/2Tr(E∗

2 (Z|ρx,+)Y ) = 1/4
(
Tr(E∗

2 (ρz,+|ρx,+)Ey,+) + Tr(E∗
2 (ρz,−|ρx,+)Ey,−)

−Tr(E∗
2 (ρz,+|ρx,+)Ey,−)− Tr(E∗

2 (ρz,−|ρx,+)Ey,+)
)

= 1/2(p(z+,y+|ρx,+) + p(z−,y−|ρx,+) − p(z+,y−|ρx,+) − p(z−,y+|ρx,+)), (6.25)

and analogously for

A2|x−
yz = 1/2(p(z+,y+|ρx,−) + p(z−,y−|ρx,−) − p(z+,y−|ρx,−) − p(z−,y+|ρx,−)),

(6.26)

where p(a, b|c) is the posterior probability of event (a, b) right after c occurred. This requires
that the average state of memory has to be the same for both maps during the estimation.

If A1 has zero elements on diagonal then at least two of them have to be zero. This is when
at least one of the αi = ±π/2. One can get from (5.90) the only remaining nonzero product
A1

ii = ckcl. To obtain ck and cl we have to look in the posterior part of E∗
[1,2]:

A2|l±
l,0 =

1

2

(
Tr

(
E∗
2 (1/2I|ρl,±)ρl,+

)
− Tr

(
E∗
2 (1/2I|ρl,±)ρl,−

))
=

p(l+, l + |ρl,±) + p(l−, l + |ρl,±)− p(l+, l − |ρl,±)− p(l−, l − |ρl,±)
= sisk(cickml ± sisk) (6.27)

= ±s2k, (6.28)

where the last equality is because ci = 0 and s2i = 1. In case ci = ck = 0 we will get a swap of
classical information, a memory channel with depth δ = 2 similar to the one in example 5.3.2,
where the l-component is swapped to the l-component of the subsequent input. And finally if
all ci = 0 we have a memory channel with depth δ = 1, what is a swap-like interaction, which
can be easily checked on the posterior maps. In this case also the sign of αxαyαz cannot be
measured, because it only introduces a global phase shift on the swap interaction.

Thus, a good strategy is following. For every i, input randomly states ρi,± with equal
probabilities 1/21 and do a measurement along the same axis with effects Ei,±, in order to

1The probabilities can be arbitrary, however it is good to keep them equal to have comparable statistics of
events.
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obtain the diagonal elements of A1 from (6.18) and the elements of posterior map using (6.27):

1

2
(A2|l+

l,0 −A2|l−
l,0 ) = s2i s

2
k. (6.29)

Then, when lets say cz += 0, we randomly input four 2-qubit sequences ρx,+ ⊗ ρz,+, ρx,− ⊗ ρz,+,
ρx,+ ⊗ ρz,− and ρx,− ⊗ ρz,− with equal probabilities 1/4 and measure the second output along
the y- axis to measure the probabilities in (6.25) and (6.26) for estimating the czsxsysz and
subsequently the sign of αxαyαz. Note that this sign is unobservable if at least one of the angles
is a multiple of π.

6.3.1 Adding local unitaries

Let

U = (I⊗ V2)D
′(W1 ⊗ V1), (6.30)

with unknown unitaries Vi. The task is again to estimate the angles αi and the unitaries Vi and
W1.

The vector representation of E∗
1 or of any posterior channel is:

A1 = v2





1 0 0 0
m′

xsysz cycz m′
zcysz −m′

ysycz
m′

ysxsz −m′
zcxsz cxcz m′

xsxcz
m′

zsxsy m′
ycxsy −m′

xsxcy cxcy



 v1, (6.31)

where vi are the three dimensional rotations of operator space corresponding to Vi andm′ = w1m
specifies the average state of memory entering the collision rotated by the unitary W1.

We divide the problem into two parts when the average concurrent mapping C
∗
is contractive

and when it is not. The concurrent mapping with input state ω = 1/2(I+ rxX + ryY + rzZ) is

A(C
∗
) =





1 0 0 0
r′xsysz cycz r′zcysz −r′ysycz
r′ysxsz −r′zcxsz cxcz r′xsxcz
r′zsxsy r′ycxsy −r′xsxcy cxcy



w1 =: C, (6.32)

where !r′ = v1!r and w1 is the rotation corresponding to W1. If C is contractive for all input
states, then it is contractive also for !r = !0 and this is contractive only if all three ckcl are less
then one in absolute value. This means that at least two αi are not ±kiπ for ki ∈ N. If at least
one ckcl is 1, then C is not contractive.

Case A: C is contractive for all input states

Let us assume that the average input state is complete mixture, i.e. that !r = !0. Then C
∗
is

unital, see Remark 2.3.9. Thus the unique fixed point of C
∗
is maximal mixture and so is the
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average state of memory. Then mi = 0 and (6.31) becomes

A1 = v2





1 0 0 0
0 cycz 0 0
0 0 cxcz 0
0 0 0 cxcy



 v1. (6.33)

The elements |cick| are singular values of the map A1. However the singular value decomposition
has to be done in such way that vi are real and det vi = 1, because Vi are unitary. This way
the singular values can’t always be all positive. Note that the way how we choose the signs
and ordering of singular values and the vi is not unique, however (6.33) will hold for any chosen
option, and the estimated U is unique up to known symmetries. For example if two angles are
equal in absolute value, then the rotations vi are fixed up to rotations on this subspace. Having
obtained vi, and thus also Vi one can do the estimation in the same manner as without the local
unitaries, just by canceling them out with appropriate unitary rotations on inputs and outputs:
U → (I⊗ V †

2 )U(I⊗ V †
1 ).

The unitary W1 can be then extracted from posterior mappings, where the average posterior
state of memory entering the collision is m′:

m′ = w1∆v1!r, (6.34)

where

∆ =




sysz 0 0
0 sxsz 0
0 0 sxsy



 , (6.35)

and !r is the Bloch vector of input after which the posterior mapping is taken. The mapping
then looks exactly as in (6.31). We need three linearly independent vectors !r and respective
posterior mappings to calculate w1 from them.

Note that if cx = cy, then by symmetry you can adjust sx = sy by suitably changing the
sign of sz. Thus you can pose αx = αy. Then D commutes with rotations on xy subspace and
only the products of V1V2, W1V1 and V2W1 can be fixed on this subspace.

Problems arise when two or three of the singular values are zero. Then we cannot determine
fully the vi from E∗

1 . Lets say that only αx = ±π/2, then A1
11 is the only nonzero singular value.

Then vi are know up to arbitrary rotation in yz-plane si, such that v1 .→ s1v1 and v2 .→ v2s2.
The vector representation of a posterior map after input ω = 1/2(I + rxX + ryY + rzZ) and
average memory in maximal mixture is

A2|ω = v2s2





1 0 0 0
m′

xsysz cycz m′
zcysz −m′

ysycz
m′

ysxsz 0 0 m′
xsxcz

m′
zsxsy 0 −m′

xsxcy 0



 s1v1, (6.36)

where m′ is the average posterior state of memory, same as in (6.34) and sx = ±1. Let us write
A2|ω as 2× 2 block matrix:

A2|ω =: v2

(
B D
E C

)
v1, (6.37)
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where particularly

C = s2

(
0 m′

xsxcz
−m′

xsxcy 0

)
s1. (6.38)

Then the singular values of C are |m′
xsxcz| and |m′

xsxcy|. The rotations si can be fixed by the
singular value decomposition of C in such a way that det si = 1 plus adding a X flip to S1 or
S2 so that C is anti-diagonal. The ratio of the singular values is |cy/cz|, together with cycz this
gives you the separate values for |cy| and |cz|. Note that the signs can be taken arbitrary. The
parameters of w1 can be calculated from the posterior mapping for three linearly independent !r
as well.

If two angles are ±π/2 and average memory state is complete mixture then E∗
1 has all singular

values zero and we have to look solely on the posterior mappings. Assuming cx = cy = 0, we
will get that

A2|ω = v2





1 0 0 0
m′

xsysz 0 0 −m′
ysycz

m′
ysxsz 0 0 m′

xsxcz
m′

zsxsy 0 0 0



 v1 (6.39)

=

(
1 0
!t T

)
, (6.40)

where sx = ±1 and sy = ±1. From this we can get one row of v1 since now every row of T is a
scaled (in this case third) row of v1. If the scale is 0 for any ω then also the third angle is ±π/2
and we have a swap gate, this will be dealt with later.

Let the known row of v1 be !(v1)z. We set !r = !(v1)z in ω and we will get that m′ = w1.(0, 0, 1).
The norm of vector !t is independent of v2 and is

‖ !t ‖2 = ‖ v2∆w1.(0, 0, 1) ‖2 = (w1)
2
zzc

2
z + s2z. (6.41)

On the other hand the squared Hilbert-Schmidt norm of T is

‖ T ‖2HS= (w1)
2
zzc

2
z. (6.42)

Thus

s2z = ‖ !t ‖
2− ‖ T ‖2HS . (6.43)

The rotations v1 and v2 can be further adjusted by decomposing T into the form of (6.39).
The rotation w1 can be then adjusted from !t again. However since cx = cy, only the products
of the matrices can be fixed on the xy subspace.

In case all ci = 0 we have a swap interaction with additional rotation on output, and this
rotation can be checked on the posterior maps where !t = v2∆w1∆v1!r.

Adding the last local unitary W1 from 5.24 to interaction can only change the average state
of memory and average posterior state of memory, thus the rotation can be extracted from this
information, in the same manner as in previous cases. We will get that !r′ = w1v1!r, where w1 is
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the 3d rotation corresponding to W1. The vector !r′ is obtained from any posterior map, if we
know the sk. Additional freedom is again introduced when some ci = 0, as in previous cases.

Since we have to estimate fully the map A1, the best strategy is to use as few as possible
input states and effects and maintain the average input state in complete mixture. Posterior
maps after any operator are then calculated as linear combination of measured posterior maps.

Case B: C is not contractive

The concurrent mapping C
∗
is not contractive when at least one of the ckcl = ±1. Lets say that

αx = kxπ and αy = kyπ, then we have

C =





1 0 0 0
0 q(ky)cz r′zq(ky)sz 0
0 −r′zq(kx)sz q(kx)cz 0
0 0 0 q(kx)q(ky)



w1, (6.44)

where q(ki) is the sign of ci. This is not a contractive mapping for any input state ω since it
has one singular value equal to 1.

The non-local part of U can be written as

ei
1
2 (αxX⊗X+αyY⊗Y+αzZ⊗Z) = ei

1
2αzZ⊗ZΓ(kx, ky), (6.45)

where Γ(kx, ky) = ei
1
2 (kxπX⊗X+kyπY⊗Y ) is up to global phase either I⊗ I, X⊗X, Y ⊗Y or Z⊗Z

depending on the values of kx, ky. Furthermore, ei
1
2αzZ⊗Z is a control unitary interaction:

ei
1
2αzZ⊗Z = cos

αz
2
I⊗ I+ i sin

αz
2
Z ⊗ Z =

= |z+〉〈z + | ⊗ ei
1
2αzZ + |z−〉〈z − | ⊗ e−i 12αzZ . (6.46)

Thus any U can be written as

U = (|z+〉〈z + | ⊗ V+ + |z−〉〈z − | ⊗ V−)(W
′
1 ⊗ I), (6.47)

where

W ′
1 = γ(kx, ky)W1,

V± = V2e
±i 12αzZγ(kx, ky)V1 (6.48)

and

γ(kx, ky)⊗ γ(kx, ky) := Γ(kx, ky). (6.49)

If W1 is X,Y or eiθZ then U is either a control unitary interaction or a generalized control
unitary interaction discussed in Section 6.2. Depending on the values of kx, ky and W1 we will
either estimate V+ or V− when U is control unitary or V± ⊗ V∓ on two subsequent inputs if U
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is the generalized control unitary. In the latter case we are able to extract the angle αz from
eigenvalues of operator

V+V
†
− = V2e

i 12αzZγ(kx, ky)V1V
†
1 γ(kx, ky)

†ei
1
2αzZV †

2

= V2e
iαzZV †

2 . (6.50)

If W1 is an arbitrary rotation, the mapping C
∗
is not contractive but still has a unique fixed

point, the complete mixture, which is the same for any input state distribution. To obtain V1,
V2 and αz we just need to do the singular value decomposition as in Case A. The posterior
mappings A2|ω are equal to A1 because concurrent channel C

∗
is unital for any ω, and thus the

posterior state of memory is again complete mixture.
To obtain the three independent parameters of W1 we will have to look at individual prob-

abilities of joint events. It turns out that the probabilities depend only on two parameters.
Let

W1 =

(
eia cos c −e−ib sin c
eib sin c e−ia cos c

)
, (6.51)

where a, b, c ∈ R. Then every probability of any sequence of events is independent of b. This is
because, when ignoring W1 the probability of any event depends only on the diagonal elements
of memory. W1 just shuffles the diagonal and off-diagonal elements. Everything what exits the
diagonal due to action of W1 will gain a phase eib and everything what enters the diagonal
will gain an opposite phase e−ib. If we start in complete mixture, then the number of “exits”
and “enters” has to be the same, and the phase will cancel. The remaining parameters can be
obtained from the probabilities of double and triple events, for example

p(y+, y + |x+, x+) =
1

4
(1 + cos 2c sin2 αz) (6.52)

p(y+, y+, y + |x+, x+, x+) =
1

32

(
5− cos 2αz + 2 sin2 αz(4 cos 2c

+cos 4c− 2 cos 2a cosαz sin
2 2c)

)
, (6.53)

where p(y+, y + |x+, x+)/p(y+, y+, y + |x+, x+, x+) is the probability of measuring two/three
times consecutively the event (x+, y+).

6.3.2 Algorithm in a nutshell

The algorithm can be summarized as following cooking receipt:
Task:
Given a pure quantum memory channel with unitary 2 qubit interaction U , qubit input, output
and memory system, estimate U .
Ingredients:

• A black box with quantum input and quantum output

• Set of qubit testing states (preparations) {ρk}Nk=1 such that ρk linearly span the whole
operator space
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• Informationally complete set of measurement observables {Ak}Nk=1

• Generator of N random numbers with known probability distribution {pk}Nk=1 such that∑
k pkρk = 1/2I

Directions

1. Generate a random number x ∈ {1, . . . , N};

2. prepare state ρx, input it into the black box;

3. measure observable Ax with outcome y on the output and record measured event (x, y);

4. repeat steps (1)-(3) and keep the time-ordered list of events.

Serving instructions: The measurement observables Ak can be the same for every testing
state or different. They should be such that one could use them for estimation of memoryless
channels. The only difference from estimation of memoryless channels is that you need to keep
track of the ordering of events.

In the two qubit unitary case it is sufficient to keep track of frequencies of at most three
subsequent events. From the frequencies of single events calculate, using the equation (3.22),
the channels E∗

1 vector representation A1. Using the same equation, but post selected data,
calculate the posterior channels E∗

2 (·|ρk) (see (6.20)) and their vector representation A2|ρk . The
data for posterior channel A2|ρk consists of frequencies of single events such that the preceding
event had a specific fixed input ρk. Since the average input state is complete mixture the map
A1 has to be unital. This means that the matrix elements A1

i0 should be zero for i > 0. However
due to finite statistics the calculated mapping will be only close to unital. The numbers A1

i0 can
serve as a rough estimate on the error of the matrix elements. Two situations emerge:
Case A:

Posterior maps A2|ρk are not unital. In this case the concurrent mapping on memory is
contractive and the average memory state is complete mixture. Next step is to decompose A1 as
in equation (6.33), what is in essence a singular value decomposition, using only real rotations v1
and v2. Then from singular values one can calculate the parameters αi via the equation (6.19).
If some of the singular values are zero one has to calculate also the posterior mapping in (6.36),
for suitable conditional input state ω. This can be achieved by linearity because ρk span the
whole operator space.
Case B:

Posterior maps A2|ρk are very close to unital. In this case the interaction U is a control
unitary with additional unitary rotation on memory W1 as in (6.47). If A1 is unitary then W1

can be set to identity and we know that U is a control unitary, though we only know V+ or
V−. If A1 is not unitary, but the channel on every even or odd input is unitary then W1 is a
unitary flip with arbitrary phases and V+ and V− can be extracted from the even / odd event
statistics. If the even / odd channels are equal V+ and V− can be obtained from the singular
value decomposition (6.33) because the average state of memory is again complete mixture.
The parameters of W1 can be then calculated from probabilities of triple events using equations
(6.52) and (6.53).



Chapter 7

Summary

Memory channels present a compelling model capable to describe the laboratory experiments
in their full generality. They naturally describe the causal effects of how experiments in past
can possibly affect the experiments in future. This demands novel protocols for interpretation
of data obtained from experiments, where the memory plays an important role. The structural
properties of memory channels and memory effects also deserve thorough investigation and are
subject of this thesis together with the estimation.

Structural properties

We have shown that 1D quantum cellular automata can be translated into strictly forgetful pure
memory channels, up to a causal shift. This is not surprising, since memory channels capture
all causal processes and quantum cellular automata can be made causal with appropriate shift.
However we have also found a very natural interpretation of the index of QCA in the language of
memory channels. The index was originally defined in [25] as a locally computable invariant of
a QCA. We have shown in [27] that this local property of any causal QCA is equal to a minimal
dimension of memory system of a memory channel required to implement the automaton.

Memory effects

We have defined and investigated the depth of a memory channel. We have shown that it is
equivalent to strict I-O forgetfulness, thus simplifying the criteria for strict I-O forgetfulness.
In [72] we have identified all pure qubit memory channels with qubit memory system that have
finite depth. In this qubit case we have shown that if a memory channel has finite depth, then
the depth is less or equal to 2.

We have also defined and studied the concept of repeatable maps in memory channel setting,
see ref [58]. We have shown that if a map has a repeatable implementation, then it is necessary
unital. In case of qubit maps, unitality implies also existence of a repeatable implementation
of the map. Furthermore, any random unitary map has repeatable implementation via control
unitary interaction with memory system. It remains a question whether there exists any other
repeatable implementation of unital channels which would implement also other unital channels,
not only random unitary.

79
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Thirdly, in [71], we have examined the possibility of simulating open quantum system dy-
namics via collision models. We have observed that correlations in environment allow us to
model certain non-Markovian dynamics resulting into indivisible channels. Again in qubit case,
we have shown that all indivisible channels can be a result of such dynamics, as well as any
random unitary, indivisible or divisible, channel in arbitrary dimensions.

Estimation of memory channels

In [73], we have described a method to determine the interaction parameters of a quantum
process with memory. The estimation procedure is the same as in the memoryless case, but
with randomizing over all possible estimation events during the estimation procedure. No a
priori knowledge about the initial state of memory is required. In memoryless case the order
of events does not play a role and one needs to record only the statistics for single events of
estimation procedure. On the other side, for memory channels, the ordering plays a vital role
and additional information is stored in the statistics of consequent events.

We have thoroughly examined the 2 qubit case where we have explicitly identified the set of
all parameters that can be obtained from the input-output relation and described how to obtain
these parameters. We have shown that in this case it is enough to gather the statistics of at
most three consequent events.

The field is still young and promising. There are many interesting ideas to pursue and topics
to explore within quantum cellular automata and memory channels.



Appendix A

Hilbert space refresher

A.1 Hilbert space

Let H be a complex vector space.

Definition A.1.1 (Inner Product). A complex valued function 〈·|·〉 on H×H is called an inner
product on H if it satisfies following three conditions for all vectors φ, ψ, θ ∈ H and c ∈ C:

• 〈φ|φ〉 ≥ 0 if φ += 0 - positive definiteness

• 〈φ|ψ + cθ〉 = 〈φ|ψ〉+ c〈φ|θ〉 - linearity in second argument

• 〈φ|ψ〉 = 〈ψ|φ〉 - conjugate symetricity

We say that two vectors φ, ψ += 0 of an inner product space H are orthogonal iff 〈φ|ψ〉 = 0.
A set X ⊂ H is orthogonal set if any pair of vectors from X is orthogonal.

Definition A.1.2 (Finite Dimensional space). The inner product space H is of dimension
d ∈ N, d < ∞ if there does not exist a orthogonal set of k vectors such that k > d but a
orthogonal set of d vectors exists. If no such d exists, the space H is infinitely dimensional. Any
set of d orthogonal vectors forms a (unnormed) basis in d-dimensional Hilbert space.

A complex vector space H equipped with inner product is a normed space with a norm
defined as:

Definition A.1.3 (Canonical Norm). The canonical norm of a vector ψ ∈ H with respect to
inner product on H is

‖ ψ ‖ ≡ 〈ψ|ψ〉
1
2 . (A.1)

Normed space is complete if every Cauchy sequence is convergent and separable if it has a
countable dense subset.

Definition A.1.4 (Hilbert Space). Any complete separable inner product space with respect
to the norm A.1 is a Hilbert space.
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Every finite dimensional inner product space is separable and complete and thus a Hilbert
space. In this work all Hilbert spaces will be mostly finite dimensional unless explicitly stated.

Definition A.1.5 (Basis). Every set of d orthonormal vectors {ψi} in Hilbert space H, where
d is the dimension of this Hilbert space is a basis of this Hilbert space. Any vector φ can be
then expressed as

φ =
d∑

i=1

ciψi, (A.2)

where ci = 〈ψi|φ〉.

Remark A.1.6 (Cauchy-Schwartz Inequality). For every inner product space following inequal-
ity holds: if ψ, φ ∈ H then

|〈φ|ψ〉|2 ≤ 〈φ|φ〉〈ψ|ψ〉. (A.3)

The equality happens only if φ and ψ are linearly dependent, ie. φ = cψ for some c ∈ C.

Definition A.1.7 (Linear Functional, Dual Space). A linear mapping f from a complex vector
space V to the field of complex numbers is called a linear functional. If this V has norm defined
we can construct the set of all continuous linear functionals on V called the dual space V ∗.
This is also a vector space where the linear structure can be defined pointwise: (f1 + cf2)(v) =
f1(v) + cf2(v) for all v ∈ V and normed with norm

‖ f ‖ := sup
v

|f(v)|
‖ v ‖ . (A.4)

In Hilbert space H every vector φ defines such linear functional by the formula

fφ = 〈φ|ψ〉 (A.5)

for every ψ ∈ H.

Lemma A.1.8 (Riesz). Let f ∈ H∗, then there exists a unique vector φ ∈ H such that

f(ψ) = 〈φ|ψ〉 =: fφ(ψ) (A.6)

for every ψ ∈ H. Moreover ‖ fφ ‖ = ‖ φ ‖.

Remark A.1.9 (Dirac Notation). A single vector ψ ∈ H can be written as |ψ〉 and is called as
ket vector. Symbol 〈φ| will denote a linear functional:

ψ .→ 〈φ|ψ〉, (A.7)

and is called bra vector. The inner product 〈φ|ψ〉 will be then called a bra(c)ket.
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A.2 Linear operators on Hilbert spaces

Definition A.2.1 (Linear operator). We call a mapping A : H .→ H linear if

A(pψ + qφ) = pAψ + qAφ, (A.8)

for every ψ, φ ∈ H and every p, q ∈ C.

Definition A.2.2 (Bounded operator). We call a linear mapping A : H .→ H an operator. An
operator A is bounded if there exists such number t <∞ that

‖ Aψ ‖ ≤ t‖ ψ ‖ (A.9)

for all ψ ∈ H. The set of all bounded operators on H is L(H). This set has a structure
of a complex vector space. In finite dimensional Hilbert space the elements of L(H) can be
represented by square matrices with finite matrix elements Md(C).

Definition A.2.3 (Operator Norm). The norm of bounded operator A is

‖ A ‖∞ = sup
ψ

‖ Aψ ‖
‖ ψ ‖ . (A.10)

Definition A.2.4 (Adjoint operator). For every operator A ∈ L(H) we can define the adjoint
operator A† as

〈φ|A†ψ〉 = 〈Aφ|ψ〉 (A.11)

for all ψ, φ ∈ H. For every A, (A†)† = A.

Definition A.2.5 (C∗-algebra). A C∗-algebra A is an associative algebra over complete normed
complex vector space, equipped with a † involution such that

(A+ cB)† = A† + cB† (A.12)

(AB)† = B†A† (A.13)

(A†)† = A (A.14)

‖ A†A ‖ = ‖ A ‖‖ A† ‖, (A.15)

for every c ∈ C and A,B ∈ A.

The algebra of bounded operators L(H) over Hilbert space H together with the † operation
and operator norm ‖ · ‖∞ is a C∗-algebra and conversely every C∗-algebra can be viewed as
subalgebra of operators over some suitable Hilbert space. We call a C∗-algebra A unital if it has
identity.

Definition A.2.6 (Self-adjoint operator). Let A ∈ L(H). If A† = A we call such operator
self-adjoint. The set of all self-adjoint operators is LS(H).
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For every self-adjoint operator A we know that 〈ψ|Aψ〉 is real:

〈ψ|Aψ〉 = 〈Aψ|ψ〉 = 〈ψ|A†ψ〉 = 〈ψ|Aψ〉. (A.16)

Definition A.2.7 (Positive operator). We call an operator A ∈ L(H) positive if for every
|ψ〉 ∈ H

〈ψ|Aψ〉 ≥ 0. (A.17)

If A is an positive operator, we write A ≥ O.

It directly follows that positive operators are self-adjoint. It also follows that A†A is a
positive operator since

〈ψ|A†Aψ〉 = 〈Aψ|Aψ〉 = ‖ Aψ ‖2 ≥ 0 (A.18)

Lemma A.2.8 (Square root lemma). Let A ∈ LS(H) such that A ≥ O. Then there is a unique
positive operator A1/2 such that A1/2A1/2 = A. The operator A1/2 is called a square root of A.

Definition A.2.9 (Absolute value). Absolute value of an operator A ∈ L(H) is |A| := (A†A)1/2.

Definition A.2.10 (Trace of a bounded operator). We define a trace of a bounded operator
A ∈ L(H) as

Tr(A) :=
∑

i

〈ψi|Aψi〉, (A.19)

where {|ψi〉} forms an orthonormal basis on H.

Definition A.2.11. The set of all operators A ∈ L(H) for which Tr(|A|) <∞ is called a trace
class and is denoted as T (H).

The reason why we insist that the trace of absolute value of operator exists is that in infinite
dimensions this ensures that the trace is unitarily invariant.

Definition A.2.12 (Trace norm). Trace norm of an operator A ∈ T (H) is

‖ A ‖tr ≡ Tr|A| = Tr
√
AA†. (A.20)

Definition A.2.13 (Hilbert-Schmidt product). We can define an inner product on T (H):

Tr[A†B] =: 〈A|B〉HS. (A.21)

Hence T (H) is also a Hilbert space in finite dimension. Given that {|ψi〉} is an orthonormal
basis in d-dimensional H we can define a d × d dimensional orthonormal basis on T (H) as
{|ψi〉〈ψj |} and every trace class operator can be expresed as

A =
∑

ij

aij |ψi〉〈ψj |, (A.22)
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where aij = Tr[(|ψi〉〈ψj |)†A] = 〈ψi|Aψj〉. Thus T (H) can be identified with the set of d × d
complex matrices Md(C). Let ajk be the matrix entries of an operator A ∈ T (H). Arbitrary
linear functional f : T (H) .→ C can be written as

f(A) = f(
∑

ij

aij |ψi〉〈ψj |) =
∑

ij

aijf(|ψi〉〈ψj |)

=
∑

ij

aijsij = Tr(AS). (A.23)

Every linear functional on T (H) is thus represented by matrix S ∈Md(C) via the trace formula
A.23. This is consistent with the Riesz lemma A.1.8 if we equipMd(C) with the Hilbert-Schmidt
inner product. Let us note that in finite dimensions L(H) ≡ L(H)∗ ≡ T (H) ≡ T (H)∗.

When we move into infinite dimensional case L(H) and T (H) are no longer Hilbert spaces.
However T (H) is still a normed vector space and is an ideal in L(H) so that Tr(BA) < ∞ for
every A ∈ T (H) and B ∈ L(H). For each B ∈ L(H) we define a linear functional fB on T (H)
with

fB(A) = Tr(BA), (A.24)

for every A ∈ T (H). Thus T (H)∗ = L(H) for infinitely dimensional H.
The reason why T (H) is not a Hilbert space in infinite dimensions is that in fact it is

too small. It turns out that the Hilbert-Schmidt inner product makes sense for a larger class
of operators than trace class operators. Operators which satisfy the Hilbert-Schmidt norm
‖ A ‖HS :=

√
Tr(A†A) ≤ ∞ form a Hilbert space.

Definition A.2.14 (Unitary operator). We call an operator U unitary if

UU † = U †U = I. (A.25)

The inner product in H is invariant under unitary change of vectors:

〈Uψ|Uφ〉 = 〈U †Uψ|φ〉 = 〈ψ|φ〉. (A.26)

The trace of an operator is invariant under unitary change of basis in finite dimensions, due
to rotational symmetry of trace on matrices.

Tr(A) =
∑

i

〈Uψi|AUψi〉 = Tr(U †AU)

= Tr(UU †A) = Tr(A) (A.27)

Definition A.2.15 (Eigenvalues and eigenvectors). A complex number λ ∈ C is an eigenvalue
of a bounded operator A ∈ L(H) if there exists a vector |λ〉 ∈ H, |λ〉 += 0 such that A|λ〉 = λ|λ〉.
The vector |λ〉 is then the eigenvector of A associated with the eigenvalue λ.

Definition A.2.16 (Spectrum of bounded operators). Spectrum of an operator A ∈ L(H) is
the set of all λ ∈ C such that the operator

R(λ) = (A− λI)−1 (A.28)

is not a bounded operator in L(H).
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In finite dimensional case, multiplicity of eigenvalue λ is the dimension of subspace spanned
by all eigenvectors associated with this eigenvalue. All eigenvalues of A are in spectrum of A.
For finite dimensional H also the converse holds. If multiplicity of eigenvalue λ is greater than
1, we call this eigenvalue degenerate.

Unitary conjugation preserves the eigenvalues of operator A ∈ L(H). Let λ be an eigenvalue
of A associated with vector |λ〉. Then U |λ〉 is eigenvector of UAU † associated with λ:

UAU †U |λ〉 = UA|λ〉 = λU |λ〉. (A.29)

Let |λ1〉, |λ2〉 be eigenvectors of A with associated eigenvalues. Then 〈λ2|λ1〉 = c and we can
write

|λ1〉 = c|λ2〉+ |λ2⊥〉, (A.30)

where |λ2⊥〉 is orthogonal to |λ2〉. Since A is self-adjoint we have

〈λ2|Aλ2⊥〉 = λ2〈λ2|λ2⊥〉 = 0. (A.31)

Thus |Aλ2⊥〉 = |λ′2⊥〉 is orthogonal to |λ2〉. This leads to

A|λ1〉 = cA|λ2〉+A|λ2⊥〉 = cλ2|λ2〉+ |λ′2⊥〉,
A|λ1〉 = λ1|λ1〉 = cλ1|λ2〉+ λ1|λ2⊥〉. (A.32)

Both equalities can be true at the same time only if c = 0, states |λ1〉 and |λ2〉 are orthogonal,
or λ1 = λ2. In finite dimensional case eigenvectors of self-adjoint operators associated with
the same eigenvalue λ span a linear subspace whose dimension is equal to multiplicity of λ.
You can then find a basis in this subspace and members of this basis will be again eigenvectors.
Every self-adjoint operator on finite d-dimensional Hilbert space has d real eigenvalues (counting
multiplicity) and therefore also d linearly independent eigenvectors which define some basis {|λi〉}
on this Hilbert space. Every self-adjoint operator then can be written in this basis as

A =
∑

i

λi|λi〉〈λi|. (A.33)

The trace of a self-adjoint operator is the only the sum of its eigenvalues counting multiplicities.

Example A.2.17. Let us have operator A

A = |0〉〈0|+ |0〉〈1|+ 2|1〉〈1|. (A.34)

This operator is not self-adjoint and has two eigenvectors |λ1〉 = |0〉, |λ2〉 = |0〉+ |1〉 associated
with eigenvalues λ1 = 1 and λ2 = 2. We see that eigenvectors corresponding to different
eigenvalues are not orthogonal for operator which is not self-adjoint.

Example A.2.18 (Identity). Identity operator is self-adjoint and has only one eigenvalue 1
with multiplicity d, where d is the dimension of underlying Hilbert space H. Naturally we can
choose any basis {|ψi〉} in this space and it will be automaticaly basis of eigenvectors and thus

I =
∑

i

|ψi〉〈ψi| (A.35)

for any basis in H.
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Definition A.2.19 (Projectors). A projector P is a self-adjoint operator for which P 2 = P .
Such operator can have only eigenvalues 0 or 1 and any self-adjoint operator with such eigenvalues
is a projector. If the multiplicity of eigenvalue 1 is 1 then we call such projector 1-dimensional.
Every one dimensional projector can then be written as |ψ〉〈ψ| =: Pψ for some normed vector
ψ, ‖ ψ ‖ = 1. And every projector is a sum of one dimensional projectors. We call projectors
P1, P2 orthogonal if 〈P1|P2〉HS = 0⇔ P1P2 = O

Unitary operators can be also decomposed in a nice way. Every unitary operator U can be
written as

U =
∑

k

eiαk |ψk〉〈ψk|, (A.36)

where {|ψk〉} form orthonormal basis in H and eiαk are eigenvalues of U .



Appendix B

Various

B.1 Monoticity of von Neumann entropy under unital channels

Lemma B.1.1. If G∗ is a unital channel, then S
(
G∗(4)

)
≥ S(4) for all states 4.

Proof. The proof of entropy monoticity for unital channels is a consequence of the monoticity
of the relative entropy [?]. In particular, for arbitrary quantum channel G∗

S
(
G∗(4)||G∗(ω)

)
≤ S(4||ω) , (B.1)

where S(4||ω) = Tr
(
4(log 4 − logω)

)
is the quantum relative entropy. Setting ω = 1

dI we get
S(4||1/dI) = −S(4) + log d. Using this fact and assuming that G∗ is unital the above inequality
can be rewritten as

S
(
G∗(4)||1/dI)

)
≤ S(4||1/dI)

−S
(
G∗(4)

)
≤ −S(4) ,

from which the lemma follows.
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I would also like to thank to Prof. Reinhard F. Werner for a very warm welcome into his
group in Hannover during my short visit and for introducing me to the field of quantum cellular
automata.

Thank you Dano Nagaj, the distinguished citizen of office 108, for keeping an eye on me and
helping me relax by killing some innocent virtual worms.

I would like to thank also to the Hedgehog and the team Obrneńı SAVci, Mário Ziman,
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