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e-mail: bona@sophia.dtp.fmph.uniba.sk

Department of Theoretical Physics, Comenius University

SK-842 48 Bratislava, Slovakia

January 8, 2004

Abstract

The work can be considered as an essay on mathematical and conceptual structure of non-
relativistic quantum mechanics (QM) which is related here to some other (more general, but
also to more special – “approximative”) theories. QM is here primarily equivalently reformu-
lated in the form of a Poisson system on the phase space consisting of density matrices, where
the “observables”, as well as “symmetry generators” are represented by a specific type of real
valued (densely defined) functions, namely the usual quantum expectations of correspond-
ing selfadjoint operators. It is shown in this work that inclusion of additional (“nonlinear”)
symmetry generators (i.e. “Hamiltonians”) into this reformulation of (linear) QM leads to
a considerable extension of the theory: two kinds of quantum “mixed states” should be dis-
tinguished, and operator – valued functions of density matrices should be used in the rôle of
“nonlinear observables”. A general framework for physical theories is obtained in this way:
By different choices of the sets of “nonlinear observables” we obtain, as special cases, e.g.
classical mechanics on homogeneous spaces of kinematical symmetry groups, standard (linear)
QM, or nonlinear extensions of QM; also various “quasiclassical approximations” to QM are
all subtheories of the presented extension of QM - the extended quantum mechanics (EQM). A
general interpretation scheme of EQM extending the usual statistical interpretation of QM is
also proposed. Eventually, EQM is shown to be (included into) a C

∗-algebraic (hence linear)
quantum theory.
Mathematical formulation of these theories is presented. The presentation includes an analysis
of problems connected with differentiation on infinite – dimensional manifolds, as well as a so-
lution of some problems connected with work on only densely defined unbounded real–valued
functions on the (infinite dimensional) “phase space” corresponding to unbounded operators
(generators) and to their nonlinear generalizations. Also “nonlinear deformations” of unitary
representations of kinematical symmetry Lie groups are introduced. Possible applications are
briefly discussed, and some specific examples are presented.
The text contains also brief reviews of Hamiltonian classical mechanics, as well as of QM.
Mathematical appendices make the work nearly selfcontained.
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1 Introduction

We present in this work a straightforward, and a “very natural” theoretical extension of traditional
(linear) quantum mechanics (QM), providing a general framework of several physical theories. It
contains QM itself, its (almost all up to now published) nonlinear modifications and extensions, and
also its “semiclassical approximations”, together with the Hamiltonian classical mechanics (CM).
This is made formally by a geometrical reformulation of QM and by its subsequent nonlinear
extension (containing the unchanged linear QM as a subtheory); an interpretation scheme for this
extended theory is also proposed here. Although rather “trivial” from a certain point of view,
the obtained extended quantum mechanics (EQM)1 seems to offer new insights into conceptual
foundations and also possible applications of quantum theory. It renders also alternative views
to different approximations and modifications of QM like, e.g., the time dependent Hartree Fock
theory, WKB approximation, or the “nonlinear Schrödinger equation”, which are just subtheories
of EQM.2 The presented theory provides also a global view onto solutions of dynamical equations
of many of its subtheories including a specification of ways to obtaining their solutions. Having its
origin in mathematically well defined models of infinite quantum systems described by traditional
(hence linear!) nonrelativistic quantum field theory (QFT), cf. [131, 31, 186, 187], no mathematical
inconsistencies could be expected in the basic structure of EQM.

Next Section 1.1 contains a description of the present author’s motivation, including some of
his presently accepted philosophical ideas, and his mostly personal view on the history of this
work. The author is aware that motivation and history of writings can be considered either from a
subjective point of view of the author, or from the point of view of more “objective” history based
on a review of existing published works connected in some way with the contents of the presented
work. The second point of view, if taken seriously, would need considerable historical effort of
experts in the related fields, and we shall not try to present it in this work; we shall add, however,
some comments and references to compensate partially this gap, cf. also Remark 1.1.1.

Many important papers relevant to the contents of the present work became known to the
present author only after writing his own “independent” version of the “story”.3 It is, however,
important to have in sight also independently written works on the considered subject, since
alternative approaches to formulation of similar theories might provide also some alternatives for
interpretation and/or application of the developed formal theory. This is even more valid taken
into account that the author’s formulation of the presented results was rather “indirect”, obtained
as a byproduct of other (a priori unrelated) investigations. We are trying to give here all the
relevant citations and credits we are aware of.4

The Section 1.2 contains a heuristic description of the general construction of main concepts,
mathematical structures, as well as interpretation problems, and possible applications of the pre-

1The obtained EQM provides rather “metatheoretical framework” for a broad class of physical theories than a
specific theory of a given class of physical systems.

2Let us note here that, for general dynamical systems (resp. systems of differential equations), “(non–)linearity”
is not an unambiguous specification: Any linear equation can be transformed into a nonlinear form by a change of
variables and, conversely, many nonlinear equations can be rewritten into a form of linear ones, cf. e.g. a Poincaré
theorem [9, Chap. 5,§22], or the “Koopmanism” in e.g., [153] and Remark 3.3.14. Linearity in QM is determined
in our work with a help of structures on the projective Hilbert space P (H).

3This explains also some omissions of citations of some relevant earlier published papers in the author’s previous
works: The present author would like to apologize to the authors of those omitted papers in this way.

4In spite of this, the bibliography remains probably rather incomplete, and the present author has to apologize
repeatedly to authors of unnoticed relevant works.
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sented nonlinear extension of quantum mechanics (NLQM). The Section 1.3 contains some notes
on organization of the presented work. We include also into this chapter sections describing briefly
general structure of CM (cf. Section 1.4), as well as of QM (Section 1.5), because it provides a
starting framework for forthcoming theoretical constructions.

1.1 Notes on Motivation, Background Ideas, and History

The present author is aware of problematic nature of claims about “the originality” of ideas in
Science, and of the corresponding “priorities”. Even if written in the author’s relative isolation,
the ideas might come indirectly into the author’s mind, through various cultural and social man-
ifestations, or simply by reading also scientific papers not manifestly related to the considered
problem. The author will not try to do complicated introspective psychological considerations on
origins of his own ideas, what would be necessary to give quite honest (but in any case subjec-
tive) answers to questions on “the originality”, or at least on “the independence”, of obtaining
the presented results. We shall try, in the next paragraphs, to describe as honestly as possible in
a brief exposition the genesis and history of ideas resulting in this work. That might be useful
also for better understanding of place of the presented theory in the framework of contemporary
theoretical physics.

1.1.1 Remark (On contexts and contributions of this work). Let us mention here at least some
references considered by the author as important for a sight on the present work in the broader
scientific context . The presented work can be put in a connection with attempts at specific non-
linear generalizations of QM (NLQM) considered as a Hamiltonian field theory on the projective
Hilbert space as the “phase space” with a specific (quantum) statistical interpretation; the present
work generalizes and unifies such theories. A pioneer work in this direction was, perhaps, the short
paper [148] by T.W.B. Kibble, containing a sketch of nonlinear pure–state dynamics and also
suggestive motivation directed to applications and generalizations in relativistic QFT and general
relativity (GR). Trials (unsuccessful) to formulate quantum statistical interpretation of such theo-
ries, as well as some dynamics of mixed states contains the proposal [274] by S. Weinberg. In the
papers by R. Cirelli et al., eg. in [63, 67], the authors formulate in a mathematically clear geomet-
rical way standard QM, and they are looking for general principles for possible generalizations of
(pure state) quantum kinematics. The papers by M. Czachor et al. [70] contain also proposals for
description of dynamics of density matrices in NLQM (accepting essentially the author’s proposal
from [24]), and also there are investigated methods to solutions of dynamical equations for some
classes of generators. The author’s paper [24] contains all the essentials of the here presented
theory. Connections with older formulations of NLQM and with semiclassical approximations, as
well as some proposals for a search for generalized (pure state) kinematics are contained in [11].

Any of the (to the present author) known published papers do not contain consistent proposals
of definitions and of quantum statistical interpretation of nonlinear observables;5 such a defi-
nition and interpretation of observables is given in this work. It is given here also an inclusion of
the introduced (nonlinear) EQM into a linear theory of a bigger system described in framework of
algebraic QT, cf. also [31, 87]. Work with unbounded generators is proposed here in a flexible way:

5This seems to be true also for the papers [79, 170] by Doebner, Goldin, Lücke et al.; their “Doebner–Goldin”
NLQM (DG) appears to be non-Hamiltonian, hence it does not fully “fit” into the kind of presently analyzed
theories: For testing the belonging of DG to the here analyzed class of NLQM, one should, e.g. to check, whether
the r.h.s. of [79, Eq. (1.2)] can be rewritten in the form of the r.h.s. of (2.1.26), resp. in a form

(
ˆαPψ + f0(Pψ)

)
·ψ,

with α a closed one–form on P (H), and α̂ ∈ L(H)s = T∗
s being its operator form (cf. page 49).



1 INTRODUCTION 6

One can restrict attention to a certain set of submanifolds of the “quantum phase space” S∗:= the
space of all density matrices, the union of which is not necessarily dense in S∗. Two kinds of “mixed
states” are introduced, what is a natural consequence of nonlinear dynamics, cf. also [146, 70]. A
unitary representation of a Lie group G is chosen here as a “parameter” serving to specify all the
general elements of the theory: the domains of definitions (in S∗) of unbounded generators, the
sets of generators, of symmetries, of observables, and of states of the described system; it specifies
the UG–system ΣUG. This allows us to determine also the concept of a UGI–subsystem of a
given G–system ΣG; also a general definition of a subsystem of a physical system in NLQM was
not satisfactorily established in the known literature. We shall not, however, look here for gener-
alized kinematics (i.e. alternatives to S∗, cf. [63, 67, 11]), neither we shall try to formulate here a
solution of the “problem of measurement in QM” (understood, e.g. as a dynamical description of
the “reduction of wave packet”). ♥

This work is a modified and completed version of the preprint [24].6 The author decided
to publish it now also because of recently renewed interest in nonlinear QM (NLQM) (see, e.g.
[146, 49, 145, 15, 165, 11, 67, 57], or [79, 70, 110, 170]),7 as well as in foundational questions
of connections of QM with CM, cf. e.g. [52, 198, 199, 112, 218, 287, 163, 44, 66, 194], or also
[203, 99, 114, 262, 95, 234, 250].8

Moreover, it can be assumed that ideas contained in this work will be useful for construction
of some (not only physical) models.

1.1-a On initial ideas and constructions

The idea of a natural nonlinear generalization of QM (leading to the paper [24]) appeared to the
present author after an equivalent reformulation of QM in terms of CM on (infinite dimensional)
symplectic manifold P (H) in the works [26, 27]. This was, in turn, a result of trials to understand
connections between QM and CM more satisfactorily than via the limits ~ → 0:9 A part of the
effort was a formalization of the Bohr’s beautiful argumentation, e.g. in [21, 22], on necessity of
using CM for a formulation of QM as a physical theory, combined with the author’s requirement

6The author is deeply indebted to Vlado Bužek for his strong encouragement in the process of the author’s
decision to prepare and publish this new version of [24], as well as for the kind support and also for the effective
help he rendered in the process of preparation of the publication of this work.

7The author is indebted also to (that time) PhD students, esp. to M. Gatti and E. Grešák, who helped him to
make clear some technical features of the presented work, cf. [242, 245, 103, 113, 207].

8M. Czachor and his coworkers are acknowledged for their repeated interest in the author’s work, as well as for
the kind submissions of information about the progress of their work. The author expresses his dues also to S.T.
Ali, P. Busch, V. Bužek, G. Chadzitaskos, R. Cirelli, V. Černý, H.-D. Doebner, G.G. Emch, M. Fecko, G.A. Goldin,
K.R.W. Jones, N.P. Landsman, J.T. Lewis, E. Lieb, W. Lücke, H. Narnhofer, P. Prešnajder, E. Prugovečki, A.
Rieckers, G.L. Sewell, R.F. Streater, W. Thirring, J. Tolar, T. Unnerstall, R.F. Werner, A. Zeilinger, W.H. Żurek,
and other colleagues and friends for discussions, and/or for providing him with their relevant papers, and/or for
giving him moral support.

9For a review and citations on various approaches to “quantization” and “dequantization” with their rich history
beginning with the advent of QM see e.g. [80, 260, 101, 246, 98, 142, 261, 162]; some connections of CM and QM
via ~ → 0 could be seen from [133, 124, 147]; for a recent trial to define the limit ~ → 0 in a mathematically correct
way cf. also [207].
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on “universality” of quantum theory (QT),10 the effort possibly hopeless if taken too literally.11

The papers [26, 27] resulted from the recognition of quantum pure–state space P (H) as a natural
symplectic (even a Kähler) manifold; this personal “finding” was gradually reached at studying
of generalized coherent states (GCS)12 in QM, [150, 200, 17, 167, 243, 71, 201], in looking for
their possible usage in describing connections between QM and CM. We benefitted also from the
description of symplectic structure on (finite dimensional) complex projective spaces [7]. Works on
their quantum mechanical connections/applications [16, 56, 134, 222, 213, 223] was encouraging
in this effort. As the author can judge today, many important results have been obtained in the
literature. Unfortunately, not all of the details of the cited works were clearly seen by him during
the time when he formulated his theory: There was a variability of languages and interpretations
in various papers, as well as a lack of sufficient mathematical rigor which obviously was an obstacle
for a better understanding. There were also important unnoticed works containing some of the
author’s later results, e.g. [252, 148, 155].13

Conceptually important in the search of QM ↔ CM connections was appearance of symmetry
groups G allowing a unified theoretical description of “changes of objects with a specified identity”,
cf. mainly [69, 276, 282, 139], and givig a framework for description of physical quantities; we have
restricted our attention to Lie groups, where distinguished one–parameter subgroups correspond
to specific physical quantities (cf. Galileo, or Poincaré groups). The cited papers using sets of
GCS used them either as a tool for description of some “quasiclassical approximations” to QM in
various specific situations, or as a formulation of a “quantization” procedure, cf. also more recent
literature, e.g. [4, 3, 162].

Generalized coherent states were usually considered as submanifolds of the Hilbert space de-
termined either as some more or less arbitrary parametrically determined manifolds (usually finite
dimensional), or as orbits of continuous unitary representations of a Lie group G. An essential rôle
is ascribed to a symmetry Lie group G also in the present work: This corresponds to the accepted
(hypothetical) point of view according to which observables in physics are necessarily connected
in some way with a group of symmetries.14

1.1.2 Interpretation. This “philosophy” can be substantiated by the following simple intuitive
consideration: Physical situations (e.g. different states of a physical system) corresponding to
different values of a “physical quantity” should be connected by some transformations which make

10We distinguish here QM from QT, the later including also mathematically well defined parts or versions of
QFT, e.g. the nonrelativistic C∗-algebraic theory of systems “with infinite number of degrees of freedom”. In this
understanding, QT can describe also macroscopic parameters of “large” quantal systems, composing their classical
subsystems.

11The intention of the author was even to formulate a general model of the measurement in QM, being up to
now an unsolved fundamental problem of QM (if QM is considered as a “universal theory”), [28]. This author’s
effort started in 1961 at Charles University and/or Czech Technical University (ČVUT) in Prague (the Faculty of
Technical and Nuclear Physics – FTJF – was administratively moved between these two universities in those years),
later continued also in a small seminar formed by J. Jersák, V. Petrž́ılka, J. Stern, and the present author; in the
framework of this seminar was formulated a simple (unpublished) proof of impossibility of information transmission
by “reduction of wave packets” corresponding to the EPR–like quantum measurements according to the traditional
(Copenhagen) formulation of QM, cf. Note 1.5.9 on page 38.

12The author is indebted to P.Prešnajder for turning his attention to GCS.
13For the citation [155], as well as for some other useful notes made during the correspondence concerning [27]

the author is obliged to K.Hepp. The author obtained the citation [64] from K.R.W.Jones. About the citation [148]
was the author informed by N.P.Landsman.

14A possible generalization of this point of view might lead to the assumption, that observables are determined by
local groups, [149], or gruppoids, [162]; the Landsman’s book [162] contains also other relevant ideas and techniques,
as well as citations.
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possible to assure that the different values are really “values of the same quantity”; the assumption
of transitivity and invertibility of these up to now unspecified transformations seems to be natural
for quantities without some exceptional values in their range. This results in the hypothesis
of presence of a group defining physical observables (resp. quantities); some further “physically
natural” continuity requirements then end at a Lie group.15 �

1.1.3 Remark. The presence of a Lie group G in the following considerations has, however, also
a technical function: it offers us an easy possibility to work with specific unbounded observables
described by not everywhere defined functions on the symplectic manifold P (H); such observables
correspond (in the linear case) to usual unbounded operators describing physical quantities in QM.
The corresponding technical tool is the existence of the C∞(G)–domains (e.g. the G̊arding
domains) of strongly continuous unitary representations U(G) of any Lie group G.16 ♥

The importance of Lie group representations for QM was stressed already by founders of QM, let
us mention especially Weyl and Wigner [281, 276, 282, 283]; applications of Lie groups in fundations
of QM was afterwards elaborated by many others, e.g., cf. [168, 169, 149, 268, 5, 105, 76]. Also
Prugovečki’s and Twareque Ali’s papers, e.g. [214, 215, 2, 216, 217], were stimulating for the
present author’s work: Some intuitively convenient statistical interpretation of GCS in QT was
also looked there for. The Weyl’s book [276] contains, in an implicit way (as it was perceived by
the present author), some of the main ideas concerning connection of QM with CM formulated in
the papers [26, 27].17

In our presentation, orbits of coadjoint representations of G play an important rôle. They
appear naturally in QM as orbits of expectation functionals corresponding to GCS, which are
calculated on generators of the considered Lie group representation U(G); these generators are
usually interpreted in QM as distinguished sets of quantummechanical “observables”. The canoni-
cal symplectic structure on these Ad∗(G)–orbits is described, e.g., in the monograph [149], cf. also
Appendix A.4. The general coordinate–free differential geometric formalism of Ellie Cartan and
its applications to CM is described, e.g. in [1, 152, 256, 61], cf. Appendix A.3.

Generalized coherent states determined by continuous unitary representations U(G) of finite
dimensional Lie groups G provide a “semiclassical background” to approximate descriptions of
quantum theory. Points of the manifolds of coherent states can be canonically parametrized in
many cases by points of an orbit of the coadjoint representation Ad∗(G). In these cases, a canonical
Poisson structure corresponding to that one existing on the Ad∗(G)–orbit can be defined on the
manifold of coherent states. It is possible to determine canonically a specific “projection” of quan-
tum mechanical (=: quantal) dynamics to such a “classical phase space”, [27]. Some satisfactory
(unambiguous, and general) interpretation of these canonical “classical projections” is, however,

15As concerns a general gnoseological approach of the present author to Theoretical knowledge, it is close in a
certain feature to that of K. R. Popper, [210, 211], cf. also [128]; we accept, e.g. that each scientific assertion can be
considered just as a hypothesis: There is no “final truth” in our Knowledge. Moreover, any “meaningful” assertion
concerning possible empirical situations should be falsifiable by some empirical tests. Let us add, however, that one
should distinguish different “degrees of certainty” of various claims: Although mathematically formulated, claims
on empirical contents should undergo our identification with specific “extratheoretical” situations, and this process
cannot be fully formalized.

16For an application of this kind of ideas cf. also the theory of “Op*-algebras”, [164].
17The above mentioned inspiring “ideas”, “stimulations”, etc. are difficult to specify and formulate clearly: They

were often hidden in the stylistic form of presentation of otherwise “quite simple facts” by the cited authors; e.g. the
Weyl’s considerations on “Quantum Kinematics” in [276, Chapter IV.D], presently known to every physics student
as CCR, were perceived by the present author as very stimulating – much later than during his student’s years.
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still missing.18

Methods of the “time dependent Hartree–Fock description” of fermionic systems, or more gen-
erally, of the “time dependent variational principle” in QM, [155], can be reduced in many cases to
specifications of the general procedure of the mentioned “classical projections”. The “classical pro-
jections” of quantum dynamics to orbits of coherent states can lead, in some formally chosen cases
(i.e. chosen regardless to existence of any possibility of a physical interpretation of the considered
dynamics), to such a classical dynamics which has little in common with the original quantum
system. This left an open question to us, in what cases “classical projections” are “close” to the
projected quantum dynamics, [27].

The dynamics of an individual subsystem of the infinite quantum system in mean–field theory
(MFT) is described exactly by such a kind of “classical projections”, [33, 31]. In this is hidden a
connection of our EQM with a (linear) QT of infinite quantum systems, cf. also Subsection 1.1-b.

We shall show, in Section 3.6, that the dynamics in NLQM (modified with respect to that
of Ref. [274] for the cases of evolution of “mixed states”) can also be described in this way. We
obtain a mathematically correct and physically consistently interpreted standard type of quan-
tum theory (i.e. a C∗-algebraic theory) in the case of such a mean-field reinterpretation of the
“classical projections of QM”. We shall describe these theories in a form of a generalized quantum
mechanics of autonomous physical systems. “Observables” in the presented theory are expressible
as operator–valued functions f : F 7→ f(F) of a classical field with values F appearing in corre-
sponding interpretation also in MFT. In models of MFT the “classical field” F can describe, e.g.
collective variables describing macroscopic quantum phenomena like superconductivity, or other
“global observables” describing a large quantum system. The classical field F (cf. Definition 2.2.17)
aquiring values in Lie(G)∗ ∋ F is here present in a rôle of a “macroscopic background” of the con-
sidered quantum system. The (nonlinear) dynamics, as well as the probabilistic interpretation
of the theory can be described, however, independently of any use of “background fields”: The
introduction of the field F (which is a function of the quantum states ̺ ∈ S∗(L(H)) appears like an
alternative description (or an “explanation”) of the dynamics which can lead to simpler solutions
of problems. We have not specified unambiguously a physical interpretation of dependence of the
operators f(F) on values F of the macroscopic field F. It can be suggested, e.g. that F takes part
in determination of “physical meaning” of the quantum observables: For each value F of F, “the
same” quantum observable f is described by a specific operator f(F). We have introduced, however,
a standard prescription for calculation of probabilities of measured results of observables repre-
sented by the operator – valued functions f : F 7→ f(F) which is consistent with the traditional one,
cf. formulas (2.3.4), (2.3.9), and (2.3.10). We also expect that traditional foundational problems
in physics like the “quantum measurement problem”, or the question on “origins of irreversibility”
might be fruitfully reformulated in the presented framework.

1.1-b Relation to infinite systems

An important element in building the presented scheme of EQM was construction of classical
quantities of an infinite quantal system. This was done in usual C∗-algebraic language [92, 77, 78,
228, 197, 42, 255], cf. also [27]. The author was especially inspired by the papers [132, 131, 16],

18We have known the “mean-field” interpretation of such quantum motions, cf. Subsection 1.1-b, and Section 3.4;
physical origin of such a classical “background field” might be looked for in hypothetical, or sometimes even known,
existence of some “long–range forces”, representing an influence of, e.g. (let us allow some visions to ourselves)
Coulomb forces with quantum correlations of distant stars to the considered microsystem, cf. [286].
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the monographs on quantum–theoretical description of systems “with infinite number of degrees of
freedom” [92, 42], some general ideas of Einstein, Bohr, Heisenberg and other thinkers expressed
in many, nowadays difficult identifiable, places (as introductions to books and papers, popular and
philosophical writings, quotations by other people, etc.), as well as by some other, both “technically
& ideologically” composed papers, like the review [285] on “large N limits” in QM.

Let us describe briefly the obtained picture of kinematics of an infinite quantum system in which
a commutative (“classical macroscopic”) subalgebraN of observables is determined by a unitary re-
presentation U(G) of a Lie groupG. Let the large quantum system consists ofN copies of equal sys-
tems described in separable Hilbert spaces Hm by algebras of observables L(Hm),m = 1, 2, . . .N .
Then the algebra of observables AN of the composed system is isomorphic to L(⊗Nm=1Hm), and
nothing essentially new is obtained: It has only one “reasonable” irreducible representation (up to
unitary equivalence). The so called C∗–inductive limit for N →∞ of AN , cf. [228], however, is an
algebra A of a different type: It has uncountably many mutually inequivalent faithful irreducible
representations. Subsets of these representations could be parametrized by some “classical quan-
tities”, which can be themselves realized as a (commutative) C∗-algebra in the center Z of the
double dual A∗∗ of A. But the center Z is an incredibly big algebra which cannot be, probably,
used as a whole to some useful description of macroscopic properties of “the system A”. Here was
used a Lie group G for obtaining a specification of a subalgebra of Z of a “reasonable size”. The
use of a Lie group G allowed also a natural introduction of a Poisson structure [275, 178, 7], and
consequently classical dynamics into the “relevant part” of Z.19

These constructions were motivated by some attempts to understand possible quantummechan-
ical basis of classical description of macroscopic bodies, cf. [132, 27, 28], as well as of interaction of
that bodies with microscopic systems described by QM. This effort included trials to solve the old
problem of modeling the “measurement process in QM” [132, 28]. Although this questions were
extensively studied during the whole history of existence of QM, cf., e.g. [190, 14, 277, 169, 50],
no approach to their solution, hence no answers, are generally accepted up to now. In the process
of modeling of interaction of microsystems with macroscopic bodies in QM framework, a quantum
description of macroscopic bodies was a necessary preliminary step. The simplest possibility was a
study of kinematics of an infinite set of equal quantum systems in the framework of C∗-algebraic
theory. This is formulated in [27]. One of the most important questions was a “proper” choice of
observable quantities of such a big system.20 This was done by a choice of the kinematical Lie group
G mimicking macroscopic motions of the large (composed) quantum system: The representation
U(G) acted equally on any “elementary subsystem” described by L(Hm),m = 1, 2, . . .∞.

The resulting formulation of nonlinear quantum dynamics in the presented extension of QM
can be connected with the specific form of the author’s formulation of dynamics of infinite quantum
systems [31, 33, 265, 266, 87] with interactions of “mean–field type”, having its roots in [131]. 21

19A Poisson structure is, however, always present in any noncommutative C∗-algebra in the form of the com-
mutator of any of its two elements, cf. also [87]. This can be used to obtain, by a certain limiting procedure, cf.
[31, 32, 87], also a Poisson structure on some subsets of the commutative W ∗-algebra Z. The Poisson structure
obtained in this way is identical with that one connected with a Lie group action. Lie groups are, however, useful
(besides for technicalities in dealing with unbounded generators) for interpretation of abstract “observables”, and
for determination of “proper subsets” of the huge centre Z.

20That a choice of “observable observables” is a nontrivial task also from a quite different point of view is claimed
in [192].

21From the personal author’s point of view, it was obtained in a sense “occasionally”. The resulting dynamics
of the infinite mean-field systems [27, 31] was a natural answer to a simple question: How to define a microscopic
Hamiltonian dynamics on the infinite quantum system leading to a given (arbitrarily chosen) classical dynamics on
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Our citations of works relevant for the theory of microscopic description of macroscopic phenomena
in quantum systems are incomplete; some other relevant citations can be found in [42, 43, 248, 239].

Many modifications and generalizations of the sketched description of classical quantities of
infinite quantum systems, including their dynamics, are possible. Some of them will probably lead
to the same “microscopic” nonlinear dynamics, as it is in the case of MFT. The presented results
can be considered as just a first step in investigation of macroscopic dynamics from quantum–
theoretical point of view. There were performed already some works containing more sophisticated
description (than ours) and more detailed results in this direction, cf. e.g. Sewell’s papers [240, 241],
or some works in algebraic quantum field theory (QFT),22 e.g. in [100].

We shall briefly return to some technicalities of the description of “macroscopic subsystems”
of large quantum systems in Section 3.4.

1.1-c Questionable “subsystems”

A general interpretation of EQM considered as a “fundamental theory” is not formulated in this
work. It can be, however, conjectured that a viable possibility for its interpretation is (by admitting
the linear QM as “the fundamental theory of simple systems”) a description of “relatively isolated
systems”, i.e. “ordinary” quantal systems moving in an external field which is in turn influenced
by (or correlated with) these quantal systems. Let us give here some motivation and background
to this rough idea.

One of the most basic concepts of contemporary physical theories, and, perhaps, of the method-
ology of the whole Science, is the concept of isolated systems the description of which is especially
“simple”: It is supposed, that there are specific “circumstances” under which we can deal with
phenomena independently of the rest of the world. Examples are: idealized bodies “sufficiently
distant from all other bodies” described in CM in framework of an “inertial coordinate system”,
realized, e.g., by atoms in a dilute gas during a certain time intervals. More generally, we are used
to think about any specific “object” as determined “relatively independently” of other objects
(except of some generally accepted “background”, e.g. inertial frame, or vacuum). Mere possibil-
ity to formulate such concepts of various “isolated systems” which approximately describe some
observed phenomena can be considered as one of the miracles of human existence. More detailed
investigation (and specification) of any phenomenon usually shows that such a simple description
is of a restricted use, and better results might be obtained by consideration of a “larger piece of
the world”; the identity of the “considered (sub-)system” can be then, however, lost.23

An often used “first step” to describe some “influence of other systems” onto the “considered
one” is an introduction of an appropriate (possibly time dependent) “external field”. This proce-
dure corresponds to the formal construction (and logic) of nonrelativistic CM: The motion of a body
interacting with other ones can be expressed in CM as its motion in a time dependent “external
field” (determined by a known motion of “other bodies” in the presence of “the considered one”).
Subsystems in CM are, in this sense, clearly definable (they are continually described by a point
in their phase sub-space), and we can consider them as relatively isolated: They move according to

the part of the centre Z specified with a help of the mentioned representation U(G) ?
22 This is the theory formulated by Araki, Haag, Kastler, and others, cf. [123, 37, 6, 119, 82, 83, 84, 121, 38].
23A version of the concept of an “isolated system” necessarily appears in any kind of reproducible reflection in

human thinking. Its specification, however, varies with accepted “paradigms” [157] (let us stay with a mere intuition
on these ambiguous philosophical concepts), e.g. the meaning of the physical system representing a falling stone was
different for Aristotle from that of Galileo, and also it was different for Einstein from that of Mach, [171].
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certain nonautonomous evolution laws (as if they have their own – time dependent – Hamiltonians),
what can be intuitively understood as “just a (time dependent) deformation” of a background of
formerly isolated system, leaving the identity of the system “essentially untouched”,24 and this has
introduced a change into the dynamical law of the system.

The determination of isolated systems, as well as of subsystems in QM is much more problematic
than in CM. Schrödinger equation describes, in analogy with CM, dynamics of a physical system
in a given external field: Systems described in this way can be considered as “relatively isolated”.
This formulation was very successful in description of scattering and motion in external (macro-
scopic) fields, of dynamics of atoms and small molecules, as well as in approximate descriptions of
a lot of phenomena in many–particle systems. QM time evolution of mutually interacting systems
occurring initially in uncorrelated pure states (i.e. in a pure “product–state”) leads usually in later
times to an “entangled” state of the composed system.25 The states of constituent subsystems are
described in such a state just by density matrices (which are mathematical objects also used for
description of “mixed states” in a common sense interpretation, i.e. in the “ignorance” interpre-
tation which is common in classical statistical physics), and time development of these (obtained
by taking the “partial trace” of the evolving pure state of the whole “isolated” system) need not
be Hamiltonian (e.g. [71, 54, 253]). Since nontrivial interaction (and also entanglement) between
states of charged microscopic particles and quantum states of macroscopic bodies (if considered
as quantum many–particle systems) is present also in systems whose constituent subsystems are
separated by cosmic distances, cf. [286], an empirically realizable definition of isolated systems in
QM remains a problem. We assume that EQM provides also a possibility of an approximative
Hamiltonian evolution for some of such “basically entangled” situations.

Another problem of QM connected with the problem of determination of subsystems is the
classical “problem of measurement in QM”, cf. [190, 14, 277, 50, 28]. It can be, perhaps, considered
as an (up to now unknown) process of “entanglement” of the states of the measured microsystem
with macroscopically distinguishable states of the apparatus.26 A determination of a clear cut
between “microscopic” and “macroscopic” is missing in both of these problems. Perhaps, the only
available, formally well defined formulation of the “micro–macro difference” can be found in the
framework of the C∗-algebraic formulation of QT, [92, 42, 239]. In this framework, also some
models for the measurement process in QM were formulated, [132, 28, 279]; the process needed
there, however, an infinitely long time interval for its completion. We expect that EQM provides
a way also for description of the mentioned micro–macro “entanglement”.

1.1-d Some basic building blocks of EQM

Our Extended Quantum Mechanics contains many theories as exact (i.e. obtained without any
“approximations” in a usual sense) subtheories. They are considered usually as different (but
inequivalent) possibilities of descriptions of the same system, e.g. one of the theories is considered
as an “approximation” of another one. Examples are WKB, Hartree–Fock, or classical mechanical

24It is an analogy to “external” gravitational field in general relativity acting on a “test body”: it is a “deformed”
inertial frame corresponding to the background determined by massive bodies (e.g. by distant stars) – in a sense
similar to that of the Mach’s approach to CM [171, 271].

25Theoretical, as well as experimental investigation of “entangled states” in QM is quite intensive in last years,
cf. e.g. [269, 166, 138, 54, 253, 55, 287, 218].

26Recently are quite popular “solutions” of the quantum measurement problem via “decoherence”, cf. [289], resp.
via “decoherent histories” approach, cf. [194, 85]; the present author considers them at most as preliminary attempts
to attack the problem.
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approximations to descriptions of some problems in QM, or CM and QM themselves. All these
subtheories are obtained from the general scheme of EQM by specifying three subsets (which
are, however, mutually consistently interconnected) of corresponding three general building sets of
theoretical objects.27

In classical mechanics [278, 1, 256, 7, 173] (CM) as well as in quantum theories (QT) [173,
75, 190, 169], three main (mutually interconnected) classes of fundamental objects (corresponding
to basic concepts of the theory) are used: (i) observables, (ii) states, and (iii) symmetries.
A one parameter subgroup of symmetries specifies a chosen dynamics of the system, and the
corresponding parameter is called the time.28 The mathematical representation of these classes
and formulation of their mutual connections do not always use “physically motivated” properties
only; some clarity in expression of connections between constructs of formalized theories and
empirical and conceptual analysis of phenomena is often reached by a subsequent specification
and interpretation of the used mathematical objects. Any fundamental theory of the process
of measurement of an arbitrary mathematically defined “observable”, considered as a dynamical
process within QM is not known; we are not able generally decide which mathematically defined
“observables” are accessible to empirical identifications; similar comment applies to “states”, and
also to “symmetries”. This lack of “bijective correspondence” between classes of known empirical
situations and objects of a theory could make the theory, on the other hand, more flexible.

We shall reformulate and extend the formalism of QM so that it will include QM and a class
of its (nonlinear) generalizations. Such an EQM contains much larger variety of “observables”,
“states”, and “symmetries” than does the traditional QM. These extended sets of fundamental
objects contain different subsets representing different “subtheories” of the extended QM. Between
these subtheories we shall find, in addition to ordinary (linear) QM, also, e.g. Hamiltonian CM
with phase spaces being homogeneous phase spaces of Lie groups,29 several existing formulations
of nonlinear quantum dynamics, cf. Subsection 3.3-e, and [11], and also the frequently used ap-
proximations to quantum dynamics consisting of its specific restrictions to manifolds of generalized
coherent states of the considered system, or also the WKB-approximation [11] are in our extension
obtained as “subtheories” (without making any approximations). The mentioned specifications
are obtained by corresponding choices of subsets of “observables”, “states”, and “generators” of
symmetry groups, and are usually mainly determined (cf. Section 2.2) by a choice of a unitary
representation U(G) of a Lie group G in the Hilbert space H corresponding to the traditional
quantummechanical description of the considered system:30 E.g., QM corresponds to the choice
G := {e} (a one-point set), cf. Section 3.3 (this does not exclude a use of other group representa-
tions V (G1) in the description of “microscopic observables”, and “symmetries” in QM; V (G1) will
play, however, another rôle than the picked out U(G) in the theory!); CM of N scalar particles
is specified by the Schrödinger representation U(G) of the 6N + 1 - dimensional Weyl–Heisenberg
group G, and by additional restrictions to the sets of “permitted” (or “physical”) states, generators
and observables, cf. point 3.1.4. Other approaches (related to our one) to some incorporation of

27Other conventional relations between CM and QM are “quantizations”, and “dequantizations”, the later under-
stood usually as a limiting procedure denoted by “~ → 0”.

28In the considered specific theories the time parameter is in a sense “global”, so that it is meaningful to speak
about states and observables of the (total) system at a time t ∈ R.

29A homogeneity requirement on phase spaces with respect to some topological group seems to us natural from
an “epistemological” point of view, cf. Subsection 1.1-a, resp. Interpretation 1.1.2, and Remark 1.1.3. There would
be no problem, however, to find in EQM also Hamiltonian CM on a general, not necessarily specified by a group
action, symplectic submanifold of P (H).

30The group G cannot be generally identified with the group of symmetries of the system!
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classical observables into an extended quantum formalism were published, e.g., in [204], cf. also
our Section 3.4, Appendix B, and [31, 32, 28].

The dynamics (generally nonlinear) of EQM on the “quantum phase space S∗” can be recovered
as a subdynamics of linear dynamics of a larger quantal system. This can be seen from Section 2.3,
where in Definition 2.3.3(ii) a C∗-algebra of observables CG was introduced such, that our evolutions
in EQM are (linear) automorphism groups of this C∗-algebra, cf. also Section 3.4. Looking on the
obtained EQM “from a side”, we could recover similarity between our transition from QM (resp.
NLQM) to EQM (and its linear realization on the C∗-algebra CG), and the “Koopmanism” in CM
(cf. Remark 3.3.14): While in the Koopman transition the CM was “linearized” by transferring
the phase space (M ; Ω) as a sort of “spectrum space” (cf. Appendix B, Example B.3.5) into
the infinite–dimensional Hilbert space L2(M,µΩ), and its (nonlinear) dynamics into a (linear)
unitary group, in our consideration of EQM (leading to nonlinear evolution on the “quantum
phase space” S∗, i.e. in a “restricted Schrödinger picture”) as a C∗-algebraic theory we obtain
(in the corresponding “Heisenberg picture”) a linear quantum dynamics on a C∗-algebra (namely
CG), cf. [35]. The state space of this C∗-algebra is, however, much larger than S∗, or even than
the spaceM+1(S∗) of probability measures on S∗ (of which is S∗ the subspace of Dirac measures,
in a canonical way).

1.2 A Brief Description of the Contents

For better orientation of readers in the contents of the following text, we shall give here also a brief
and heuristic explanation of some of the main points of the contents of this paper, as well as some
of their interconnections. Some notes on the placing of different parts of the contents in the text
can be also found in Section 1.3.

Let us introduce first some notation used in this paper:

1.2.0 Notation. (i) We use usually different fonts (e.g., f, f , f, f, f̃, f̂, f) for different kinds of
mathematical objects.31 By & is denoted the logical conjunction “and”.
(ii) The relation A(x) ≡ B(x) expresses (usually) assertion, that values of the two functions A and
B are mutually equal on the intersection D(A) ∩D(B) (∋ x) of the domains D(A) (resp. D(B))
of definition of the functions A and B. The relation A := B defines a new symbol A by expressing
it via an earlier introduced expression B. Formula A := B defines a new expression A.
(iii) The symbol f(·, y) denotes the function x 7→ f(x, y). ♦

1.2.1 (QM, and NLQM). QM is traditionally formulated in terms of selfadjoint operators
X on a complex Hilbert space H which play the double rôle of the “observables”, as well as
of the “generators” of symmetry groups in the theory. QM can be equivalently reformulated in
terms of (infinite dimensional) classical Hamiltonian mechanics on the phase space P (H) consisting
of one-dimensional complex subspaces x,y, . . . of H.32 Linear operators X = X∗ on H then
correspond to the functions hX : x 7→ hX(x) := Tr(PxX) ≡ 〈x|X |x〉/〈x|x〉 on P (H), where
Px := Px (0 6= x ∈ x ⊂ D(hX), cf. (2.2.1)) is the orthogonal projection onto x. The Poisson
bracket is

{hX , hY }(x) := i T r(Px [X,Y ]) = hi[X,Y ](x), (1.2.1)

31Bold form of symbols will be used sometimes, mainly in their definitions, however, also for the otherwise nonbold
ones, which are of the same typographic form.

32Such a scheme should be supplied by an interpretation scheme extending the probabilistic interpretation of QM.
Such an interpretation is given later, cf. Interpretation 2.3.11.
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where [X,Y ] := XY − Y X is the commutator. The Schrödinger equation is then equivalent to
Hamiltonian equations corresponding to (1.2.1): If H is the Hamiltonian operator of a QM system,
then the evolution of the “observables” hX ≡ hX0 7→ hXt, t ∈ R, is described by the Heisenberg-
Hamilton (resp. von Neumann-Liouville) equations

d

dt
hXt(x) ≡ d

dt
hX(ϕHt x) = {hH , hX}(ϕHt x), x ∈ P (H), t ∈ R; hXt := hX ◦ ϕHt , (1.2.2)

where ϕHt is the “Hamiltonian” (resp. “Poisson”) flow on P (H) corresponding to the unitary
evolution t 7→ exp(−itH)x of vectors x ∈ H, i.e. a one-parameter group of transformations of P (H)
conserving Poisson brackets which can be determined from (1.2.2). This immediate rewriting of QM
differs from an “ordinary Hamiltonian CM” on P (H) by a specific restriction of the set F(P (H))
of differentiable real valued functions used as “observables” and “generators”: QM uses only those
f ∈ F(P (H)) that have the form f ≡ hX(X = X∗). Let us call these hX affine functions (or also
“Kählerian functions”, [63]) on P (H): They can be considered as affine functions defined on all
convex combinations ̺ :=

∑

j λjPj ∈ S∗ of the pure states Pj ∈ P (H); they can be characterized,
however, in a “purely geometrical way” in the framework of P (H) with a help of canonical metrics
on it (cf. [63, 26, 27]): affine functions f ∈ F(P (H)) are exactly those f which generate Poisson
flows conserving the metrics (equivalently: conserving transition probabilities, (1.2.4)), and, in
that case, they are expressible by linear operators X , i.e. f = hX . We shall sometimes call the
affine functions f also “linear functions”. Other f ∈ F(P (H)) will be called nonlinear functions
on P (H). The “equation of motion” (1.2.2) for general functions f , h ∈ F(P (H)) has the form

d

dt
ft (x) ≡ d

dt
f (ϕht x) = {h, f }(ϕh

t x), x ∈ P (H), t ∈ R, (1.2.3)

where the Poisson bracket is the unique extension of (1.2.1) to more general real-valued functions
h, f, . . . on P (H) (cf. Sec. 2.1), and ft := f ◦ ϕh

t , f := f0.
The formal transition from QM to NLQM consists (in our “classical–like” rewriting of

QM) in the addition to affine “generators” of QM of also the nonlinear ones. Such an infinite-
dimensional classical mechanics on P (H) is developed in Sections 3.2, 3.3-a. Inclusion of these
nonlinear functions between generators implies, however, a sequence of problems for quantum
theory. ♠

1.2.2 (Evolutions and mixtures). The basic Wigner theorem (cf. Proposition 3.2.6) states that
to any bijective transformation ϕ of P (H) onto itself conserving the “transition probabilities”, i.e.

Tr(PxPy) ≡ Tr(PϕxPϕy), (1.2.4)

there exists a unitary or antiunitary operator U on H such, that

Pϕx ≡ PUx ,with 0 6= x ∈ x, ∀x ∈ P (H). (1.2.5)

The corresponding operators Ut are unitary for continuous families t 7→ ϕt, (ϕ0 := idP (H))
of mappings ϕ satisfying (1.2.4). The unitary operators in (1.2.5) are determined essentially
uniquely by ϕ, up to numerical factors. This means, that ϕ from (1.2.4) with a unitary U uniquely
determines a ∗-automorphism αϕ of the von Neumann algebra L(H) of bounded operators on H.
Such an automorphism, in turn, determines the dual mapping α∗

ϕ that affinely and bijectively
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maps the space S∗ of all density matrices onto itself and extends the mapping ϕ : α∗
ϕx ≡ ϕx.

On the other side, [42, Theorem 3.2.8, Corolary 3.2.13, Examples 3.2.14 and 3.2.35], if a one
parameter family ϕ(t) of bijections of the pure states P (H) onto itself can be extended by a
“sufficiently continuous” family t 7→ α∗

ϕ(t) of affine bijections α∗
ϕ(t) of S∗ onto itself, then there

is a one-parameter family of ∗-automorphisms αϕ(t) of L(H) represented by unitary operators
U(t) such that Pϕ(t)x ≡ U(t)PxU(t)∗ . It can be shown [63] (cf. also Proposition 3.3.1) that the

transformations ϕ := ϕht (t ∈ R) solving (1.2.3) satisfy (1.2.4) iff there is some H = H∗ such that
h ≡ hH . Hence, evolutions determined from (1.2.3) for nonlinear h necessarily violate (1.2.4), and
ϕht cannot be (for all t) extended by affine mappings of S∗ onto itself. This also means that ϕht
cannot be extended into a transformation of density matrices ̺ :=

∑
λjPxj =:

∑
λjxj , conserving

affine combinations, i.e. for any such extension ϕ̃ht there is

ϕ̃ht ̺ 6≡
∑

j

λjϕ
h
t xj . (1.2.6)

This has consequences described in Note 3.3.3, and in Interpretation 2.1.24, as well as in Subsec-
tion 2.1-e: An evolution ϕ̃ht of density matrices cannot be expressed by “the same” evolution ϕht
of pure components of their decompositions. This has several further consequences. ♠

1.2.3 (Emergence of nonlinear observables). The evolution ϕht (in the “Heisenberg picture”)
of affine “observables” hX does not lead identically to affine observables, i.e. there are no such
one parameter sets of operators X(t)∗ ≡ X(t), X(0) := X that hX(ϕht y) ≡ hX(t)(y), for nonlin-
ear h. Hence, inclusion of nonlinear generators implies necessity of inclusion of also “nonlinear
observables” into the theory. The probabilistic interpretation of such observables is not possi-
ble in a traditional way, cf. Interpretation 2.1.24. The interpretation inspired by “mean–field
interpretation” is described in Interpretation 2.3.11, where the expression of nonlinear functions
h ≡ hf, hf(x) := Tr(Pxf(F(x))) with a help of conveniently chosen operator-valued functions f is
used (see Definition 2.2.17 for F). A restriction of possible choices of the functions h , as well
as of nonlinear generators, can be determined by a choice of the representation U(G), cf. also
Definitions 2.2.26, 2.3.2–2.3.5. ♠

1.2.4 (Two kinds of mixtures). Impossibility of a unique extension of ϕht (determined by
the function h defined on P (H) only) to a mapping ϕht on S∗ leads to necessity of investigation
of a natural “Poisson structure” and a consequent definition of ϕht for “Hamiltonian functions
h” defined now on the whole S∗, cf. Section 2.1. This provides a solution of problems arising
in the earlier trials to formulate NLQM with connection of evolution of mixed states, cf. also
[274, 273]. These facts lead also to necessity of distinction of two kinds of “mixed states” in
nonlinear extensions of QM. These are introduced in Subsection 2.1-e, and in Definition 2.3.5.
The elementary mixtures correspond to density matrices considered as points of the elementary
phase space S∗; these elementary mixtures are transformed by Poisson flows ϕh as points of S∗,
independently of their possible convex decompositions. Another kind of “mixed states” is described
by probability measures µ on S∗, which are not concentrated in one point: these are called the
genuine mixtures (corresponding to the term “Gemenge” used in [50]). Evolution of states described
by µ’s is given by evolutions of points in the support of µ. This offers, e.g., a possibility to
distinguish between the state described by an elementary mixture – e.g. the density matrix ̺I of a
subsystem I (obtained as the “partial trace” [71]) of a composed system I+II being as a whole in
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a pure state33 belonging to the manifold P (HI ⊗HII) on one side, and, on the other side, a state
with the same barycentre [42] ̺I (expressed now by a probability measure µI on SI∗) obtained
after some “reduction of the wave packet”, cf. [190, 277, 28]: in the last case the different states
occurring in the support of the measure µI of the microsystem I are correlated with macroscopically
distinguishable states of the measuring apparatus (usually declared as “pointer positions”); this
correlation can be reflected in a description of states by genuine mixtures µI . ♠
1.2.5 (Unbounded generators). Another (rather “technical”, at first sight) complication arising
in our process of reformulation and extension of QM in geometrical terms is connected with the
necessity of a use of unbounded selfadjoint operators X on the Hilbert space H in QM. It is a
generally known mathematical theorem that such operators are defined on dense linear subsets
D(X) of H certainly different from the whole H. Hence, our extension to nonlinear theory requires
to use of also (“linear”, or not) functions f on S∗ in a rôle of generators that are not defined
everywhere on the corresponding manifold of quantum states, and also are not locally bounded
on S∗; such nonlinear f ’s could be obtained, e.g. as some nonlinear perturbations of the (only
densely defined, unbounded) function hX corresponding to unbounded X . The main technical
advantage of the use of the representation U(G) is that it offers a possibility of definition of a
class of nonlinear unbounded generators h generating Poisson flows ϕht on S∗ that extends the set
of affine (unbounded) generators hX (the later generate projections of the common unitary flows
U(t) := exp(−itX)). This is done in Section 2.2 with a help of the “macroscopic field F”, cf.
Definitions 2.2.17 and 2.2.26. The representation U(G) enters into the determination of the set of
“relevant generators h”; taking part in determination of the “considered physical system” in this
way, the use of U(G) has not only “technical rôle”, but it has also a “physical meaning”. ♠
1.2.6 (Structure of observables). Section 2.3 is devoted to definition of observables, to inves-
tigation of their algebraic properties, and of their transformation groups. It is proposed, in the
geometrical setting, to describe observables by functions f : S∗ × S∗ → R, (̺; ν) 7→ f̂(̺, ν) of two

variables, the first one is called the quantum variable and the function f̂(·, ν) is affine. The ob-
servables are related to the choice of U(G) that determines (cf. Definition 2.2.17, Definition 2.2.26,
and Proposition 2.2.32) an affine mapping F : D(F)(⊂ S∗)→ EF(⊂ Lie(G)∗) describing a “classical
field”. The dependence of observables f on the second “macroscopic” (or “classical”) variable ν

can be restricted to an “indirect dependence”, i.e. f̂(̺, ν) ≡ Tr(̺f(F(ν))) for some operator-valued
function f on (a subset E of) Lie(G)∗. Restriction to such a type of dependece on the quantum
states ν ∈ S∗ provides a tool for dealing with the above mentioned (see 1.2.5) unbounded func-
tions. We see that a general type of “quantum fields” f : EF → L(H) enters naturally into the
game, cf. Definitions 2.2.26, 2.3.3, as well as Interpretation 2.3.11. ♠
1.2.7 (Possible applications). The presented theory is still in a preliminary stage: Its mathe-
matical form is more elaborated than its possible physical interpretations. As a consequence, we
restrict our attention in this work to existing theories and their incorporation into our concep-
tual scheme. We give here some general technical procedures to approach solutions of nonlinear
dynamical (Schrödinger) equations (Section 3.5). We propose also a general mechanism for “de-
linearizations” of unitary group representations in Proposition 2.3.20. A general interpretation
scheme of EQM is proposed, cf. e.g. Subsection 2.1-e, Interpretation 2.3.1, Definition 2.3.5, and
Interpretation 2.3.11.

33Hamiltonian evolutions of ̺I – linear, or not – are, however, rather rare consequences of evolutions of the
composed system I + II; these evolutions should be rather specific in those cases.
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As concerns some proposals of new applications of the EQM (in addition to all ones of QM),
they could be found also without requiring a “fundamental nonlinearity” in laws of Nature (i.e.,
now in QT). We consider here description of systems, which can be considered as “relatively
closed” subsystems of larger (linear) QM systems. Such might be some “mesoscopic systems”
of large molecules, of “trapped” Bose–Einstein condensates, etc. As concerns (non-)linearity of
physical laws, it can be suspected that pervasive scientific thinking is nowadays “generally linear”:
Even if dealing with nonlinear equations, mappings or “effects”, we express them eventually in
terms of linear spaces (real numbers, additive operations = commutative groups, “linearizations”
of different kinds, etc.). Linearity seems to be one of the present time “paradigms” of our thinking.
As it is shown in several places of this work, any of considered nonlinear theories can be extended
to a linear theory “of a larger system” (a generalized “Koopmanism”). Hence, conversely, we
can expect nonlinear behaviour by specific restrictions of dynamics to subsystems. Possibilities of
various interpretations of the presented general theoretical scheme of EQM are left open here for
further development. ♠
1.2.8 (Notes on a Weinberg’s proposal). In some papers, [274], S. Weinberg posed a question
on a possible nonlinear modification of QM (motivated by his aim to formulate a way to testing
fundamental principles of QM), and sketched a specific proposal of “nonlinear quantum mechanics”
(NLQM). Trials to obtain a consistent generalization of the traditional interpretation of QM to
this theory led, however, to difficulties connected mainly with the appearing lack of conservation
of the “transition probabilities” under nonlinear transformations in QM. There are difficulties
with appearing possibility of superluminal communication via Einsten-Podolsky-Rosen (EPR)-
type experiments, difficulties with the statistical interpretation of the formalism (as will be shown
in Subsection 3.3-a) and also difficulties with description of composed systems.34 Weinberg’s
description of evolution of mixed states of subsystems (it was basis dependent), as well as statistical
interpretation of predictions (it was based on an approximation motivated by KAM theory) were
even mathematically and conceptually ambiguous.

We shall reformulate here NLQM in the mathematically unambiguous terms of symplectic re-
formulation of QM discovered some time ago, cf. [252, 26, 62, 27, 63] by extending it subsequently
by “nonlinear quantities”. This formulation admits the interpretation suggested by a specific
formulation of quantum mean-field models: the given QM system is considered as an individual
subsystem of an infinite collection of equal quantum subsystems interacting mutually via a very
weak, long range, and permutation invariant interaction; its dynamics can be described as a quan-
tum dynamics of an individual subsystem moving in the time dependent “external” classical field
given by actual values of intensive quantities of the infinite system. Mathematical unambiguity of
this MFT ensures such property for our EQM. Since also more realistic interactions than that of
MFT, e.g. the Coulomb interaction, are “of long range” and lead in specific limits to validity of a
certain forms of MFT, cf. Thomas–Fermi theory [258], one can expect existence of applications of
the presented theory in realistic situations.
We shall return to a reformulation of a part of Weinberg’s theory in Section 3.6. ♠

Let us note that we shall not present in this work any review of mean–field theory (MFT),
in spite of its (at least “ideological”) importance for understanding of some constructions of the
present paper, as well as of their proposed interpretation; for a brief review of MFT cf., e.g., [33],

34There are, however, works devoted to search of some observable deviations from the QM predicted by the
Weinberg formulation of NLQM; in some of these works also proposals for experimental tests of predictions of this
formulation of NLQM were given.
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the introductory sections of [32], or in [266, 265, 264]; cf. also Section 3.4.

1.3 Remarks on the Text

The text is divided into three Chapters, including this introductory one, and of three appendices
(numbered alphabetically) divided to (sub)sections. The second chapter entitled “Extended Quan-
tum Mechanics” contains the general formal and interpretational scheme of the presented theory,
the EQM. The last one: “Specifications and Applications” contains a description of some more
specific theories which are included as subtheories into EQM. Chapters are divided into sections,
numbered separately in each chapter. Subsections, formulas, and assertions (of all kinds, con-
secutively, including Definitions, Theorems, Remarks, Interpretations, some unnamed paragraphs,
etc.) are numbered within each Section separately. For better orientation at reading, the end of
text of Theorems, Propositions and Lemmas is denoted by ♣, end of Definitions and Notations is
denoted by ♦, and that of Interpretations by �; Notes, Remarks, Illustrations and Examples are
finished by ♥, and some other unnamed numbered paragraphs are ended by the sign ♠.

The appendices are written in a language, which is not always strictly rigorous from mathe-
matical point of view, what is due to the author’s desire to make the mathematical text easier to
read for more readers. The contents of (sub)sections is briefly seen from the Table of contents.
Phrases and formulas typed boldface are usually newly defined expressions. The bibliography is
far from complete; this is also due to many sources and connections of EQM.

The text is written as a physically motivated mathematical model intended, however, to provide
a framework for solution of actual physical problems. Hence, it is not quite physically neutral
as a purely mathematical text, perhaps, should be. There are included paragraphs denoted by
“Interpretation” containing some of these author’s ideas and proposals, but also some (perhaps)
generally accepted parts of quantum theory (QT).

We did not try to use some “up to date mathematics”, and the level is “slightly graduate”.
Appendices might help readers to refresh some mathematical concepts and facts. They contain
some technical prerequisites on topology, differential calculus on Banach spaces and differential
geometry (also on Banach manifolds), on Lie groups, basic facts on C∗-algebras, and W ∗-algebras,
and their representations and automorphisms (i.e. symmetries), as well as a brief information on
unbounded symmetric operators and their symmetric and selfadjoint extensions. The appendices
can serve, together with Sections 1.4, and 1.5 presenting briefly general schemes of CM and QM,
to fix notation, and also to pedagogical purposes (independently of Chapters 2, and 3).

The given scheme of EQM contains also Hamiltonian classical mechanics (CM) as a subtheory
in an obvious way, as it is mentioned in the paragraph 3.1.4. In Section 3.1 also other subtheories
and some invented applications of EQM are listed, and an “itinerary” of the Chapter 3 is there
given. It is not mentioned there a possibility of an application to a formulation of connections
of the theory of general relativity with QT, since the present author is not acquainted with the
actual status of these problems.35 Equally it is not discussed a hypothesis on possible application
of methods close to the presented ones to the “algebraic quantum field theory” (QFT): Let us just
mention that a “self-consistent approach” could be, perhaps, useful in dealing with such classical
objects like “domains in Minkowski space” in a framework of any quantum theory.

35It might be assumed that works by, e.g. C.J. Isham and/or A. Ashtekar contain relevant attempts of this kind.
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We were not intended to criticize here in details the Weinberg‘s formulation of a nonlinear
modification of QM; some relevant criticism was presented in published papers, e.g. in [107, 273].
The Section 3.6 is devoted to just a reformulation of our NLQM on P (H) in terms close to those
used in the Weinberg’s paper [274]. This allows us to compare in mathematically clear terms the two
approaches to a generalization of QM, which might be considered (up to the used interpretations)
practically identical on the set of vector states, resp. on P (H). Some useful algorithms for solution
of these nonlinear Schrödinger equations might be found in Section 3.5. A reduction of solutions
of a class of nonlinear Schrödinger equations connected with a group action on P (H) to two
“simpler” problems: to solutions of classical Hamilton’s equations (possibly, finite dimensional),
and to solution of a linear time–dependent Schrödinger equation is described in that Section 3.5.

Other theories described here as subtheories of EQM entered to NLQM as “approximate theo-
ries” to problems of linear QM: It might be rather interesting how nonlinearities enter into approx-
imated linear theories of QM. We shall present, e.g., (partly elaborated) cases of time–dependent
Hartree-Fock theory in 3.3-d, and a class of nonlinear Schrödinger equations known also from
traditional attempts to formulate nonlinear modifications of QM, cf. Subsection 3.3-e.

A connection of EQM with “quantum theory of large systems” (i.e. with a class of nonrel-
ativistic QFT) is sketched briefly in Section 3.4. This connection seems to us crucial from the
interpretational point of view, since the presented EQM appears (in a slightly different form) as a
well formulated linear QT of large quantal systems. Such a linear QT contains also classical macro-
scopic observables in a natural way, as a consequence of local quantum kinematics, where a specific
rôle of symmetry groups and a “mean–field” dynamics can be introduced, to point out those of
the obtained (unnecessary huge) set of “observables” which are interpretable, hence “useful”.

At the beginning of the Chapter 2, in Subsections 2.1-a, and 2.1-b of Section 2.1, the mainly
“kinematical structure” of the theory is described, whereas the next two Subsections 2.1-c, and 2.1-
d describe the way of constructing “dynamics”, and also more general one–parameter symmetry
groups. Only bounded and differentiable, hence “nice” objects are considered in details in these
subsections. The following Sections 2.2, and 2.3 consist, perhaps, the most technical parts of the
paper containing also important interpretation proposals. They contain both a solution (and some
hints for alternatives) of the technical problem of dealing with unbounded nonlinear generators
(“Hamiltonians”), as well as definitions and interpretation proposals for “observables”. The Sec-
tion 2.3 contains the basic definitions of a variety of described (sub–)systems, and also a description
of “nonlinear realizations” of symmetry Lie groups.

Before starting with a description of tools for our generalization of QM to EQM, let us, however,
present in the next two sections brief reviews of traditional CM, and also of QM, a knowledge and
understanding of which is a necessary prerequisite for successful reading of Chapter 2.

1.4 A General Scheme of Hamiltonian Classical Mechanics

We present a brief review of geometric formulation of classical mechanics in this section. The
presented scheme is standard [1] and represents an important part of intuitive and technical back-
ground for our subsequent constructions. The language used will be that of a simple version of
global differential geometry: We want to avoid as much as possible a use of coordinates for sake
of transparency and formal and conceptual simplicity; this will be our “policy” in all the follow-
ing text. Some review of a necessary minimum of mathematical background is presented in the
Appendix A.
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1.4-a Classical phase space and dynamics

Let us first mention basic general concepts, and subsequently some examples will be given.
The space of classical “pure states” in a model of Hamiltonian mechanics, i.e. the phase

space (M ; Ω), is a differentiable manifold M of finite (even) dimension endowed with a symplectic
(i.e. nondegenerate and closed) two-form Ω. The specification of the form Ω is equivalent to a
specification of a nondegenerate Poisson structure on M , i.e. to definition of Poisson brackets
{f, h} on the set F(M) (∋ f, h) of infinitely differentiable real valued functions on M .

The equivalence between Poisson and symplectic structures on a (symplectic) manifold is only
the case, however, of a nondegenerate Poisson structure , i.e. that one satisfying all the five
following defining properties:

1.4.1 Definitions (Poisson structure). Let M be a differentiable manifold, and let a mapping
{·, ·} : F(M)× F(M)→ F(M) be given. Assume the following properties of {·, ·}:
(i) {·, ·} is antisymmetric: {f, h} ≡ −{h, f};
(ii) {·, ·} is bilinear: {f, h1 + λh2} ≡ {f, h1}+ λ{f, h2};
(iii) {f, ·} is, for any fixed f ∈ F(M), a derivation: {f, h1h2} ≡ {f, h1}h2 + h1{f, h2};
(iv) Jacobi identity: {h1, {h2, h3}}+ {h3, {h1, h2}}+ {h2, {h3, h1}} = 0 is fulfilled;

(v) {·, ·} is nondegenerate: If, for a fixed f ∈ F(M), there is {f, h} ≡ 0 for all h ∈ F(M), then
f ≡ const. on each connected component of M .

If {·, ·} satisfies first four properties (i) - (iv), then it is called a Poisson structure on M .
A manifold M endowed with a Poisson structure is called a Poisson manifold, [275].
Relation of a general Poisson manifold M to its canonically determined symplectic submanifolds

is such that M decomposes uniquely to union of disjoint manifolds Mι each of them is endowed
with a uniquely defined symplectic structure Ω(ι) determined by the Poisson structure {·, ·}, and
canonically determining it on corresponding Mι. The dimensions of the symplectic leaves Mι

might be mutually different. Any h ∈ F(M) determines a unique Hamiltonian vector field vh
on the whole M by the formula

df(vh) ≡ vh(f) := {h, f}, for all f ∈ F(M). (1.4.1)

The same formula can be obtained for a symplectic manifold by combining (1.4.1) with (1.4.3).
Corresponding Hamiltonian flows leave each the symplectic leaf Mι invariant. ♦

This allows us to ascribe to each function h ∈ F(M) a unique (local) flow ϕh on M representing
solutions of Hamilton’s dynamical equations

dft
dt

= {h, ft}, with ft(x) := f(ϕht x), t ∈ R, x ∈M, (1.4.2)

with the Hamiltonian function h: for the initial state x(0) := x ∈ M the state in a time t ∈ R is
expressed by x(t) = ϕht x. This is done in the following way: The symplectic form Ω determines
the Hamiltonian vector field vh on the phase space M corresponding to an arbitrary differentiable
function h ∈ F(M) := C∞(M,R), by the formula

Ωx(vh,w) := −dxh(w), for all x ∈M,w ∈ TxM. (1.4.3)
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Then the Poisson bracket is defined by

{f, h} := Ω(vf ,vh), f, h,∈ F(M), (1.4.4)

and the right hand side of the equation (1.4.2) is just vh(ft). The solutions x(t) = ϕht x of (1.4.2)
needn’t exist for all times t ∈ R for any initial condition x ∈M , and ϕh represents in general just
a collection of local flows. If ϕh exists for all t on M , it is called the (global Hamiltonian) flow of
the vector field vh. A vector field with global flow is called complete vector field. General
criteria for deciding what Hamiltonian h on a given (M ; Ω) has complete vector field vh are not
known, although some criteria are known for specific classes of (possibly symplectic) manifolds;
especially, on compact M all vector fields are complete. Let us note that “completeness” of a
Hamiltonian vector field of h on a dense invariant subset of M is equivalent [1, 2.6.14, and 2.6.15]
to essential (anti-)selfadjointness of a densely defined linear operator on the complex Hilbert space
H := L2(M,dµΩ)(∋ f), cf. Appendix C. Here the measure µΩ used in the definition of the square
integrability in the Hilbert space H is the n-th power of Ω, cf. Appendix A.3, if dim(M) = 2n:

µΩ(Λ) =

∫

Λ

∧nΩ. (1.4.5)

The mentioned antiselfadjoint operator acts on differentiable functions f ∈ H as the differential
operator determined by the vector field vh:

f 7→ vh(f) := df(vh).

A symplectic transformation of (M ; Ω) is a diffeomorphism ϕ of M onto itself conserving
the form Ω, i.e.: ϕ∗Ω ≡ Ω. Hamiltonian flows are one-parameter groups of symplectic transforma-
tions (hence, they conserve the measure (1.4.5) - this is the Liouville theorem used in classical
statistical mechanics). Conversely, each one-parameter group of symplectic transformations defines
its (at least local – in open neighbourhoods of all points of M) Hamiltonian function generating
the given flow [1, 7]. Any symplectic transformation can be considered as a (kinematical) sym-
metry of the considered classical system. If the dynamics is described by the Hamiltonian h with
the flow ϕh, and a symmetry one-parameter group is described by the flow ϕf corresponding to
its “Hamiltonian” f , and if, moreover, the Poisson bracket of the corresponding Hamiltonians
vanishes: {f, h} = 0, then the two flows mutually commute:

ϕht ◦ ϕfs ≡ ϕfs ◦ ϕht .
In this case, the function f represents an integral of motion, resp. a conserving quantity of
the system, cf. eq. (1.4.2). If there is a Lie group G (cf.A.4) acting on M transitively (i.e. for any
x, y ∈M there is a g ∈ G such, that its action transforms x to y) by symplectic transformations,
the phase space M is called a symplectic homogeneous space of G.

Let us give now some simple examples:

1.4.2 Examples.

(i) The linear space M := R2n of 2n−tuples of Cartesian coordinates (q1, . . . qn, p1, . . . pn) is en-
dowed with the symplectic form Ω :=

∑n
j=1 dpj ∧ dqj . The Poisson bracket is in the given coordi-

nates expressed in the standard form

{f, h} =

n∑

j=1

(
∂f

∂pj

∂h

∂qj
− ∂h

∂pj

∂f

∂qj

)

. (1.4.6)
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Symmetries of this space contain linear symplectic transformations described by 2n× 2n matrices
commuting with the matrix S with elements (in the considered “canonical” basis) Sj,k ≡ 0, except
of Sj,j+n ≡ −Sj+n,j = 1 (j = 1, 2, . . . n), but also affine transformations consisting of arbitrary
parallel shifts ϕ : x 7→ ϕ(x) ≡ x + a, for any fixed a ∈ R2n. Symmetries are, of course, all
the symplectomorphism of the form ϕht (the above mentioned linear transformations, as well as
affine ones, are also of this form; e.g. shifts are generated by linear h(q, p) ≡ ∑n

j=1(cjqj + djpj);
quadratic h’s correspond to groups of linear transformations). Let us mention explicitly, that
specific quadratic h’s describe the dynamics of “harmonic oscillators”, whereas those h’s which
contain (in their Taylor expansion, e.g.) terms of higher than the second order in the standard
canonical coordinates (p; q) lead to nonlinear canonical flows on M .

(ii) The complex projective space CPn := P (Cn+1) constructed from the linear space Cn+1 as
the factor-space consisting of its one-dimensional complex subspaces can be considered as 2n-
dimensional real manifold endowed with a canonical symplectic structure [7, Appendix 3]. This
is a special case of complex projective Hilbert spaces P (H) considered in Section 3.2, and finite
dimensional examples in specific charts can be straightforwardly constructed.

(iii) Cotangent bundles: Let Q be any differentiable manifold and M := T ∗Q ≡ T 0
1Q be its

cotangent bundle, cf. also Appendix A.3. Hence, points of M are linear functionals p ∈ T ∗
qQ :=

(TqQ)∗ “attached to points” q ∈ Q; the natural projection τ : T ∗Q → Q maps p ∈ T ∗
qQ to

τ(p) = q ∈ Q. The derivative (i.e. the tangent mapping) of τ is

τ∗ := Tτ : TM := T (T ∗Q)→ TQ.

The canonical one form ϑ on the cotangent bundle M = T ∗Q is defined by:

ϑ : p(∈M) 7→ϑp ∈ T ∗
pM,

ϑp : v(∈ TpM) 7→ϑp(v) := p ◦ τ∗(v).
(1.4.7)

Then Ω := dϑ is a symplectic form on M , the canonical symplectic form on T ∗Q. If
{q1, q2, . . . , qn} are local coordinates on Q, then p ∈ T ∗Q = M is expressed (in the corresponding
chart on M) as p ≡∑n

j=1 pjdqj . In this coordinate neighbourhood one has

ϑ =
n∑

j=1

pjdqj ◦ τ∗ ≡
n∑

j=1

pjτ
∗dqj ,

and from commutativity of pull–backs with exterior differentiation d, and from the basic property
d ◦ d ≡ 0, we have the canonical expression for Ω in that neighbourhood :

Ω := dϑ =

n∑

j=1

dpj ∧ τ∗dqj .

Hence, any cotangent bundle is a symplectic manifold in a canonical way. Taking Q := Rn, we
obtain the example (i), where the coordinates {qj, pk} ∈ R2n can be chosen global (corresponding,
e.g. to a trivial coordinate (linear) chart on Q = Rn). ♥
1.4.3 Remark (On the notion of “chaos”). The Liouville theorem on noncontractibility of the
phase volume, cf.(1.4.5) and the text following it, implies nonexistence of attractors, [1], of
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Hamiltonian flows. The attractors, especially so called “strange attractors”, [244], are usually
connected with the notion of chaos, [10, 270, 117], in dynamical systems. This does not mean
that in Hamiltonian systems does not occur a chaotic motion. The “chaoticity” of motion is
characterized rather by its instability with respect to choices of initial conditions than by presence
of some attractors. Such instabilities seem to occur generically in Hamiltonian systems. This
fact remained hidden for most of physicists for several decades: Mainly so called (completely)
integrable systems were described in university textbook literature: These are, roughly speaking,
systems the dynamics of which can be fully described on surfaces of given values of integrals of
motion, in conveniently chosen coordinates, as systems of independent linear harmonic oscillators;
parameters of the oscillators might depend on values of the integrals of motion; the “integrals-of-
motion surfaces” decompose the energy submanifolds and all they are diffeomorphic to tori T n,
or to cylinders, [7, 8, 1]. This was, perhaps, due to the fact that all known explicitly solved (≡
integrated) models were of this kind.36 It was proved [177], however, that the set of integrable
systems is in a well defined sense rare in the set of all possible Hamiltonian systems. In the cited
paper [177] no restrictions to dynamics coming, e.g. from observed symmetries of physical systems
were considered; such restrictions could, perhaps, enlarge the “relative size” of integrable systems.
But, on the other hand, some “physically realistic” systems in classical mechanics were proved
to be nonintegrable, e.g. the three (and more) body problem in celestial mechanics (i.e. in the
nonrelativistic model of planetary systems with point masses moving in R3 and interacting via the
Newton potential) is nonintegrable, [1]. ♥

1.4-b Observables and states in classical mechanics

Also CM can be formulated in terms familiar from QM. This formal analogy is useful for description
of classical subsystems in the quantummechanical framework. Concepts introduced in this subsec-
tion are useful also in formulation of classical statistical mechanics, see e.g. [159, 263, 225, 226].

As a set of classical observables can be chosen, e.g. the C∗-algebra (without unit, if M is
not compact) C0(M) of all complex–valued bounded continuous functions on the phase space
M tending to zero at infinity, cf. Appendix B. This C∗-algebra can be completed by unit (:=
I ≡ 1 =identically unit function on M), and this completion will be called the C∗−algebra of
classical observables, denoted by Acl.37 The algebraic operations are defined pointwise on M :
for f, h ∈ Acl one has (f ·h)(m) ≡ f(m)h(m), (f + λh)(m) ≡ f(m) + λh(m), f∗(m) ≡ f(m), and
the norm is the supremal one, i.e. ‖f‖ := sup{|f(m)| : m ∈ M}. The spectrum space of Acl is
just the one–point compactification of M . Further extensions of the algebra of observables Acl
could lead us to abelian von Neumann algebras: Let, e.g. the Borel measure µΩ on M be given,
and consider the Banach space L1(M,µΩ) of integrable complex–valued Borel functions f on M ,
with the norm ‖f‖1 := µΩ(|f |) ≡

∫
|f(m)|µΩ(dm). Its topological dual, cf. [219, 41], L∞(M,µΩ)

consisting of µΩ–essentially bounded Borel functions on M is a W ∗–algebra containing Acl. It can
be interpreted as a maximal commutative von Neumann algebra of bounded operators in L(H),
namely the operators of M–pointwise multiplication by functions f ∈ L∞(M,µΩ) of elements of
the Hilbert space H := L2(M,µΩ). The mentioned duality is realized by the sesquilinear relation

〈f ;h〉 ≡
∫

f(m)h(m)µΩ(dm), ∀f ∈ L∞(M,µΩ), h ∈ L1(M,µΩ). (1.4.8)

36This seems to be generally believed, cf. also [7].
37For the concepts and properties of C∗-algebras and von Neumann (resp. W ∗−) algebras see the standard

books [77, 78, 228, 229, 255, 42], and also our Appendix B.
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This last definition of a (complexified, linear) set of “classical observables” as a W ∗–algebra of
observables has an advantage that this C∗-algebra contains also projections in L(H) represented
by multiplication operators by characteristic functions of the Borel subsets of M , by which is it
generated. Hence, (also unbounded) “observables f” could be defined alternatively by projection–
valued measures Ef (with values in multiplication projections in L

(
L2(M,µΩ)

)
) on Borel subsets

B(R) of R:
Ef : B(∈ B(R)) 7→ Ef (B) := χf−1(B) ∈ L(H),

with the characteristic function χΛ of a Borel set Λ := f−1(B) ⊂ M considered as an element of
L∞(M,µΩ) ⊂ L(H).

The (mathematically defined, [78, 228, 42]) (classical) states S(Acl) on the C∗-algebra Acl
are just the probability measures µ ∈ M+1(M) on M , and the (classical) pure states are all
the the Dirac measures {δm : m ∈M ∪ {∞}}, with δm(Λ) = 1⇔ m ∈ Λ:

µ : f(∈ Acl) 7→ µ(f)(∈ C), µ(f) :=

∫

f(m)µ(dm).

If one takes, on the other side, the W ∗-algebra L∞(M,µΩ) as the C∗-algebra of observables ,
the set of all states on it will be “much larger” than S(Acl) (which is included there as a proper
subset), but the normal states on L∞(M,µΩ) restricted to the subalgebra Acl are just measures in
M+1(M) represented by elements of L1(M,µΩ), i.e. just the measures absolutely continuous
with respect to µΩ.

1.4.4 Interpretation. In any case, the Dirac measures δm,m ∈M , represent “pure states”, resp.
in mathematical language, the extremal points of the convex set of all Borel probability measures on
M . Other probability measures of this set have nontrivial, but unique decompositions into the
extremal Dirac measures. Their physical interpretation is probabilistic, in the sense of statistical
ensembles of Gibbsian statistical mechanics, [135, 116, 159]: In the ensemble described by a measure
µ ∈ M+1(M), the fraction of otherwise equal physical systems having pure (=“microscopic”, but
classical) states represented by points in the Borel subset Λ of the phase space M is equal to µ(Λ).
This interpretation is conceptually consistent, due to the uniqueness of decomposition of µ’s into
the extremal points. This point hides an essential difference between CM and QM: M+1(M) is a
simplex, what is not the case of the state space S∗ (or of S) of QM. �

1.4-c Symplectic structure on coadjoint orbits

We shall mainly restrict our attention to such classical phase spaces M in this work, which are
homogeneous spaces of a connected, simply connected Lie group G, on which the action g : m 7→
g ·m (g ∈ G,m ∈M) of G consists of symplectomorphisms:

fg(m) := f(g ·m), ∀f, h ∈ C∞(M,R) : {fg, hg} ≡ {f, h}g.

In these cases, the phase space (M ; Ω) is (locally) symplectomorphic to an orbit of the coadjoint
representation (see Section A.4, and below in this subsection) either of G, or of its central extension
by the additive Lie group R, cf. [149, §15.2, Theorem 1].

Any (noncommutative) Lie group provides a canonical example of Poisson manifold. Also the
most common case of the 2n-dimensional symplectic linear space of the Example 1.4.2(i) can be
considered as coming in this way from the 2n+ 1-dimensional Weyl-Heisenberg group. This will
be described in Subsection 3.3-b. Let us describe here the general construction.
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Let G be a finite dimensional connected (for simplicity) Lie group with its Lie algebra g :=
Lie(G), and with the exponential mapping exp : g → G, ξ 7→ exp(ξ). The canonical symplectic
manifolds will be found in the dual space g∗ of g. The duality will be alternatively denoted by
F (ξ) ≡< F ; ξ >, F ∈ g∗. The adjoint and the coadjoint representations of G on its Lie algebra g

(resp. on its dual g∗) are defined in Definition A.4.10.

Let us fix any element F ∈ g∗. Then the subset (a submanifold) OF (G) of the linear space g∗

defined by
OF (G) := {F ′ ∈ g∗ : ∃g′ ∈ G,F ′ = Ad∗(g′)F}

is called the coadjoint orbit of G through F. The space g∗ is decomposed into coadjoint orbits
of (in general) various dimensions (as submanifolds).

Let us consider g∗ as differentiable manifold in which, as in any linear space, the tangent space
TFg∗ in any of its points F is canonically identified with the linear space g∗ itself. The dual space
T ∗
Fg∗ then contains canonically (resp. for finite dimensional G: is identified with) the Lie algebra

g, which is w∗–dense (i.e. σ(g∗∗, g∗)–dense) in the second dual g∗∗ of the Lie algebra Lie(G), cf.
[41, Chap.IV,§5.1]. This allows us to define canonically a Lie algebra structure on the second dual
g∗∗. Let us denote this structure again by the bracket [·, ·]. Let f, h ∈ C∞(g∗,R). Then their
differentials dF f, . . . , are elements of T ∗

F g∗ ∼ g∗∗, and their commutator (i.e. the canonical Lie
bracket) is defined. Then we define the Poisson structure on g∗ by

{f, h}(F ) := −〈F ; [dF f, dFh]〉, ∀F ∈ g∗, f, h ∈ C∞(g∗,R). (1.4.9)

The Hamiltonian vector fields vf,vh, . . . , cf. (2.1.16), are then tangent to all the orbitsOF (G), [149,
275].

The simplest examples of functions f ∈ C∞(g∗,R) are f ≡ fξ, ξ ∈ g, defined by fξ(F ) :=
F (ξ) ≡ 〈F ; ξ〉. Their Poisson brackets are trivially

{fξ, fη} = −f[ξ,η]. (1.4.10)

The functions fξ generate, if used as Hamiltonian functions, the actions of one–dimensional sub-
groups in the Ad∗(G)-representation, i.e. the Hamiltonian flow of fξ on g∗ is

ϕ
fξ
t F ≡ Ad∗(exp(tξ))F, ∀F ∈ g∗, ξ ∈ g, t ∈ R. (1.4.11)

1.4.5 Example. Let us give a simple example of coadjoint orbits of a Lie group. Let G := SU(2),
the covering group of the rotation group SO(3). These are 3–dimensional Lie groups with the Lie
algebra generated by elements ξj , j = 1, 2, 3, corresponding to one parameter groups of rotations
around tree fixed mutually orthogonal axes, and satisfying the relations (with the summation
convention)

[ξj , ξk] = ǫjklξl, ǫjkl ≡ −ǫkjl ≡ ǫklj , ǫ123 := 1.

Then it is possible to show, that the coadjoint orbits (in the dual basis to {ξj}) are just all the
spheres centered at origin. Hence, in this simple case, all the (symplectic) orbits OF (G) are two–
dimensional except of their common centre, which is a unique zero–dimensional orbit. The flows
corresponding to the generators fξj are just rotations around the chosen axes in so(3)∗. ♥
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1.5 Basic Concepts of Quantum Mechanics

We shall give here a review of an abstract scheme of standard quantum mechanics used for de-
scription of such systems, “classical analogs” (or “classical limits”) of which are described by CM
with finite–dimensional phase spaces.

The basic intuition and terminology of QM comes from CM (supplemented with a “nonclassi-
cal” statistical interpretation). This is due to the history of physics, but also, on more fundamental
level, due to the intuitive necessity to express empirical statements of QM (as well as of an arbitrary
theory) in terms describing macroscopic bodies of everyday life, or in terms of (again macroscopic)
laboratory instruments. And states of macroscopic systems (resp. “macroscopic parameters” of
physical systems) are described by classical concepts. Mathematical formalism of QM in its tradi-
tional form looks, however, rather different from that of CM. It will be shown in later sections of
this work, in what aspects these two formalisms can be made almost identical, and it can be also
seen, where differences are essential.

The presentation in this section will not be quite “parallel” to that of CM in Section 1.4,
because we want to stress and to describe also some technicalities specific to QM.

1.5-a Pure states and dynamics in QM

The rôle played in CM by a phase space plays in QM a normed complete (linear) space with
norm determined by a scalar product – over complex numbers, a separable Hilbert space H. The
correspondence to classical phase space is not, however, faithful enough, since there are classes
of vectors in H corresponding to the same physical state: All vectors {λψ; 0 6= λ ∈ C} with
any chosen 0 6= ψ ∈ H, correspond to the same physical state. The space of these classes is
the projective Hilbert space P (H); it is no more linear. Linearity seemed to be, however,
important in historical development of QM, [45, 46, 233, 75, 160], and it is still important in
many experimental projects due to its intuitively appealing content. We shall return briefly to
this point later.38 The points of the projective Hilbert space P (H) are faithfully represented by
one–dimensional projection operators Pψ, 0 6= ψ ∈ H, Pψψ ≡ ψ. As will be shown later, the space
P (H) is a symplectic manifold (of the real dimension dimR P (H) = 2 dimCH − 2) in a canonical
way.

1.5.1 Interpretation (QM–CM “correspondence”). In QM–description of many phenomena,
it is customary to introduce into theoretical, as well as into experimental considerations a vaguely
defined concept of a classical analogue of the considered system described by QM, i.e. a classical–
mechanical system in some way “corresponding” to the considered phenomena (resp. to QM–
system). So, e.g., for a hydrogen atom described by vectors in the infinite–dimensional Hilbert
space H := L2(R6, d6q), the corresponding “classical analogue” is the Hamiltonian system on the
(12–dimensional) phase–space T ∗R6, with the canonical symplectic structure (cf. Examples 1.4.2(i),
and (iii)) the dynamics of which is described by the Hamiltonian

h(q, p;Q,P ) :=
p2

2m
+
P 2

2M
− e2

|q −Q| ; q, p,Q, P ∈ R
3.

The classical observables {qj, pj , Qj , Pj , j = 1, 2, 3; h ∈ C∞(R12)} help to interpret the points Pψ
of infinite–dimensional symplectic “phase space” P (H) as states of the (“real”, or “genuine”) QM
hydrogen atom:

38It is still possible to define a “superposition of states” also in this nonlinear setting, cf. e.g. [209, 57, 67].
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We associate with any of these classical functions on the phase space R12 a selfadjoint linear
operator on H in such a way, that the “corresponding” operators X ∈ {qj, pj ,Qj,Pj , j = 1, 2, 3}
determine specific functions hX on (a dense subset of) the phase–space P (H) (in an analogy with
the observables in CM):

hX(Pψ) := Tr(PψX), ∀Pψ ∈ P (H).

These functions satisfy “the same” commutation relations (i.e. Poisson brackets relations) as the
corresponding classical phase space variables X ∈ {qj , pj, Qj , Pj , j = 1, 2, 3}, as we shall see later.
They also form, surprisingly (cf., however, Subsection 3.3-b), an “irreducible set of variables”
on the infinite–dimensional manifold P (H) (i.e., in some sense, they generate a complete set of
“coordinate functions”), if a noncommutative “∗-product” between these functions (cf. also [98]
for alternatives)

hX1 ∗ hX2 := hX1X2 ,

is defined.39 In this way, the functions hY (where Y are algebraic expressions composed of the above
introduced operators X) form a noncommutative (infinite–dimensional) algebra.40 Its elements are
interpreted in such a way, that a “correspondence” with finite dimensional phase space R12 remains
valid as a “many–to–one” mapping F : P (H)→ R12, defined in coordinates by

FX : Pψ 7→ hX(Pψ) ≡ Tr(PψX) =: FX(Pψ), X = qj , pj, Qj , Pj , j = 1, 2, 3.

This mapping is then interpreted statistically as expectation of “observables” X in the
pure states Pψ. Values of higher degrees (with respect to the ∗-product) of these functions are
then interpreted as higher momenta of statistical distributions of these “observables X”. Hence,
different QM–states Pψ with the same expectations FX(Pψ) = hX(Pψ) (for all X) differ mutually
by probability distributions of some of these observables X .

A specific feature of QM in description of such “finite systems” as the hydrogen atom is that
there are no pure states Pψ ∈ P (H) with zero dispersion of all observables in an
“irreducible set”, in our case formed by {qj , pj, Qj , Pj , j = 1, 2, 3}. This means that for any
Pψ ∈ P (H) there is at least one X ∈ {qj , pj , Qj, Pj , j = 1, 2, 3} such that for the corresponding
quantum observable one has nonzero dispersion, i.e.

hX ∗ hX(Pψ) 6= hX(Pψ)2.

The statistical interpretation of (even pure) states in QM differs from interpretation of states in
classical statistical physics. This difference can be expressed roughly (cf. [14, 137, 173, 181]) so that
in QM there is no (in some sense “natural”) “phase space” (resp. a “space of elementary events”
– in terminology of Kolmogorovian probability theory) consisting of points representing some (at
least fictitious) dispersion–free states, such that probability measures on it would determine the
quantum states. Pure states are interpreted in QM as in a sense “the most detailed possibility” of
a description of states of “quantum objects” (resp. “systems”).41 In what sense, in the case of the

39That these functions on P (H) are not differentiable in the usual sense (they are not even everywhere defined) is
not important in the considered connections: they could be replaced by some of their bounded “versions”; we can
work, e.g. with bounded operators from the algebra generated by projection measures (cf. Appendices B, and C) of
the (unbounded) operators X.

40For a possibility of mathematical definition of such algebras of unbounded operators see, e.g. [164].
41Cf., e.g. [71] for comparison of dispersions of observables in “mixed states” with those in their pure convex

summands.
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absence of any dispersionfree states, these “objects really exist” is still a discussed problem: “Ob-
ject” is characterized by its state which contains just statistical predictions on possible outcomes
of its interactions with other bodies at specified initial conditions, leading each time to a stable
trace (i.e. a reproducibly verifiable “macroscopic change of environment” in each single case of the
repeatedly obtained cases of “events of detection”); such a process, if it is correlated with values
of a physical quantity, is called a “measurement in QM”. The formalism of QM does not contain
“single events”. �

The quantal time evolution of vectors in H is supposed to be such, that it transforms, by a
family of transformations

φt (t ∈ R) : P (H)→ P (H), Pψ 7→ φt(Pψ),

the classes of the vectors in H corresponding to the same physical interpretation, i.e. the points of
P (H), bijectively onto P (H). Traditionally, there is another general requirement to these trans-
formations φt(Pψ): They should conserve the transition probabilities, i.e. the values of the
nonnegative function

Pr : P (H)× P (H)→ R+,Pr(Pψ , Pϕ) := Tr(PψPϕ) ≡ |(ϕ, ψ)|2
‖ϕ‖2‖ψ‖2 . (1.5.1)

It is required:
Tr(φt(Pϕ)φt(Pψ)) ≡ Tr(PϕPψ). (1.5.2)

Considerations on possible physical interpretation of this requirement are postponed to later sec-
tions, cf. also [35].42 According to a Wigner’s theorem (cf. Proposition 3.2.6), the additional
requirement of the group property of t 7→ φt, i.e. φt1+t2 ≡ φt1 ◦ φt2 , and of continuity of the
functions

t 7→ Tr(Pϕφt(Pψ)), ∀Pψ , Pϕ ∈ P (H),

suffices to imply the existence of a strongly continuous one–parameter unitary group t 7→ U(t) on
H such, that it is

φt(Pψ) ≡ U(t)PψU(−t) ≡ PU(t)ψ .

Then the Stone’s theorem, cf. [219, 221] and Theorem C.3.2, gives the existence of a (unique, up
to an additive constant multiple of identity IH) selfadjoint operator H such, that

U(t) ≡ exp(−itH). (1.5.3)

This leads to the Schrödinger equation for evolution of vectors ψ(t) ∈ φt(Pψ) ∈ P (H):

ψ(t) := U(t)ψ(0)⇒ i
d

dt
ψ(t) = Hψ(t), ψ(0) ∈ D(H), (1.5.4)

42This requirement can be connected with the reduction postulate of Dirac and von Neumann, [75, 190], stating
that, by measuring a quantity X on a considered system, after obtaining a result x′ the system suddenly “jumps”
into a dispersionfree state of the quantity X in which that quantity has the the value x′; or alternatively, that the
statistical ensemble representing the system in the initial state (i.e. all members of the ensemble are initially in the
same quantum state) jumps during the measurement into the statistical ensemble consisting of systems occurring
in such quantum states that are all dispersionfree of X with values equaling to the measurement results x′; these
systems occur in the ensemble with the frequencies equaling to the frequencies of occurrence of the corresponding
results x′ obtained by the measurement.
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with D(H) being the domain of the selfadjoint H , cf. Appendix C.2. Let us stress the trivial
fact, that the Schrödinger equation makes no sense for “improperly chosen” initial conditions
ψ(0) 6∈ D(H).

This is the general form of time evolutions in QM. The operator H is called the Hamiltonian
and it is interpreted (cf. next subsection) as an operator describing the energy observable. It
should be stressed, that mere symmetry of the operator H (i.e. (ϕ,Hψ) = (Hϕ,ψ), ∀ϕ, ψ ∈
D ⊂ D(H), D = H) is not sufficient to define a one–parameter group by (1.5.3); H should be
selfadjoint to generate a group, Appendix C. On the other hand, between selfadjoint H ’s, and
strongly continuous one–parameter unitary groups U(t)’s there is a canonical bijection expressed
by (1.5.3), cf. Theorem C.3.2.

1.5-b States and observables

States in QM (let us denote the whole set of them by S∗) form a convex set, with “pure states”
described by one dimensional projections Pψ as its extremal (i.e. indecomposable into nontrivial
convex combinations) points. Convexity of the state space can be traced back to the classical, essen-
tially macroscopic notion of statistical ensemble, cf. Interpretation 1.4.4, in which expectations of all
observables are expressed by the same convex combination of their expectations in subensembles,
that intuitively correspond to “maximally specified ensembles” (in CM these “pure ensembles” are
dispersion–free for all observables) .43 It was pointed out above that in CM such a “maximal
decomposition” is unique. This means, that the classical state space S(Acl) forms a simplex, cf.
[60, 183, 225, 42]. This is not the case of QM, what is one of its deepest differences from CM. The
“shape” of S∗ is closely connected with the set of “observables”, cf. [184]. We shall not go into
interesting details of these connections, but we shall rather review the standard traditional setting.

The set of bounded quantum observables is taken (in the theory without superselection
rules, [280, 144]) to be the set of all bounded selfadjoint operators on H, i.e. L(H)s, and as the
C∗-algebra of quantum observables will be taken L(H). The set of quantum states will
be for us here just a part of the set of all positive normalized linear functionals on L(H), namely
the normal states S∗ consisting of functionals expressible in the (defining) faithful representation
of L(H) by density matrices on H, i.e. by positive operators on H with unit trace:

̺ ∈ S∗ ⇒ ̺ =
∑

j

λjPψj , λj ≥ 0,
∑

j

λj = 1. (1.5.5)

The expression (1.5.5) represents one of infinitely many different (if ̺ 6= Pψ, for any ψ ∈ H\{0}) ex-
tremal decompositions of ̺ ∈ S∗. Hence, a “statistical interpretation”, like in Interpretation 1.4.4,
of density matrices is questionable, cf. also [34] for a more detailed formulation.

Unbounded observables are usually given as unbounded selfadjoint operators on (a dense do-
main of) H.44 They are faithfully expressible by projection valued measures (PM, cf. [268,
Ch.IX.4]) on the real line R: To any selfadjoint operator A = A∗ corresponds a unique projection
valued mapping

EA : B(∈ B(R)) 7→ EA(B) = EA(B)2 = EA(B)∗(∈ L(H))

43Importance of the convex structure of state spaces, and its relation to other theoretical concepts was stressed
and analyzed, e.g. in [169, 184, 115].

44The forthcoming technical concepts are briefly described also in Appendices B, and C.
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such, that for countable number of pairwise disjoint Borel sets Bj ∈ B(R) is EA additive (the
sums converging in the strong topology of L(H)), and EA(R) := IH, cf. Definitions B.1.1. Such
a correspondence between PM and selfadjoint operators is bijective, hence we can (and we often
shall) as an observable in QM consider a PM. The standard useful formula connecting A with EA
is expressed by the strongly convergent integral, cf. Theorem B.1.3, and Proposition C.3.1:

A =

∫

R

λEA(dλ).

1.5.2 Note. A generalization of PM leads to positive operator valued measure POV (or
POVM), which also represents a selfadjoint operator, but it is not determined by that operator
uniquely. It represents a generalization of the concept of observable given by PM. Any POVM on
R is a positive–operator valued function

∆ : B(∈ B(R)) 7→ ∆(B)(∈ L(H)s), 0 ≤ ∆(B) ≤ IH,

which is also countably additive (in strong topology) with respect to the additions of disjoint sets.
In this case, contrary to PM, different ∆(B) (B ∈ B(R)) need not mutually commute. POVM
can be used to modeling of imperfect measurements, reflecting nonideal sensitivity of measuring
apparatuses, [71, 29, 53, 74]. We shall not go into details of this refinement of the concept of
“quantummechanical observable”; see also Definition B.1.1. ♥

Let us turn now our attention to time evolution of general states (the “Schrödinger picture”),
and also of observables (the “Heisenberg picture”). It is naturally defined from that of pure state
space described in Subsection 1.5-a, due to linearity and/or affinity of all relevant relations. Hence,
for the one–parameter unitary group U(t) := exp(−itH) describing the evolution of pure states,
or also vectors in H, the corresponding evolution of density matrices from (1.5.5) is

t 7→ ̺t ≡ φt(̺) := U(t)̺U(−t) ≡
∑

j

λjU(t)PψjU(−t), (1.5.6)

what is valid for all possible decompositions (1.5.5) of the density matrix ̺. This description of
time evolution corresponds to the Schrödinger picture.

The Heisenberg picture of the time evolution in QM is the dual (=transposed) transformation
group φ∗ to that of φt : S∗ → S∗, since the algebra of observables L(H) is the (topological) dual
space of the complex linear space spanned by density matrices and completed in the trace norm
‖̺‖1 := Tr(|̺|). Since the duality is realized by the bilinear form

(̺;A)(∈ S∗ × L(H)) 7→ 〈A; ̺〉 ≡ Tr(̺A) =: 〈A〉̺, (1.5.7)

the time evolution of the A’s in L(H), (t;A) 7→ At := φ∗t (A) is determined by the requirement

〈At; ̺〉 ≡ 〈φ∗t (A); ̺〉 := 〈A;φt(̺)〉,

and we have At ≡ φ∗
t (A) := U(−t)AU(t). Let us note that, according to the introduced defi-

nition of φ∗t , one has the following invariance:

〈φ∗−t(A);φt(̺)〉 ≡ 〈A; ̺〉. (1.5.8)



1 INTRODUCTION 32

Let us notice similarity of the equations (1.5.8), and (1.5.2), what will be of importance in the
subsequent nonlinear extensions of QM, cf. [35].

Interpretation of states and observables is given by determination of a formula expressing the
probability of obtaining results λ ∈ B (:= a subset of the spectrum, i.e. of the set of possible values
of A) by measuring of an observable A of a system occurring in the state ̺. This probability will
be denoted by prob(A ∈ B; ̺). It can be also useful to introduce the corresponding probability
measure µA̺ on the real line R of values of the measured quantity A:

prob(A ∈ B; ̺) ≡ µA̺ (B) := Tr(EA(B)̺). (1.5.9)

This formula allows us essentially to express all empirically verifiable statements of QM. The
expectation (mean value) 〈A〉̺ is given by (1.5.7).

The assertion on nonexistence of dispersion–free states for all observables can be made precise
in a form of general Heisenberg uncertainty relations:

1.5.3 Proposition. Let A,B be two bounded selfadjoint operators (representing two quantal ob-
servables), and let 〈A〉̺ := Tr(̺A) be the expectation of measured values of the arbitrary observable

A in any state ̺, ̺ ∈ S∗. Let ∆̺A :=
√
Tr(̺(A− 〈A〉̺)2) be the dispersion of the measured values

of A in the same state ̺. Then

∆̺A·∆̺B ≥
1

2

∣
∣Tr(̺(AB −BA))

∣
∣ ≡ 1

2

∣
∣〈i[A,B]〉̺

∣
∣. ♣ (1.5.10)

This proposition can be generalized to unbounded operators, with corresponding restrictions
for the states ̺ ∈ S∗. This shows that noncommutativity of two observables leads to nonexis-
tence of their mutually sharp values in states with nonvanishing expectation of their commutator.
Remember that for the operators Qj ,Pj corresponding in QM to the classical j–th position and
linear momenta coordinates, one has [Qj,Pk] = i~IHδjk (on a corresponding dense domain in
H). Hence the “observables Qj , Pj” cannot be both sharply determined in any state ̺ ∈ S∗.45
The formula (1.5.9) leads also to convenient realizations of (elements of) H in terms of numerical
functions.

1.5.4 Remark (“Representations” in QM). It might be useful to comment and formulate here, in
some more general terms than is it usually presented, what is traditionally named “the represen-
tation theory” according to Dirac, [75]. Physicists often work with specific realizations of Hilbert
space H, according to specific physical systems to be described. Elements of the “Hilbert space
of a given physical system” are often expressed as “wave functions”, i.e. complex valued functions
of “configuration variables” (e.g. positions of described particles). Since all infinite–dimensional
separable Hilbert spaces are isomorphic, different realizations of H can be specified only by an
additional mathematical structure. This is done by a choice of a “complete set of commuting
observables”, i.e. by specifying a maximal commutative von Neumann subalgebra [228, p.112]46

in L(H) generated by (mutually commuting) projection valued measures EA, EB, . . . , of a set
A,B, . . . , of mutually commuting selfadjoint operators. These operators represent in QM some
“simultaneously measurable observables”. The von Neumann algebra R generated by a set

R0 := {EA(B1), EB(B2), . . . ;B1, B2, · · · ∈ B(R)}
45For a discussion and citations on various interpretations of (1.5.10) see e.g. [51].
46A commutative algebra of bounded operators on H is maximal commutative if its arbitrary nontrivial extension

by addition of an operator violates its commutativity. Such an algebra is always weakly closed in L(H), i.e. it is a
W ∗-algebra. cf. also Appendix B.
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of bounded operators (projections) in H containing the unit operator IH ∈ L(H) is obtained by
taking the double commutant, according to famous von Neumann “bicommutant theorem”, [188,
228, 255, 42], R = R′′

0 , in L(H).47 Here, the commutant R′
0 of R0 is given by

R′
0 := {B ∈ L(H) : [B,A] = 0, ∀A ∈ R0},

and R′′
0 := (R′

0)
′, for any subset R0 ⊂ L(H). Any commutant in L(H) is a C∗-algebra closed in

weak–operator topology of L(H), and such C∗-algebras are called von Neumann algebras, or
W ∗-algebras. The W ∗-algebra R is maximal commutative iff R = R′, what is equivalent with the
situation when the commutative W ∗-algebra has a cyclic (then also separating) vector ψ0 in H,
cf. [219]. Let MR be the (compact Hausdorff) spectrum space (cf. Example B.3.5) of R, hence
the algebra of continuous complex valued functions C(MR) is isomorphic (denoted by ∼) to R. If
ψ0 ∈ H is cyclic forR ∼ C(MR), then (denoting the operators inR by π0(f), for the corresponding
functions f ∈ C(MR)) the integral, i.e. the positive linear functional on C(MR) (according to the
Riesz–Markov theorem, [219])

f (∈ C(MR)) 7→ µR(f) := (ψ0, π0(f)ψ0) (1.5.11)

determines (if ψ0 is normalized) a probability measure µR on MR, and the mapping

UR : π0(f)ψ0 (∈ H) 7→ f ∈ C(MR) ⊂ L2(MR, µ
R) (1.5.12)

can be uniquely extended to an isomorphism of Hilbert spaces, [228]. Moreover (cf. [102, Chap.
I.9]), all the functions f ∈ C(MR) are just all the (elements of equivalence classes of µR–essentially)
bounded Borel functions on MR, i.e. C(MR) = L∞(µR).48

The spectrum space MR of an abelian W ∗-algebra R has a rather “wild” topology, since
any W ∗-algebra is generated by its projections which are, in the commutative case, continuous
characteristic functions of clopen subsets of MR, which in turn form a basis of the Hausdorff
topology of MR, cf. [102]. As a consequence of this extremely disconnected topology (cf. [255,
Chap. III.1]), the function realization ofH in (1.5.12) needn’t seem to be practically convenient. If,
however, there is in R a strongly dense unital C∗-subalgebra A ≡ AR with some “nice” spectrum
space M (e.g., M could be connected), then we can write for the corresponding isomorphism UR,
instead of (1.5.12):

UR : π0(f)ψ0 (∈ H) 7→ f ∈ C(M) ⊂ L2(M,µA), (1.5.13)

where the measure µA is defined, now from A, by the same way (i.e. via Riesz–Markov theorem)
as it was done in (1.5.11) from R, since Aψ0

(
A := π0(C(M))

)
is again dense in H.

Let R be generated by n projection measures {EA1 , EA2 , . . . , EAn}, e.g. spectral measures
of (possibly unbounded) selfadjoint operators {Aj , j = 1, . . . n}; i.e. R is the minimal W ∗-algebra
containing these projections, and it is maximal commutative with a cyclic vector ψ0 ∈ H. Then the
spectrum space M = MA can be chosen homeomorphic to a compact subset of a compactification
of Rn, namely the support of the product–measure ER (what is again a projection measure) of
the spectral measures EAj , j = 1, . . . , n, cf. [20, Chap. 5, §2, Theorem 6; Chap. 6, §5, Theorem

47cf. also Appendix B for technicalities.
48Let us note, that these functions f ∈ C(MR) can be considered either as elements of L(L2(MR, µ

R)), or as
elements of the Hilbert space L2(MR, µ

R) itself. Let us also note that the constant unit function I is an element
of this Hilbert space representing a cyclic vector with respect to the maximal commutative algebra C(MR) of
operators.
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1]. We have then L2(M,µA) = L2(Rn, µA), and each operator URAjU
−1
R acts on L2(Rn, µA) as

“multiplication by the j–th variable”:

URAjU
−1
R ϕ(q) ≡ qjϕ(q), q ∈ R

n, ϕ ∈ L2(Rn, µA).

We can speak now about the A–representation , resp. {Aj : j = 1, 2, . . . , n}–represen-
tation, of (Quantum Mechanics represented in) the Hilbert space H.

Let us assume, that the product–measure ER is absolutely continuous with respect to the
Lebesgue measure dnq on Rn, i.e. absolutely continuous are all the probability measures

B(∈ B(Rn)) 7→ (ψ,ER(B)ψ), ∀ψ ∈ H, ‖ψ‖ = 1.

Hence also all the probability measures

B(∈ B(R)) 7→ µψj (B) := (ψ,EAj (B)ψ), ∀ψ ∈ H, ‖ψ‖ = 1, j = 1, . . . n,

are absolutely continuous with respect to dq on R.49 Since the vector ψ0 ∈ H is cyclic and
separating for A′′ = A′ = R, the measure µA is absolutely continuous with respect to the Lebesgue
measure dnq on Rn. Let

q (∈ R
n) 7→ fψ0(q) :=

dµA

dnq
(q),

dµA

dnq
∈ L1(Rn, dnq)

be a version of the Radon–Nikodym derivative (cf. [188, 219]) of µA with respect to the Lebesgue
measure. Then L2(M,µA) can be mapped onto a subspace of L2(Rn, dnq) by the unitary mapping

ψ(q) 7→ ψ(q)
√

fψ0(q), ∀ψ ∈ L2(M,µA), q ∈ R
n(⊃M). (1.5.14)

In this setting, on H represented by (a subspace of) L2(Rn, dnq), the operators Aj , j = 1, 2, . . . , n,
are realized as multiplication operators by the coordinates qj , j = 1, 2, . . . , n, with {q1, q2, . . . , qn} ≡
q ∈ Rn.50 The probabilities (1.5.9) have now the form

prob({Aj} ∈ B ⊂ R
n;Pψ) = Tr(ER(B)Pψ) =

∫

B

|ψ(q)|2dnq, (1.5.15)

with ‖ψ‖ = 1. A special case of this situation is the usually used “position representation” of the
state vectors. ♥
1.5.5 Example (Position representation). Let A be the subalgebra of L(H) generated by the unit
operator IH and by the operators f(Q1, Q2, . . . , Q3N ), with the functions f from the Schwartz
space S(R3N ), where the standard position operators Qj , j = 1, 2, . . . , 3N , of the irreducible re-
presentation of GWH for an N–particle system (cf. Subsection 3.3-b), were introduced. Then
the spectrum space M is the one–point compactification of R

3N with the “usual” topology. The
weak closure R of A in L(H) is an abelian W ∗-algebra containing also projection operators be-
longing to the spectral decompositions of Qj’s, i.e. elements EQj (B) of their PM’s. If there is a
cyclic vector ψ0 for R in H, then ψ0 is cyclic also for A. Then we can use the unitary trans-
formation UR : H → L2(R3N , d3N q) determined from (1.5.13), and (1.5.14) by A only. Hence
H ∼ L2(R3N , d3Nq). This is the usual “position-coordinate representation” of H. ♥

49We do not formulate here sufficient conditions for absolute continuity of ER.
50If the spectrum of some Aj is not the whole R, then H is represented by a proper subspace L2(supp(ER), dnq) ⊂

L2(Rn, dnq).
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1.5-c Symmetries and projective representations in QM

The time evolution described in Subsection 1.5-a was an example of a continuous transformation
group in QM. It can be considered as a representation of a specific group (G := R) of symmetries of
a physical system, namely a representation of the observed (or postulated) homogeneity of time:
This symmetry, described by formulas expressing fundamental laws of physics independent of the
time variable, can be considered as just an expression of possibility of formulation of such laws. The
invariance is encoded in the group property of the set of time–evolution operators, what corresponds
to time independence of its generator (the Hamiltonian): “Dynamics” is time–independent, and
differences in various possible (or observed) evolutions of the system in its “various occurrences” are
ascribed to differences in “initial conditions”, [282, 139], resp. in “boundary conditions” (including
also “external fields”).

The relevance of symmetries in physics was probably (at least) intuitively clear since the advent
of any considerations which now we call “physical”. Their formalization came, however, much later:
Although importance of symmetries for human activities was claimed already by Leonardo da Vinci
(according [282, 276]), clear understanding of their importance for formulation of geometry and
laws of nature came only at about the beginning of 20th century, e.g. in works of F. Klein [151], G.
Hamel [126], H. Poincaré [205], E. Mach [171, 172], P. Curie [69], A. Einstein [90, 89], and others.51

Their importance is clearly seen, e.g. in formulation of classical – mechanical problems on
integrability (connected with the question of stability of Solar system), in Einstein discovering
of relativity theories, in Gibbs formulation of statistical physics [159], etc. Clear mathematical
connection of variational equations with symmetries and with integrals of motion was formulated
also due to the theorems by Emmy Noether [193]. Nowadays is generally accepted the connection
between Lie group invariance of “action integrals” (or/and Lagrangians) of classical physics, cf.
,e.g., [158, 161, 1], with conservation of some nontrivial functions on phase space with respect
to the time evolution determined by the corresponding variational problem. These integrals of
motion determine submanifolds in phase space left by the time evolution invariant. This leads
to practical advantage of “lowering dimensions” of solved problems. Intuitively, this also allows a
better specification of the (self)identity of moving physical systems.

A “quantum–field–rephrasing” of the mentioned principles was one of the leading tools in
formulations of (heuristic, but successful) quantum theories of elementary particles, with quantum
electrodynamics as their prototype. Also in foundations of mathematically clear (but, up to now
not very successful) “axiomatic” algebraic formulation of quantum field theory (QFT), cf., e.g. [251,
121, 38], symmetry principles play a key rôle.

1.5.6 Note. We can suspect even more general meaning of “invariances” with respect to some
group of transformations in physics: They help us to determine physically (hence operationally)
meaning of “physical quantities”; very pictorially expressed, symmetry means that some mutually
different things (states, observed values of something,. . . ) are in a certain sense equal, [69],
what might help us to specify how to measure them. A very fruitful principle in physics is, as is
generally known, the requirement of invariance with respect to Galileo, resp. Poincaré groups, cf.
also Interpretation 1.1.2. ♥

The symmetry considerations in QM are even more important and useful than in classical
physics. This is, perhaps, due to the “more mathematical” and less intuitive nature of quantum
theories. The a priori linear formulation of QM offered a natural application of (linear) represen-

51Many historical notes on symmetries can be found in [180].
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tation theory of groups to solution of specific classes of problems in QM, esp. in classification of
“elementary systems” (these might be “elementary particles”, but also molecules), of their spectra
and interactions, in scattering theory etc., cf. [276, 281, 282, 283, 251, 119]. One can say that
symmetry considerations are lying now somewhere “in the heart” of QM. They belong, e.g., to the
main tools in the search for new fundamental interactions of elementary particles.

We shall restrict now our attention to a rather specific technical question connected with ap-
pearance of symmetry considerations in mathematical formulations in QM. Symmetry groups are
usually specified either from observations of specific motions of macroscopic bodies (e.g. transla-
tions and rotations of “rigid” bodies), or by some theoretical hypotheses coming from an interplay
of presently accepted theoretical scheme and observations connected with it (e.g. the isospin group,
and other symmetries of elementary particle theories). Groups appear then in formalisms of phys-
ical theories in a form of their “realizations”, cf. [149], i.e. in a form of their actions on spaces of
physically relevant theoretical objects like “states”, “observable quantities”, “state vectors”, etc.
In traditional formulations of QM, symmetries are formalized as transformations of Hilbert space
vectors. It is important in some considerations to understand connections of the transformations
of vectors in H with corresponding transformations of quantal states.

The usually required general restrictions to the set of symmetry transformations of the states
of a QM–system are the same as for φt in Subsection 1.5-a, esp. in (1.5.2). There is, however, an
additional complication for general (more than one–dimensional) continuous groups G of transfor-
mations, g(∈ G) 7→ αg : S∗ → S∗. Let us assume that (1.5.2) is again fulfilled:

Tr(αg(Pϕ)αg(Pψ)) ≡ Tr(PϕPψ). (1.5.16)

Then a trivial adaptation of arguments following (1.5.2) (by the assumptions of the group property
and continuity, as above) leads to the conclusion (cf. also [268, 149]) that a continuous family

g(∈ G) 7→ U(g)(∈ L(H))

of unitary operators exists representing the mapping g 7→ αg as

αg(Pψ) ≡ U(g)PψU(g)∗. (1.5.17)

This determines, however, the unitary operators up to phase factors, and we obtain (for details
see [268, Chaps.IX, and X, esp. Theorem 10.5])

U(g1 ·g2) ≡ m(g1, g2)U(g1)U(g2), (1.5.18)

where m : G × G → S1 ⊂ C is a multiplier for the group G satisfying the following identities
implied by associativity of group multiplication:

m(g1, g2 ·g3)m(g2, g3) = m(g1 ·g2, g3)m(g1, g2), ∀gj ∈ G,
m(g, e) = m(e, g) = 1, ∀g ∈ G, e·g ≡ g. (1.5.19)

Multipliers for G form a commutative group (by pointwise multiplication; cf. (3.3.10) for additive
notation) with the unit element I(g, h) ≡ 1. If the multiplier can be removed by multiplying
U(g) 7→ a(g)U(g) by some “phase factors” a(g) ∈ S1 :=the complex numbers of unit modulus, then
it is similar to I, or exact. Two multipliers m1,m2 are mutually similar, if the multiplier m1·m−1

2

is similar to I. The unitary family satisfying (1.5.18) is called a projective representation of
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G with the multiplier m. All projective representations of G obtained from the same αG have
mutually similar multipliers, and, to any projective representation U with a multiplier m, and to
each multiplier m′ similar to m, there is a projective representation U ′ with the multiplier m′

leading to the same αG according to (1.5.17) as U .
Hence, if the multiplier in (1.5.18) is exact, it is possible to choose a unitary representation (i.e.

withm ≡ 1) corresponding to the αG. Otherwise, it is possible to find another groupGm containing
G as a normal subgroup, a central extension of G by the commutative group S1 corresponding
to the multiplier m, and such that the formula (1.5.18) determines its unitary representation:
Elements of Gm are couples (g;λ) ∈ G× S1 with the group multiplication

(g1;λ1)·(g2;λ2) = (g1 ·g2;m(g1, g2)λ1λ2). (1.5.20)

The corresponding unitary representation Ũ(Gm) is

Ũ(g;λ) := λ−1U(g), ∀g ∈ G, λ ∈ S1.

The check that Ũ(g;λ) leads (for all λ ∈ S1) to the same symmetry transformation αg of the states
than the element U(g) of the projective representation U(G) is straightforward.

1.5.7 Examples. (i) Only projective representations of the inhomogeneous Galileo group with
nontrivial multipliers can be interpreted, [268], in the usual interpretation schemes of QM, as
transformations of states of systems in QM representing the corresponding (relative) motions of
macroscopic background. The unitary representations of this group are all “unphysical”.
(ii) The most basic application of group representations in QM is, perhaps, the case of canoni-
cal commutation relations (CCR). These relations determine a Lie algebra structure in a set of
basis elements (i.e. of “elementary observables” completed by the “trivial element”) in a “Hamil-
tonian system on R2n”– both quantum and classical. These relations are expressed in CM by
Poisson brackets between canonical position and momenta coordinates, and in QM they are com-
mutators between “corresponding” selfadjoint operators (representing in some way also physical
position and momenta observables). The connection with group representations is, that these
operators are generators of a projective representation of the commutative group of translations
in the classical flat phase space R

2n, or they are generators (together with a unit operator) of a
unitary representation of a one–dimensional central extension of this commutative group, i.e. of
the 2n+ 1–dimensional (noncommutative) Weyl–Heisenberg group GWH .52 All such (nontrivial,
i.e. more than one–dimensional) irreducible projective representations are parametrized (up to uni-
tary equivalence) by all nonzero reals, [288, 149]. Remarkable physical feature of CCR is, that
they can correspond, to reach agreement of theoretical predictions with experiment, just to one of
the infinite number of mutually inequivalent representations of classical shifts in phase space, and
namely the “correct” choice of the representation fixes the value of Planck constant ~; cf. also
Section 3.3-b for corresponding technicalities.
(iii) The (covering group of the) connected component of the Poincaré group is rigid, i.e. it has
no nontrivial multipliers, [268, 284, 149]. It follows that any projective representation of the
(connected) Poincaré group can be obtained from the corresponding unitary representation of its
covering group. ♥

52Remember that commutative groups have only one–dimensional irreducible unitary representations.
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1.5-d On the causality problem in QM

With discussions on Einstein causality in NLQM, cf. [107, 170], or also Interpretation 2.1.24,
it is interesting to pose such a question also in frameworks of linear QT. In a renewal of such
a discussion [129, 48] (initiated probably by Fermi in 1932 [97]), there was discussed a simple
mathematical theorem with impressive consequences for possibilities on “instantaneous spreading
of wave packets” in QM. It can be formulated as follows:

1.5.8 Theorem (Long distance action in QM). Let a selfadjoint lower bounded operator
H = H∗ on a Hilbert space H be given: H − ε0IH ≥ 0. Assume that, for a bounded operator
B: 0 ≤ B ∈ L(H), and for a vector 0 6= ψ ∈ H, there is: Tr(PψB) = 0. Let us define
ψ(t) := exp(−itH)ψ, ∀t ∈ R. Then either
(i) Tr(Pψ(t)B) ≡ 0 for all t ∈ R, or
(ii) Tr(Pψ(t)B) 6= 0 for all t ∈ Tψ,B ⊂ R, with Tψ,B open and dense in R, and of the total
Lebesgue measure m: m(R \ Tψ,B) = 0. ♣

Let, e.g. Pψ be a state of a composed system I + II (say, consisting of two mutually spatially
distant atoms I and II), and let B = B∗ = B2 6= 0 be a projection on a subspace of H. Assume
that the vectors of BH correspond to those states of I + II in which the atom II is in its excited
state (we assume a possibility of determination of such states of I + II). Then Tr(Pψ(t)B) 6= 0
might be interpreted as excitation in time t > 0 of the formerly not exited atom II “due to an
influence of the atom I”. The theorem could be tried then interpreted so that if there will be
some influence at all (sometimes, in the mentioned sense), then it is always immediate, i.e. there
is nonzero probability that it is realized instantaneously!

Above considerations seem to show that in QM, in the described sense, the Einstein causality
is never fulfilled. This result is a general consequence of the assumptions of the positivity of the
generator H , of the interpretation of projection operators B as observables measuring of arbitrary
“properties” of described systems in QM, as well as due to occurring of arbitrary projections
between the observables; all these assumptions might seem to belong to general assumptions of an
arbitrary quantum theory (QT). But even in this framework, it is impossible to draw any physical
consequences from the above mentioned result: The considered initial condition Tr(Pψ(t0)B) = 0,
if not fulfilled identically for all t0 ∈ R, cannot be fulfilled by all t0 ∈ I for any interval I ⊂ R

of nonzero lenght, and a physical preparation of a state needs nozero time interval. This fact is
automatically encompassed in definition of algebras of observables in “algebraic forms of relativistic
QFT”.

One can now ask whether Einstein causality is fulfilled in relativistic QFT. It is argued in [48]
that it is so in the algebraic formulation of QT (e.g. [119, 121, 38, 141]), as a consequence of the
relativistic covariance of/and local structure of algebras of observables. This can be seen, roughly,
due to consequent specific structure of algebras of localized observables (cf. Note B.4.1), as well
as due to the Reeh–Schlieder theorem, cf. [141, Theorem 3.1]. This theorem implies that in “most
of interesting states” of “sufficiently” localized subsystems (e.g. in the states extendable to states
of the total system with restricted total energy, if the space–time region of the localization has
the space–like complement with nonvoid interior) any localized positive observable has nonzero
expectation, cf. also [232, 123, 121]. Hence the above assumption Tr(PψB) = 0 cannot be fulfilled
for such systems, states, and observables. Moreover, the assumed locality together with Einstein
covariance lead to positive result on Einstein causality, [48].
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1.5.9 Note (Impossible signals due to measurements). It might be useful to recall here that it is
impossible in QM to send signals by the process of quantum measurements even if one accepts the
instantaneous “reduction of wave packets”, cf. Footnote 42:

Let two (mutually spatially distant) quantal subsystems I and II be “EPR–like” correlated
(cf. Interpretation 2.1.24) in a given state Ψ of the composed system I + II. The only available
“information” which could be transferred (=signalled) from II to I, as a result of the mere mea-
surement of a quantity A of the subsystem II, might be the choice (and its possible changes) of the
quantity A, resp. of its eigenbasis (i.e. its PM EA) {Φk} ⊂ HII . The only way, on the other side,
of perceiving of the signal by I might be the measurement of the state ̺ of I, what is, however,
independent on the choice of A. The point is, that QM is a statistical theory not containing in its
formalism any objects corresponding to our intuition on a “single system” (possibly, as an element
of some “ensemble of equally prepared systems”) resulting in a “single event” at a measurement;
cf. also [230]. ♥
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2 Extended Quantum Mechanics

This chapter contains a description of technical features, as well as of the proposed interpretation
of the theoretical construction called here extended quantum mechanics (EQM). We can emphasize
here several types of problems posed and solved in this chapter; let us call them: (i) kinematical,
(ii) dynamical, (iii) analytical, and (iv) interpretational.
Questions in (i) include topics that could be named “the geometry of phase space”, into (ii) can
be included questions connected with dynamics, as well as with continuous actions of symmetry
groups on the “phase space”, under (iii) we shall understand mainly technical problems connected
with infinite dimensionality of the “phase space”, with unboundedness of generators of the group
actions etc.; interpretation in (iv) is understood as a series of notes and proposals concerning
a general scheme for interpretation of the theory; however, many questions on possible specific
empirically verifiable applications of EQM are left open here.

These sets of questions are mutually interconnected, e.g. in dealing with “geometry of phase
space” we cannot avoid some technical problems connected with its infinite–dimensionality, in-
cluding different topological and differential–geometrical technicalities. Similarly by dealing with
“symmetry group actions” one has to deal simultaneously also with some “algebraic”, or “struc-
tural” questions, and with problems connected with the (only) densely defined generators of these
actions and their domains of definition. Hence, it is impossible to distinguish clearly the forthcom-
ing sections according to the sort of problems solved in their scope. Keeping this in mind, we shall
try to characterize at least roughly the contents of the sections in the present Chapter.

Section 2.1 is mainly devoted to a description of the “geometrical features” (i), describing the
canonical manifold and Poisson structures on the space S∗ of all density matrices of conventional
QM. Also a preliminary description of Hamiltonian vector fields and corresponding induced dy-
namics is included into that section. Also in this case, as in finite dimensional ones, the Poisson
“manifold” S∗ decomposes into “symplectic leaves” left by all Hamiltonian flows invariant. All
these leaves are homogeneous spaces (i.e. orbits) of the unitary group U of the Hilbert space H
with respect to its natural coadjoint action. There are, however two kinds of these orbits (leaves):
The “finite dimensional” ones consist of density matrices of finite range (i.e. only finite number
of their eigenvalues are positive), and the induced symplectic structure is “strongly nondegener-
ate”, the tangent spaces having a canonical Hilbert space structure; these properties make these
symplectic leaves in some sense similar to finite dimensional symplectic manifolds. The “infinite
dimensional” leaves consisting of density matrices with infinite numbers of nonzero eigenvalues are
only “weakly symplectic”, and the naturally defined “tangent spaces” are not closed in their (again
“naturally chosen”) topology. The set of “finite dimensional” leaves is, fortunately, dense in the
whole S∗, so that we can restrict, for many purposes, our attention onto them.

Section 2.2 contains an analysis of questions connected with unboundedness of generators (i.e.
“Hamiltonians”) of group actions corresponding to linear, as well as to nonlinear cases. The un-
bounded generators always appear in any description of “nontrivial” actions of noncompact Lie
groups, and cannot be avoided in the considered framework. The domain problems and descrip-
tion of the induced dynamics (flows) are solved in the cases when the (nonlinear) generators are
constructed in a certain way from a continuous unitary representation of a Lie group G. For more
general cases, we formulate at least some proposals.

In the last Section 2.3, interconnections between all the sets (i) – (iv) of problems are especially
obvious. Introduction of “nonlinear observables” is a consequence of the nonlinear dynamics.
The interpretation of such observables extending the usual one leads (in the scheme proposed in
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this work) to introduction of observables as numerical functions of two variables from S∗. It is
also presented a (preliminary) classification of theories according to the choice of a Lie group G
determining (sub)sets of observables, generators, and states of the considered (abstract) “physical
system”. For a givenG, a further classification of generators, observables, and states is proposed. A
general scheme of constructions of nonlinear generators and a description of their flows is given. The
chapter ends with a description of “nonlinear” actions of Lie groups obtained from linear ones by
(mathematically perhaps trivial) “symplectic deformations”, with inclusion of EQM into a (linear)
C∗-algebraic scheme and with a description of its general symmetries. The section contains also a
description of some interpretation proposals, cf. Interpretations 2.3.1, 2.3.11, 2.3.15, and 2.3.18.

2.1 Elementary Quantum Phase Space

States of a “considered physical system” in QM are described (under a natural continuity require-
ment) by density matrices ̺ ∈ S∗ := T+1 ⊂ T on the corresponding Hilbert space H (cf. next
Subsection 2.1-a), but linearity of QM allows often to reduce the theoretical work to the work with
vector states described by one–dimensional density matrices ̺ = Pψ, 0 6= ψ ∈ H (i.e. pure states, if
superselections are missing). Any state of that quantum-mechanically described system is express-
ible with a help of these “elementary vector states”. In nonlinear versions of QM, operations like
symmetry transformations, and specifically time evolutions, are nonlinear, resp. nonaffine; hence,
if they are performed on states described by density matrices, these operations are not reducible
to those on vector states. In EQM, the whole set S∗ of density matrices will play a rôle of the set
of “elementary states” in such an intuitive sense, where each density matrix ̺ ∈ S∗ is considered
as an analogue of a point of phase space of CM, irrespective of dimension of the range of the
operator ̺. This implies, e.g., that the time evolution of density matrix states ̺ of a “relatively
isolated system” in EQM can be determined only with a help of determination of corresponding
Hamiltonian flow in a neighbourhood of ̺, that can be independent of determination of the flow
in neighbourhoods of the vector states into which ̺ can be formally decomposed.

2.1-a Basic mathematical concepts and notation

Let H be a separable complex Hilbert space with scalar product (x , y) (x , y ∈ H) chosen linear
in the second factor y. Let F ⊂ T ⊂ H ⊂ C ⊂ L(H) be the subsets of linear operators in H
consisting of the all finite–rank, trace–class, Hilbert–Schmidt, compact, and bounded operators
respectively. All these subsets are considered as complex associative ∗-subalgebras (in fact ideals)
of the algebra L(H), i.e. they are also invariant with respect to the involution a 7→ a∗ defined
as the operator adjoint mapping. The algebras C and L(H) are C∗-algebras (L(H) is in fact a
W ∗-algebra), and all of them except of F are Banach spaces (≡ B–spaces) if endowed with proper

norms: T is endowed by the trace–norm ‖a‖1 := Tr|a| with |a| := (a∗a)
1
2 , H is endowed by

the Hilbert–Schmidt norm ‖a‖2 :=
√

(a, a)2 corresponding to the Hilbert–Schmidt scalar product
(a, b)2 := Tr(a∗b) of operators a, b ∈ H, whereas C and L(H) are endowed with the usual operator
norm (which is equal to the spectral radius for selfadjoint operators) denoted by ‖a‖. Here Tr
denotes the trace of the operators in T. Note also that T contains all products of at-least-two
Hilbert–Schmidt operators, and each element of T is of this form; the last statement follows from
the polar decomposition of closed densely defined (hence also bounded) operators in H [188].

The linear space F is dense in the Banach spaces T, H, and C, and it is dense also in L(H)
in its σ-strong operator topology. The Banach space T will be considered also as the topological
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dual space to the C∗-subalgebra C of L(H), the duality being given by the bilinear form (̺; a) 7→
̺(a) := Tr(̺a) ≡ 〈̺; a〉 on C× L(H) (⊃ T × L(H)); the same bilinear form describes the duality
between T and L(H) ≡ T∗.

Let us introduce also the projective Hilbert space P (H) which is obtained from H as the
factor-space consisting of all its one-dimensional complex subspaces x := {y ∈ H : y = λx , λ ∈
C} 0 6= x ∈ H, with the factor-topology induced by the norm of H; it can be identified with
the subset of T consisting of all one-dimensional orthogonal projections Px (projecting H onto
x, 0 6= x ∈ H) endowed with the relative topology of the trace-norm topology, or with σ(T,C)-
topology (these topologies are equivalent on P (H), [42]).

We shall also use some elementary concepts of differential geometry on (also infinite-dimensional)
manifolds, [1, 39, 61, 152, 40], see also our Appendix A, as well as some concepts of the theory of
C∗-algebras [197, 42, 77, 78, 255], cf. also our Appendix B, in this paper.

Let us denote by S∗ ⊂ T the state space of C; it can be canonically identified with the convex
set of all normalized normal positive linear functionals on L(H) : S∗ := S∗(L(H)) = S(C). The
general (not necessarily normal) states S(L(H)) of L(H) will be denoted by S. Let U denote
the unitary group U(H) of L(H) : u ∈ U ⇔ {u ∈ L(H) & uu∗ = u∗u = I} ⇔ u ∈ U(H),
where I ∈ L(H) is the identity operator. Let Ã := U/J be the factor-group of U with respect to
the central subgroup J := {u := λI : |λ| = 1, λ ∈ C}. Since all ∗-automorphisms of L(H) are
inner [197], Ã is isomorphic to the group of all ∗-automorphisms (cf. also [268, Vol.I]): α ∈ ∗-
Aut L(H)⇒ ∃u ∈ U : α(b) = ubu∗(∀b ∈ L(H)), and if also v ∈ U represents α in this sense, then
u∗v ∈ J. Let γ : u 7→ γu ∈ Ã = ∗-Aut L(H) be the corresponding representation of U, γu(b) :=
ubu∗; the kernel of γ is J. Moreover, U (and Ã) is a (infinite–dimensional for dimH = ∞) Lie
group; the Lie algebra Lie(U) of U is the real subspace L(H)a := {x ∈ L(H) : x∗ = −x} of
antihermitean elements of L(H) [39]. Let [a, b] (:= ab− ba) be the commutator in L(H). We shall
use the selfadjoint generators x∗ = x ∈ L(H)s := iL(H)a to represent the Lie algebra elements
ix ∈ L(H)a. The Lie bracket will be defined on L(H)s as (x; y) 7→ i[x, y], x, y ∈ L(H)s what
corresponds to the commutator [ix, iy] in L(H)a : [ix, iy] =: iz ⇒ z = i[x, y]. The Lie algebra of

Ã is Lie(U/J) = L(H)a/{RI} - the factoralgebra by the central ideal of real multiples of identity.
Let Ad(U) be the adjoint representation of U on Lie(U) = iL(H)s, i.e. Ad(u) is the restriction of
γu to L(H)s:

Ad(u)b ≡ Ad(u)(b) := ubu∗, b ∈ L(H)s, u ∈ U. (2.1.1)

The (topological) dual of L(H)s is the real subspace L(H)
∗
s of L(H)

∗
consisting of symmet-

ric bounded linear functionals on L(H), i.e. ν ∈ L(H)
∗
s ⇒ ν(b∗b) ∈ R (∀b ∈ L(H)), where

〈ν; y〉 ≡ ν(y) denotes the value of ν ∈ L(H)
∗

on the element y ∈ L(H). The state space
S := S(L(H)) is a compact convex subset of L(H)

∗
s, if it is endowed with the w∗-topology, i.e. with

the σ(L(H)∗,L(H))-topology [219, Theorem IV.21]. Let Ad∗(U) be the coadjoint representation
of U (∋ u) on L(H)

∗
s :

[Ad∗(u)ν](b) := ν(Ad(u−1)b), ν ∈ L(H)
∗
s, b ∈ L(H)s. (2.1.2)

It is clear [42, Chap. 3.2] that the state-spaces S and S∗ are both Ad∗(U)-invariant subsets of
L(H)

∗
s .

Let Oν(U) := Ad∗(U)ν := {ω ∈ L(H)
∗
s : ω = Ad∗(u)ν, u ∈ U} be the Ad∗(U)-orbit of ν. The

state space S decomposes into union of Ad∗(U)-orbits. Let ̺ ∈ Ts := T∩L(H)∗s be a density matrix
(i.e. ̺ ≥ 0, T r ̺ = 1) describing equally denoted state ̺ ∈ S∗ : ̺(b) := Tr(̺b) ≡ 〈̺; b〉, b ∈ L(H).
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We shall use for the density matrices spectral decomposition in the form

̺ =
∑

j≥1

λjEj , (2.1.3)

where we choose the ordering of the eigenvalues λj > λj+1 > 0, and the spectral projections Ej
are all finite dimensional. Let us denote E0 := I −∑j≥1 Ej .

2.1.1 Lemma. Each orbit O̺ := Ad∗(U)̺ (̺ ∈ S∗) consists of all the density matrices which
have the same set of eigenvalues (including multiplicities). Hence, the state space S∗ is Ad∗(U)-
invariant. ♣
Proof. The Ad∗(u)-mapping is a unitary mapping conserving spectral invariants, i.e. spectrum and
spectral multiplicities, cf. [125]. Hence all the elements of the orbit O̺ are density matrices with
the same spectra and multiplicities. The spectral resolution of any density matrix ̺′ of the same
spectral invariants as ̺ in (2.1.3) has the form:

̺′ =
∑

j≥1

λjE
′
j ,

with equal dimensions of E′
j and Ej , ∀j. Then there is a unitary operator u mapping all the Ej ’s

onto the corresponding E′
j ’s for all j ≥ 0. E.g., one can choose orthonormal bases {xm}, resp.

{yn} in H containing subbases, for all j ≥ 0, of EjH, and E′
jH, respectively, to order them in

accordance with orderings of Ej ’s, i.e. so that Ejxk = xk ⇔ E′
jyk = yk and define u by the formula

uxk := yk, for all k.

Then ̺′ = Ad∗(u)̺, what proves the lemma.

Hence, the projective space P (H) coincides with the orbitO̺(U) with ̺2 = ̺, what characterizes
one-dimensional projections ̺ in H.

2.1-b The manifold structure of S∗
We shall now introduce a natural manifold structure on the orbit O̺ (̺ ∈ S∗). Let U̺ ⊂ U be the
stability subgroup for the point ̺ ∈ S∗ at Ad∗(U)-representation. Let us note that U̺ is the unitary
group of the W ∗ -algebra {̺}′ := the (commutant of the density matrix ̺ in L(H)), hence
it is a Lie group, and its Lie algebra Lie(U) =: iM̺ consists [39, Chap.3, §3.10] of antisymmetric
elements of the commutant {̺}′. The proof of the following simple lemma exemplifies methods
used here in dealing with infinite-dimensional spaces.

2.1.2 Lemma. The stability subgroup U̺ is a Lie subgroup of U, [39, 40]. ♣
Proof. We shall prove that the Banach subspace M̺ ⊂ L(H)s has a topological complement [41]
in L(H)s, i.e. L(H)s = M̺ ⊕ N̺ ≡ the topological direct sum with a Banach subspace N̺ of
L(H)s. Let ̺ be expressed in the form (2.1.3). We shall use also the projection E0 corresponding
to the eigenvalue λ= 0, hence always

∑

j≥0 Ej = I. Let p̺ : y 7→ p̺(y) :=
∑

j≥0 EjyEj be a

projection of L(H)s onto M̺ defined by the strongly convergent series. One has

‖p̺(y)‖ ≤ sup
j
‖EjyEj‖ ≤ ‖y‖, ∀y ∈ L(H)s,
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hence the projection p̺ is continuous, what implies [41, Chap.I. §1.8 Proposition 12] the comple-
mentability of M̺. The Lie group U can be modeled (as a manifold) by its Lie algebra iL(H)s
via the inverse of the exponential mapping [39, Chap. III.6.4. Theorem 4], and the subgroup U̺
is modeled via the same mapping by the complementable subspace iM̺ ⊂ L(H)a. This gives the
result ([39, Chap.III.§1.3], [40, 5.8.3]).

2.1.3 Definitions. Let ̺ =
∑
λjEj be a density matrix,

∑

j≥0 Ej = I, as above.

(i) Let q̺ : L(H)s → N̺ be the complementary projection to p̺, q̺(b) = b−p̺(b) (cf. proof
of Lemma 2.1.2):

q̺(b) :=
∑

j 6=k
EjbEk for b ∈ L(H)s, (2.1.4)

which leaves Ts invariant; the sum is here strongly (resp., in T ∋ b, trace-norm-) convergent. We
shall define q̺(X) also for unbounded X = X∗ by the formula (2.1.4) with b := X for those ̺ for
which it is unambiguously defined (i.e. the expressions in the sum and its strong limit exist).

(ii) Let ad∗ : L(H)s → L(L(H)
∗
s) be defined by ad∗(y) : ν 7→ ad∗(y)ν:

[ad∗(y)ν](z) := iν([y, z]), (∀y, z ∈ L(H)s, ν ∈ L(H)
∗
s). (2.1.5)

We can see that the space Ts is invariant with respect to all operators ad∗(y), y ∈ L(H)s, [197,
Proposition 3.6.2].

(iii) Let ̺ ∈ Oν(U). Let us denote T̺O(U) := T̺Oν(U) :={c ∈ Ts : c = i[̺, b], b ∈ L(H)s} the
set of vectors in Ts tangent to the curves cb : t 7→ cb(t) := Ad∗(exp(−itb))̺ at ̺, b ∈ L(H)s;
these curves cover a neighbourhood of ̺ on the orbit O̺(U)=Oν(U) ⊂ Ts. We shall also denote
ad∗
̺ : L(H)s → T̺O(U), b 7→ ad∗

̺(b) := ad∗(b)̺ ≡ i[̺, b] ∈ Ts for ̺ ∈ Ts. One can easily check
that q̺ leaves T̺O(U) pointwise invariant, i.e. T̺O(U) ⊂ N̺.

(iv) For an arbitrary c ∈ L(H)s, and n ∈ Z+ \ {0}, let

β(n)
̺ (c) := i

max(j;k)≤n
∑

j 6=k
EjcEk(λk − λj)−1, (2.1.6)

where in the summation are included also the values j = 0, k = 0 of the indices.
Let β̺ : T̺O(U)→ N̺ be the mapping

β̺(c) := i
∑

j 6=k
EjcEk(λk − λj)−1. (2.1.7)

The limits β̺(c) of the strongly convergent sequences
{

β(n)
̺ (c) : n ≥ 1

}

define the map-

ping β̺. We shall define β̺(c) in this way also for those c ∈ L(H), as well as for those unbounded
operators c, for which this sequence is defined and converges strongly in L(H).

(v) Let ‖c‖̺ := ‖β̺(c)‖, where ‖b‖ denotes the operator norm of b ∈ N̺ in L(H)s.

(vi) Let O̺(U) be endowed with the canonical [39, Chap.III,§1.6] analytic manifold structure of
the homogeneous space U/U̺. We shall call this structure the canonical manifold structure on
O̺(U), and the notion of the manifold O̺(U) will mean namely the set O̺(U) endowed with this
structure. ♦
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2.1.4 Notes.

(i) A direct inspection shows that β̺ is a linear bijection of T̺O(U) onto N̺ = q̺(L(H)s): if
c := i[̺, b], with b ∈ N̺, then β̺(c) = b. It is the inverse mapping to the mapping ad∗

̺ : N̺ →
T̺O(U); let us note that ad∗

̺ is ‖ · ‖ 7→ ‖ · ‖1- continuous, hence also ‖ · ‖ 7→ ‖ · ‖-continuous:
‖[̺, b]‖ ≤ ‖[̺, b]‖1 ≤ 2‖̺‖1‖b‖.
(ii) It is clear that c 7→ ‖c‖̺ is a norm on T̺O(U). The mapping ad∗

̺ is ‖ · ‖ 7→ ‖ · ‖̺ isometric;
the corresponding “‖ · ‖̺-topology” of O̺(U) is finer than the “‖ · ‖1-topology” induced by the
trace-norm topology of Ts. ♥

The following proposition specifies the manifold properties of the orbits O̺(U) in Ts (endowed
with its ‖ · ‖1-topology).

2.1.5 Proposition. Let us consider T̺O(U) as the normed space with the norm ‖ · ‖̺. Then
T̺O(U) is a B-space, and β̺ is a Banach space isomorphism. This B-space structure on T̺O(U)
coincides with the one induced by the canonical manifold structure of O(U) on its (equally denoted)
tangent spaces T̺O(U). Furthermore, the following four statements (i) – (iv) are then equivalent:

(i) ̺ ∈ S∗ is finite-dimensional, i.e. ̺ ∈ F; we shall write also dim(̺) <∞ in this case.

(ii) The range N̺ of the mapping q̺ coincides with T̺O(U) (considered now as a linear subspace
of Ts).

(iii) The set T̺O(U) is a closed subspace of Ts.

(iv) O̺(U) is a regularly embedded [61, p.550] submanifold of Ts.

Moreover, one has:

(v) For ̺ ∈ F, the subspace T̺O(U) of Ts is reflexive.

(vi) For any ̺ ∈ S∗, T̺O(U) is dense (in the strong topology of L(H)s) in N̺ := q̺(L(H)s). ♣

Proof. N̺ is a B-subspace of L(H)s, and β̺ is a linear isometry (hence homeomorphism) of T̺O(U)
(with the norm ‖·‖̺) onto N̺, what follows directly from definitions, cf. Notes 2.1.4. This gives the
first assertion. The second one follows because of complementability of the space M̺ = i·Lie(U̺),
M̺ ⊂ L(H)s = M̺ ⊕ N̺, and the inverse mapping of the mapping Ad∗(exp(−i(·)))̺ : N̺ →
O̺(U), a 7→ Ad∗(exp(−ia))̺, if restricted to an open neighbourhood of the zero point of N̺, can
be chosen as a chart of the manifold O̺(U).

(i)⇒(ii): If ̺ ∈ F, then (2.1.4) shows that also q̺(a) ∈ F for any a ∈ L(H)s, since F is an ideal
in L(H). The application of the formula (2.1.7) to c := q̺(a) shows that q̺(a) = i[̺, β̺(q̺(a))] ∈
T̺O(U). Also, q̺ leaves T̺O(U)⊂ L(H)s pointwise invariant. Hence N̺ = T̺O(U).

(i)⇒(iii): It follows now that for ̺ ∈ F the set N̺ is a subset of T. Since N̺ is closed in the
norm-topology of L(H)s and on the subset Ts ⊂ L(H)s the trace-topology determined by ‖ · ‖1 is
finer than the topology of L(H)s determined by ‖ · ‖, ‖x‖ ≤ ‖x‖1 (∀x ∈ T), it follows that N̺ =
T̺O(U) is closed also in trace-topology, i.e. (iii).

(ii)⇒(i): Let ̺ 6∈ F. Let ej ≡ |ej〉(j ≥ 1) be an infinite orthonormal set in H such that Ejej =
ej(∀j), cf.(2.1.3). Let us define a ∈ L(H)s by the formula (in the Dirac notation, [75])

a :=
∑

j≥1

αj(|e2j〉〈e2j+1|+ |e2j+1〉〈e2j |), ‖a‖ < M <∞. (2.1.8)
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We have a = q̺(a) ∈ N̺ for any bounded real sequence {αj}, but for some choices of {αj}
(e.g.αj ≡ 1) one has a 6∈ Ts ⊃ T̺O(U). This proves that N̺ 6= T̺O(U).

Let us make now a technical remark providing an alternative proof of the last statement, as
well as a device to further work:

2.1.6 Remark. Let us choose in (2.1.8) αj := γj(λ2j − λ2j+1), where 0 < γj → ∞ for j → ∞,
but still

∑

j≥1 γj(λ2j − λ2j+1) < ∞. Such a choice of strictly positive divergent sequence {γj},
for any given λj > 0,

∑

j≥1 λj = 1, is always possible. Then a ∈ Ts. Let us now calculate β
(n)
̺ (a)

according to (2.1.6):

β(2n+1)
̺ (a) = i

n∑

j=1

γj
(
|e2j+1〉〈e2j | − |e2j〉〈e2j+1|

)
. (2.1.9)

Due to divergence of {γj}, it is clear that the result “β̺(a)” diverges for n→∞, i.e. we can obtain
in this way at the best an unbounded operator. This shows that our a 6∈ T̺O(U), although it is
still in Ts. This is another proof of the inequality N̺ 6= T̺O(U), because β̺ : T̺O(U) → N̺ is
‖·‖1 → ‖·‖–continuous. ♥
(vi): Since the sequence {i[̺, β(n)

̺ (a)] : n ≥ 1} ⊂ T̺O(U) converges strongly to a ≡ q̺(a) (∀a ∈
N̺ := q̺(L(H)s)), it is seen that T̺O(U) (considered as a subspace of Ts ⊂ L(H)s) is strongly
dense in N̺. This proves (vi).

(iii)⇒(i): Let us choose a ∈ N̺∩Ts\T̺O(U). The preceding considerations also show that T̺O(U)
is not closed in Ts if ̺ 6∈ F; namely, according to the Remark 2.1.6, and the formula (2.1.9), one

can choose a ∈ Ts ∩ N̺ such that the sequence {‖i[̺, β(n)
̺ (a)] − a‖1 : n ≥ 1} converges to zero.

This means that the sequence i[̺, β
(n)
̺ (a)] ∈ T̺O(U) converges to a 6∈ T̺O(U).

(iv)⇔(iii): The restriction of the projection q̺ : Ts → Ts is continuous also in the trace-norm
topology, what follows from continuity of p̺ in that topology: For positive operators c ∈ T, all
EjcEj ≥ 0, hence

‖p̺(c)‖1 = Tr(
∑

j

EjcEj) =
∑

j

Tr(EjcEj) =
∑

j

Tr(Ejc) = Tr(c) = ‖c‖1,

and the continuity of p̺ follows. The equivalence of the norms ‖ · ‖̺ and ‖ · ‖1 on T̺O(U) in the
case of ̺ ∈ F can be shown as follows: Let c := i[̺, b] ∈ T̺O(U)⇒ q̺(b) = β̺(c), and from (2.1.7)
and the definition of the norm ‖ · ‖̺ we obtain

‖c‖̺ ≤




∑

j 6=k
|λj − λk|−1



 ‖c‖1, (2.1.10)

where the sum is taken over a finite index set. The opposite inequality is obtained by the known
property of the trace-norm:

‖c‖1 ≡ ‖[̺, q̺(b)]‖1 ≤ 2‖q̺(b)‖‖̺‖1 = 2‖c‖̺,
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since q̺(b) = β̺(c), and ‖̺‖1 = 1. This fact, and the derived implications of finite dimensionality
of ̺ ∈ F give the validity of the assertion (iv).53 It is clear that (iv) cannot be true if (iii) were
not valid.

(v) If ̺ ∈ F, then the B-space T̺O(U) is a Hilbert space, cf. Theorem 2.1.19, hence T̺O(U) is
reflexive.

The proved Proposition 2.1.5 shows, that only finite-dimensional density matrices ̺’s gener-
ate Ad∗(U) orbits with mathematically convenient properties: Their tangent spaces are in the
Ts-induced topology closed and reflexive. This has important consequences for the following the-
oretical implications. Hence, we ask the question, whether it would be possible to restrict our
attention, in some appropriate sense, to these “finite dimensional orbits”, and simultaneously not
to loose the control on the whole space S∗. The next lemma indicates, that it might be possible.

2.1.7 Lemma. The set-union of the orbits {O̺(U) : ̺ ∈ F} is a dense subset of S∗ ⊂ Ts, in the
norm-topology of Ts. ♣

Proof. Any density matrix ̺ ∈ S∗ is approximated in ‖ · ‖1 by finite dimensional ones, what is
seen, e.g. from its spectral resolution:

̺ =
∑

j

λjEj = ‖ · ‖1 − lim
n→∞

κn

n∑

j=1

λjEj , with κn :=

(
n∑

k=1

λk dim(Ek)

)−1

.

2.1-c Poisson structure on quantum state-space

We shall consider the set S∗ (⊂ L(H)
∗
) as the set of relevant physical states in the following

considerations, i.e. the quantum phase space will mean for us the set of normal states.54

Let us now introduce a Poisson structure [178, 275], [7, Appendix 13] on the linear space Ts
containing S∗ as a bounded convex subset. The Poisson structure will allow us to ascribe (Poisson-)
Hamiltonian vector fields (on F, at least) with the corresponding flows leaving the state space S∗
invariant.

It will be useful to use, in the following mathematical formulations, the standard differential
calculus on Banach manifolds [235, 40, 61] based on the Fréchet differential calculus of mappings
between (linear) Banach spaces [58, 236, 61].55

53The regularity of the embedding is not proved here in detail; it is not necessary for validity of a modified version
of this proposition (if modified by simple scratching out the word ‘regularly’ in the item (iv)), and it is not used in
the following text of this work. A completion of the proof of the full text of this proposition can be found in the
Internet page: arXiv.org/math-ph/0301007.

54It might be mathematically interesting, and, perhaps, also physically useful, to formulate analogies of the
following constructions on the space S of all positive normalized functionals on L(H). This leads to technical
complications and, for purposes of our physical interpretations, it would be unnecessary. cf. also [24], where a
(heuristic) trial for such a formulation was presented. A nice and useful property of S is its compactness in the
w∗-topology, what is not the case of S∗.

55Let us note, for a preliminary information, that in this infinite–dimensional differential calculus “most” of the
usual differential operations in finite–dimensional spaces remain formally, under certain conditions, unchanged: the
differential is the “linear part of difference”, where should be used the Banach-norm limit for its definition. The
rules for writing the Taylor expansion, differential of composed maps, for calculation of derivatives of “products”
etc. have the same formal expressions as in finite–dimensional case, see also the Appendix A.2.
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If the Fréchet derivative of a function f : T→ R exists, then there exists also directional (so called
Gateaux) derivative:

Dνf(ω) = lim
t→0

1

t
[f(ν + tω)− f(ν)] , ∀ω ∈ T. (2.1.11)

Conversely, if the Gateaux derivative (2.1.11) exists in a neighbourhood U of a point ν ∈ T,
and if it is continuous linear, continuously depending on ν ∈ U , D·f : U → L(T,R), then also the
Fréchet derivative (A.2.1a) exists [58].

We shall be mainly interested, in the following text, in the Ad∗(U)-invariant subset S∗ consisting
of normal states on L(H). Let F := F(Ts) be the set of infinitely norm-differentiable real functions
on Ts, with its trace-norm ‖ · ‖1. Let us denote by F(B) the set of the restrictions of f ∈ F to
some subset B of Ts.

2.1.8 Remark. Noncompactnes of S∗ allows, e.g. that F(S∗) contains also unbounded functions
on S∗, e.g. any f ∈ F with the restriction f : ̺ 7→ f(̺) := ln(Tr(̺2)) for ̺ ∈ S∗ ⊂ Ts is unbounded.

Put, e.g., with orthonormal ej ’s, ̺N :=
∑N

j=1
1
N |ej〉〈ej |, whence Tr̺2

N = 1
N , limN→∞ lnTr(̺2

N ) =
−∞. ♥

The definition of the F-derivative and its expression (2.1.11) also apply to f ∈ F , and the
notation Dνf will not lead to any ambiguity for f ∈ F .

We shall often work with infinite–dimensional manifolds modelled by Banach (specifically, e.g.,
in the case of pure state manifold P (H), or of any O̺(U) with dim ̺ < ∞, by Hilbert) spaces,
cf. Appendix A.3. The main ideas, and many of general constructions and theorems work in that
cases similarly as in the case of more common finite dimensional manifolds. We shall point out
differences in specific cases, if it will be needed. In the case of the linear manifold Ts, and for a
differentiable function f ∈ F , the derivative Dνf belongs to the cotangent space T ∗

ν (Ts)= L(H),
and we shall deal with it also as with an operator in the sense of this canonical isomorphism.

2.1.9 Definitions.

(i) Let F̺ denote the algebra C∞(O̺(U),R) of functions on the manifold O̺(U). The restrictions
of functions from F to O̺(U) belong to F̺, because the topology on the manifold O̺(U) is finer
than the relative topology coming from Ts (cf. proof of Proposi- tion 2.1.5).

(ii) The mapping from F × F to F : (f ;h) 7→ {f, h}, where

{f, h}(ν) := ν(i[Dνf,Dνh]), ν ∈ Ts, (2.1.12)

will be called the Poisson structure on Ts. The function {f, h} ∈ F is the Poisson bracket of
the functions f and h from F .

(iii) The functions hy ∈ F (y ∈ L(H)s) are defined by hy(ν) := ν(y) ≡ Tr(νy), ∀ν ∈ Ts. Then
Dνhy = y, the second derivative D2

νhy = 0, and the Poisson bracket of two such functions is

{hx, hy}(ν) = i ν([x, y]) ≡ hi[x,y](ν). (2.1.13)

From this we obtain Poisson brackets for polynomials in functions hx (x ∈ L(H)s) with a help of
derivation property (cf. Proposition 2.1.10), in accordance with (2.1.12). ♦

The space Ts can be considered as an infinite–dimensional manifold with the atlas consisting
of one chart determined by the identity mapping on Ts. Then the tangent space TνTs to Ts at
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each point ν will be canonically identified with the vector space Ts itself. The space L(H)s is
then canonically identified with T ∗

νTs. In this interpretation, we can also consider the derivative
(cf. Appendix A.2) Dνf∈T ∗

νTs as differential of f ∈ F on the manifold Ts, as it is used in
differential geometry. The usual symbol dνf will be used, however, to stress the restriction of the
differentiation to some “smaller” manifold in Ts. For a real function f continuously differentiable
as a function on the manifold O̺(U) we shall denote by dνf the differential of f in the point ν
on the orbit O̺(U) (∋ ν). We shall also identify d̺f := q̺(D̺f) ∈ N̺ ⊂ L(H)s considered as
an element of the cotangent space T ∗

̺O(U) := (T̺Oν(U))∗ := T ∗
̺Oν(U); this identification (resp.

representation) of the cotangent space is possible due to the identities:

d̺f(c) := Tr(cq̺(D̺f)) = i T r([̺, β̺(c)]q̺(D̺f)) =

i T r(β̺(c)[q̺(D̺f), ̺]) = i T r(β̺(c)[D̺f, ̺]) =

i T r([̺, β̺(c)]D̺f) = Tr(cD̺f), for all c ∈ T̺O(U).

(2.1.14)

The operator d̺f represents the pull-back of D̺f ∈ T ∗
̺Ts with respect to the embedding of O̺(U)

into Ts, if ̺ ∈ F. Now we can write the Poisson bracket in the form:

{f, h}(ν) = iν([dνf, dνh]). (2.1.15)

The form (2.1.15) shows, that the value of the Poisson bracket (2.1.12) in a point ν ∈ Ts depends
on the restrictions of the functions f, h ∈ F onto the orbit Oν(U) only. This is due to the fact,
that the orbits O̺(U) are the “symplectic leaves” of the Poisson manifold Ts, [275], as will be seen
from the following. The orbits are Poisson submanifolds [275] of the Poisson manifold Ts. We
shall now prove that (2.1.12) really determines a structure of a Poisson manifold on the Banach
manifold Ts:

2.1.10 Proposition. The Poisson bracket from (2.1.12) has all the general properties of the
Poisson structure [275, 7] (coinciding with that of Hamiltonian classical mechanics, except of non-
degeneracy), i.e. for all f, h, k ∈ F , and all λ ∈ R one has:

(i) {f, h} = −{h, f}; (antisymmetry)
(ii) {f, h+ λk} = {f, h}+ λ{f, k}; ((ii)&(i)⇒ bilinearity)
(iii) {f, hk} = {f, h}k + h{f, k}; (derivation property)
(iv) {f, {h, k}}+ {h, {k, f}}+ {k, {f, h}} = 0; (Jacobi identity) ♣

Proof. The first three properties are immediate consequences of Definitions 2.1.9, cf. also (2.1.16).
The validity of (iv) follows immediately from (2.1.13) and from the properties (i) - (iii) for such
functions f, h, k which have form of polynomials in the specific type of functions ha ∈ F , a ∈
L(H), (2.1.13). For general f, h, k one can prove (iv) directly as follows:
Let us first express Dν{h, k} ∈ L(H)s according to (2.1.11), (2.1.12),

ω(Dν{h, k}) =
d

dt

∣
∣
∣
∣
t=0

(ν + tω)(i [Dν+tωh,Dν+tωk])

= ω(i [Dνh,Dνk]) + ν(i [D2
νh(ω, ·), Dνk]) + ν(i [Dνh,D

2
νk(ω, ·)]),

where the second derivatives in any point ν are symmetric bilinear ‖ · ‖1-continuous functions
on Ts. Hence, the linear mapping D2

νk(ω, ·) : ̺ 7→ D2
νk(̺, ω) = D2

νk(ω, ̺) ≡ ̺(D2
νk(ω, ·)) can
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be (and is here) considered as an element of L(H)s. We need to calculate {f, {h, k}}(ν) :=
i ν([Dνf,Dν{h, k}]). With a help of the notation (2.1.5) and of the above derived formula for
Dν{h, k} we obtain

{f, {h, k}}(ν) = [ad∗(Dνf)ν](Dν{h, k})
= −ν([Dνf, [Dνh,Dνk]])− [ad∗(Dνk)ν](D

2
νh(ad∗(Dνf)ν, ·)) +

[ad∗(Dνh)ν](D
2
νk(ad∗(Dνf)ν, ·))

= −ν([Dνf, [Dνh,Dνk]])−D2
νh(ad∗(Dνf)ν, ad∗(Dνk)ν) +

D2
νk(ad∗(Dνf)ν, ad∗(Dνh)ν).

From the symmetry of second derivatives, and from validity of Jacobi identity for commutators of
operators in L(H), we obtain the result.

2.1-d Hamiltonian vector fields and flows

In the case of a finite–dimensional Poisson manifold M, the Poisson structure determines a vector
field vf to each differentiable function f on M, so called Hamiltonian vector field corresponding
to the Hamiltonian function f :

£vf (h) ≡ dh(vf ) := {f, h}, (2.1.16)

where £v denotes the Lie derivative (uniquely extendable to a derivation of any tensor field on
M, [152, 40]) with respect to the vector field v: The Poisson bracket {f, h}(ν) at fixed f and ν is
a (first order) differential operator on real valued functions differentiable at ν, which determines
unique - in the case of finite–dimensional M - vector vf ∈ TνM.

In the case of infinite–dimensional manifolds, the relation between (first order) differential
operators and tangent vectors is not always an isomorphism of normed spaces, [61]. The following
lemma is, however, valid, [61, Chapter VII.A.1]:

2.1.11 Lemma. Let M be a manifold modeled by a Banach space E, hence the tangent spaces
TmM, m ∈ M , are isomorphic to E. Let us assume that E is reflexive: E = E∗∗ (:= the double
topological dual of E). Let a differential operator satisfying the Leibniz rule (i.e. a derivation)
∆ : F(U) → F(U), f 7→ ∆f, U ⊂ M (with domain U of a chart (U ;ϕ;E) containing m ∈ M),
satisfy the following inequality for a K > 0:

|∆f(m)| ≤ K ‖Dϕ(m)(f ◦ ϕ−1)‖E∗ . (2.1.17)

Then the operator ∆̂m : f 7→ ∆f(m) can be identified with the vector ∆m ∈ TmM ∼= E∗∗ :
∆m(dmf) := ∆f(m). ♣
Proof. The equation (2.1.17) shows that the kernel of the operator ∆̂m contains the kernel of dmf ,
and also is bounded. Hence, it is defined as bounded linear functional on T ∗

mM (∋ dmf ∀f ∈ F(U)),
i.e. as an element of (T ∗

mM)∗ ∼= E∗∗ = E.

Let us check validity of (2.1.17) for the Poisson bracket ∆̂ν(·) := {h, ·}(ν):
|{h, f}(ν)| ≤ 2‖ν‖1 ‖D̺h‖L(H) ‖D̺f‖L(H).

Reflexivity of the tangent spaces TνO(U) is the case for “finite–dimensional” orbits Oν(U), cf.
Proposition 2.1.5(v).
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2.1.12 Remark. The considerations preceding (2.1.15) show, that the Poisson bracket {h, f} in a
point ν ∈ F∩S∗ can be calculated with a help of restrictions h⌉Oν(U), f⌉Oν(U) only, cf. (2.1.15), i.e.
the orbits O̺(U) are themselves Poisson manifolds regularly embedded into Ts, and this embedding
is a Poisson morphism [275]. ♥

Let us restrict our attention, for a while, to “finite–dimensional” orbits Oν(U). From the
Lemma 2.1.11 and the above mentioned facts we can see that to any f ∈ F there is associated, for
any ν ∈ F, the Hamiltonian vector field vf on Oν(U), vf (̺) ∈ T̺Oν(U), expressed by

vf (̺) = ad∗
̺(d̺f) = ad∗

̺(D̺f). (2.1.18)

Note that d̺f= q̺(D̺f) ∈ F for all ̺ ∈ Oν(U), and that Dνf∈ L(H)s, hence the unitary group

uf,ν : t 7→ uf,ν(t) := exp(−itDνf)

generates a curve on Oν(U) = O̺(U) determining vf (ν):

dνh(vf ) =
d

dt

∣
∣
∣
∣
t=0

h(Ad∗(uf,ν(t))ν). (2.1.19)

This again indicates the “usual” (i.e. as in finite–dimensions) connection between differentiable
curves and tangent vectors vf (ν) ∈ TνO̺(U).

2.1.13 Notes.

(i) Each element of L(H)s can be written in the form Dνf for some smooth real-valued function
f ∈ F : For a given b ∈ L(H)s one can choose f(ν) := Tr(bν); then Dνf= b.

(ii) The reflexivity of T̺O(U), for ̺ ∈ F, implies that each vector v ∈ T̺O(U) is of the form (2.1.18)
for some D̺f∈ L(H)s.

(iii) Although the Hamiltonian vector fields were defined on orbits Oν(U) for ν ∈ F only, they are
extendable by (2.1.18) to the whole space Ts:

vf : Ts → Ts, ν 7→ vf (ν) := ad∗
ν(Dνf). (2.1.20)

Since
‖vf (ν)‖1 = ‖[ν,Dνf ]‖1 ≤ 2 ‖ν‖1 ‖Dνf‖,

and the function ν 7→ Dνf is infinitely (continuously) differentiable, the uniqueness of the extension
of vf to Ts follows from the density of F in T. ♥
2.1.14 Definition. Let f ∈ F , ν ∈ Ts, and let vf (ν) ∈ TνOν(U) ⊂ TνTs be determined by
equation (2.1.18). The smooth vector field ν 7→ vf (ν) is called the Hamiltonian vector field on
Ts. ♦

Now we could proceed further also with the Hamiltonian vector fields vf restricted to “finite–
dimensional” orbits O̺(U) being the Hamiltonian vector fields on Poisson manifolds O̺(U), ̺ ∈ F.

Each vf from (2.1.18) (f ∈ F) determines a differential equation [40] on the infinite–dimensional
Banach manifold Ts with a maximal solution ϕ̃f , ϕ̃f (t, ̺) ∈ Ts, defined on an open domain in
R× Ts ∋ (t; ̺) containing {0} × Ts. For values of tj ’s for which the objects entering into (2.1.21)
are defined, the formula

ϕ̃f (t1 + t2, ̺) ≡ ϕ̃f (t2, ϕ̃f (t1, ̺)) (2.1.21)
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is satisfied. If the domain is the whole R × Ts, what means that the vector field vf on Ts is

complete, we obtain a one-parameter group of diffeomorphisms ϕ̃ft (t ∈ R) of Ts:

ϕ̃ft (̺) := ϕ̃f (t, ̺) for all t ∈ R, ̺ ∈ Ts. (2.1.22)

We shall now express the (local) flow ϕ̃ft , i.e. the solution of Hamilton’s equations (obtained by
combining (2.1.16) and (2.1.19), or (2.1.12)), in a form of Schrödinger (resp. Dyson) equation.

2.1.15 Proposition. Let ν ∈ Ts, f ∈ F , ν(t) := ϕ̃ft (ν) for t in an open interval Jν ⊂ R

containing zero. Let we represent the differentials Dνf , resp. dνf of f ∈ F by operators in L(H),
e.g., as above: dνf := qν(Dνf). Let us consider the equation

i
d

dt
uf (t, ν) = dν(t)f · uf (t, ν), (2.1.23)

where dν(t)f · denotes the (left) multiplication in the algebra L(H)s. The equation (2.1.23), with the
initial condition uf (0, ν)≡ IH, has a unique (unitary) solution t 7→ uf (t, ν) ∈ L(H), t ∈ Jν , ν ∈ Ts.
This solution satisfies the “cocycle identity”

uf (t+ s, ν) = uf (s, ϕ̃
f
t ν)uf (t, ν) (2.1.24)

for those t, s ∈ Jν , for which both sides of (2.1.24) are defined. One has, moreover,

ϕ̃ft ν := ϕ̃ft (ν) = Ad∗(uf (t, ν))ν, (2.1.25)

and this, together with (2.1.24) shows fulfillment of (2.1.21). ♣

Proof. Unique solvability of (2.1.23) on each interval J ′
ν ⊂ Jν on which the function t→ ‖dν(t)f‖ is

uniformly bounded follows from general theory of differential equations in Banach spaces, cf. [236,
Chap.V.§2.Theorem 4]. Unitarity and the property (2.1.24) can be proved, e.g. by the method of
the proof of [219, Theorem X.69] using the Dyson expansion, since t 7→ dν(t)f is norm-continuous.

Finally, (2.1.25) can be verified by differentiation and by the uniqueness of the local flow ϕ̃f of the
vector field vf .

2.1.16 Notes.

(i) The equation (2.1.23) is a generalized form of the Dyson equation known from QM, which in
turn is a time-dependent generalization of Schrödinger equation. For f(ν) ≡ hH(ν) := Tr(νH),
with H ∈ L(H)s, and with ν ∈ P (H), the equation reduces to the Schrödinger equation with the
Hamiltonian H.

(ii) The substitution ν(t) := Ad∗(uf (t, ν))ν into (2.1.23) makes that equation for uf (t, ν) manifestly
nonlinear. We shall see in Section 3.6 that the equation (2.1.23) can be equivalently rewritten, in
the case ν ∈ P (H), into the form of the nonlinear version of QM proposed in [274], and also into
the more traditional versions of “nonlinear Schrödinger equations”, cf. Subsection 3.3-e.

(iii) The equation (2.1.25) shows, that the obtained form of Hamiltonian flows on “quantum phase
space” Ts can be expressed with a help of coadjoint action of the unitary group U of the algebra
L(H), hence it leaves invariant the orbits Oν(U). This gives the invariance of the quantum state
space S∗, as it is formulated in the following theorem. ♥
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2.1.17 Theorem. Let f ∈ F , ̺ ∈ S∗. Then O̺(U) is ϕ̃f -invariant. Hence also S∗ is ϕ̃f -invariant.
♣
Proof. The result follows from the relation (2.1.25) showing that ϕ̃ft can be realized by the Ad∗(U)-
action, and S∗ consists of the Ad∗(U)-orbits O̺(U), ̺ ∈ S∗.

Let us specify non-uniqueness of cocycles (2.1.24) satisfying (2.1.25). We obtain “physically
equivalent” evolution equations connected by a “gauge transformation”, cf. also Section 3.6, Re-
mark 2.1.18, and Proposition 2.3.23.

2.1.18 Remark. The cocycle uf satisfying (2.1.25) is nonunique. The same evolution ϕ̃f is ob-
tained also from the solutions u′f of the equations resulting after the insertion dνf + f0(ν) in the

place of dνf into (2.1.23), where f0 : ν 7→ f0(ν) is a norm-continuous function from S∗ (or from
the whole Ts) to L(H)s with values in Mν = i ·Lie(Uν), i.e., as an operator in L(H), the value
f0(ν) commutes with the operator ν for any ν:

i
d

dt
uf (t, ν) =

[
dν(t)f + f0(ν(t))

]
· uf (t, ν). (2.1.26)

Specifically, one can use Dνf= pν(Dνf) + qν(Dνf) instead of dνf := qν(Dνf) in (2.1.23). Let us
mention, moreover, that the continuity requirement to the function t 7→ dν(t)f + f0(ν(t)) in the
assumptions of the Proposition 2.1.15 can be weakened: For validity of the conclusions as well as of
the proof of the proposition it suffices to assume strong-operator continuity of this “time-dependent
Hamiltonian” together with its locally uniform (in the parameter t) boundedness. ♥

Now we shall investigate the geometry of manifolds O̺(U) for “finite–dimensional” ̺ ∈ F,
especially a naturally determined metric and symplectic structures on them. It will be seen in the
Section 3.2 that the obtained structure leads to the standard symplectic, and also metric (known
as the “Fubini-Study metric”) structures on the space of pure quantum states P (H), this both
structures connected by complex structure coming from that in the underlying Hilbert space H
(this is called a Kählerian structure):

2.1.19 Theorem. Let dim ̺ < ∞. Let us define a complex-valued tensor field Ψ : ̺ 7→ Ψ̺ ≡
Γ̺ − iΩ̺ on the manifold O̺(U), where Γ̺ and Ω̺ are real two-covariant tensors on T̺O(U)
(∋ v,w):

Ψ̺(v, w) := Γ̺(v, w)− iΩ̺(v, w) := 2Tr (̺ β̺(v)β̺(w)) . (2.1.27a)

Then the B-space T̺O(U) is a real Hilbert space with scalar product Γ̺ endowed also with the
two-form Ω̺ (here [·, ·]− is the commutator, and [·, ·]+ is the anticommutator in L(H), and β̺ is
as in (2.1.7)):

Γ̺(v, w) ≡ Tr(̺[β̺(v), β̺(w)]+), Ω̺(v, w) ≡ i T r(̺[β̺(v), β̺(w)]−). (2.1.27b)

Γ is a Riemannian metrics, and Ω is a symplectic form on O̺(U), both are strongly nondegener-
ate, [61]. The symplectic form Ω ascribes to each f ∈ F̺, 2.1.9, the vector field vf :

Ων(vf ,w) ≡ −dνf(w), (2.1.28)

coinciding with vf from (2.1.18) for f ∈ F(O̺(U)), and the corresponding Poisson bracket

{f, h} ≡ Ω(vf ,vh) (2.1.29)
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coincides with the one defined in (2.1.12) and (2.1.15).
Moreover, the following norms are all mutually equivalent on T̺O(U): ‖ · ‖, ‖ · ‖1, ‖ · ‖2, ‖ · ‖̺,

and ‖ · ‖Γ:= Γ(·, ·) 1
2 . ♣

Proof. The equivalence of the norms ‖ · ‖1, and ‖ · ‖̺, as well as the completeness of T̺O(U) was
proved in Proposition 2.1.5. To prove equivalence of norms ‖ · ‖, and ‖ · ‖1, let us write ̺ =
∑

j≥1 λjEj , with
∑

j≥0 Ej = I, λ1 > λ2 > · · · > λN , λ0 := 0, as before. Let c= q̺(c) := i [̺, a] =
i [̺, q̺(a)] ∈ T̺O(U), ∀a ∈ L(H)s. Then ‖c‖ ≤ ‖c‖1 ≤

∑

j 6=k ‖EjcEk‖1 = 2
∑

j>k ‖EjcEk‖1 ≤
2
∑

j>k ‖Ej‖1‖cEk‖ ≤ 2‖c‖∑k≥0

∑

j(>k) ‖Ej‖1, where the degeneracy of λj equals ‖Ej‖1 < ∞
for j 6= 0, and the number N + 1 of mutually different eigenvalues λj of ̺ is finite. This proves
equivalence of the norm ‖ · ‖1 with ‖ · ‖, hence also their equivalence with ‖ · ‖2, since always
‖c‖ ≤ ‖c‖2 ≤ ‖c‖1. We have further 1

2‖c‖2Γ = Tr(̺β̺(c)
2) = Tr(̺q̺(a)2) = ‖̺q̺(a)2‖1 ≤

‖̺‖1‖q̺(a)2‖ = ‖q̺(a)2‖ ≡ ‖c‖2̺. On the other hand, since 0 ≤ λj ≤ 1, one has

̺(β̺(c)
2) =

∑

k 6=j
λjTr(EjaEkaEj) ≥

∑

k 6=j
λ2
jTr(EjaEkaEj)

≥
∑

j>0

∑

k( 6=j)
λ2
jTr(EjaEka)−

∑

k 6=j
λjλkTr(EjaEka)

=
1

2
Tr([̺, q̺(a)][q̺(a), ̺]) =

1

2
‖c‖22.

These inequalities together with the previously proved equivalences show also the desired equiva-
lence of ‖ · ‖Γ. This proves also nondegeneracy of Γ; its analytic dependence on the point ̺ of the
orbit Oν(U) can be proved from its dependence on elements of the group U acting on Oν(U). The
explicit form of Ω

Ω̺(v, w) ≡ i ̺([β̺(v), β̺(w)]) (2.1.30)

shows, after inserting into it v := ad∗
̺(d̺f), and w := ad∗

̺(d̺h), that it can be expressed by
our Poisson bracket (2.1.12): we obtain (2.1.29), according to (2.1.18). The closedness dΩ = 0
follows from the proved Jacobi identity for the Poisson brackets (Proposition 2.1.10). The mapping
d̺f(∈ T ∗

̺O(U)) 7→ vf (̺) := ad∗
̺(d̺f) ∈ T̺O(U) (f ∈ F̺) is an isomorphism, what is a consequence

of the proved equivalence of topologies on T̺O(U), of the surjective property of the mapping
ad∗
̺ : N̺ → T̺O(U), d̺f 7→ ad∗

̺(d̺f), as well as of the reflexivity of the Hilbert space (T̺O(U);
‖ · ‖Γ). This proves that Ω is strongly nondegenerate.

2.1.20 Note (Symplectic and Poisson structures). Existence of symplectic form Ω is useful
to easy introduction of a canonical (induced) Poisson structure on submanifolds of M = O̺(U)
determined, e.g. by actions of symmetry groups: The pull back by embeddings is well defined for
covariant tensor fields (i.e. for elements of T 0

n (M), whereby T 0
1 (M) are one-forms on M), what

is not the case of Poisson bracket (remember that the Poisson structure is determined by a two-
contravariant antisymmetric tensor field, i.e. the element of T 2

0 (M), cf. also (2.1.15), [178, 275]).
One could try to introduce a symplectic form Ω̃ on the whole space Ts in such a way, that

the forms Ω̺ on O̺(U)’s (̺ ∈ S∗) are its restrictions by embeddings ι̺ : O̺(U) → Ts, i.e.

Ω̺ ≡ ι∗̺Ω̃. This cannot be done by a naive “extension” of the formula (2.1.30) to the whole
Ts; e.g., for dim ̺ =∞, the mapping β̺ has not a “natural” extension to Ts, cf. (2.1.9). We shall
not investigate this possibility here (it can be connected with considerations in Remarks 3.2.1). ♥
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Let us note, that vf ≡ 0 for a Hamiltonian vector field vf does not mean f(·) ≡ const. on
connected components of a considered Poisson manifold M , as it is valid for a nondegenerate
Poisson structure (of Hamiltonian classical mechanics, e.g.), cf. Definition 1.4.1. The vanishing of
vf only implies constancy of restrictions of f to connected components of symplectic leaves of M ,
e.g. the leaves O̺(U) of S∗, resp. of Ts.

2.1-e On interpretation: Subsystems and two types of mixed states

The space S∗ with the introduced Poisson structure will play in EQM a rôle similar to the phase
space of classical mechanics. It contains pure states of standard QM described by points ν of the
orbit O̺(U) = P (H) with ̺ = ̺2, i.e. consisting of one-dimensional orthogonal projections on H,
as well as the states described by density matrices ̺ 6= ̺2 traditionally called “mixtures”. This
type of mixture can always be obtained (cf., e.g. [106, 71, 34]) by the restriction

pI : SI+II∗ → S∗ := SI∗ ,
(the “partial trace”,[71, 50], i.e. pI ≡ TrII) of a pure state ̺I+II = (̺I+II)

2 ∈ SI+II∗ of a composed
system “I + II” (described with a help of the Hilbert space HI+II := HI ⊗HII , with HI := H)
to a given state ̺I := ̺ ∈ S∗ of the considered subsystem, ̺ = pI(̺I+II).

56

Work with EQM requires introduction of two different types of “mixed states”, cf. also [73]:57

2.1.21 Definition. Let the states described by density matrices be called elementary states (also
elementary mixtures to stress possibility of ̺ 6= ̺2). The topological space S∗ endowed with the
Poisson structure will be then called the elementary phase space for QM.

Another type of states (let us call them genuine mixtures) are described by probability mea-
sures µ on the set S∗ of normal states on L(H) endowed with a Borel structure, cf. also [34]. The
set of elementary mixtures can be considered as the subset of the set of genuine mixtures consisting
of the Dirac measures (each concentrated on its own one–point subset of S∗). ♦
2.1.22 Remark. We shall not investigate in details, in this paper, various possible convenient
Borel structures on S∗ , i.e. σ-algebras of subsets of S∗ generated by open subsets in a topology;
we shall not need it in our general considerations. From the point of view of measure theory, cf.
[60, 42], it is convenient to work on locally compact spaces. There are two ways how to introduce
a “relatively compact” topology on S∗, coming as the relative topology from its compactification
in a natural way:

(i) The space S∗ is a subset of S – the set of all states on L(H) which is compact in σ(L(H)
∗
,L(H))

topology. The induced topology from this w∗-topology coincides on S∗ with the (topology induced
from the) natural norm topology on L(H)

∗
, [42, Proposition 2.6.15]. Observe that the restriction

of the norm of L(H)∗ to S∗ coincides with the trace-norm ‖ · ‖1 of Ts. Moreover, S∗ is w∗-dense
in S, [42, Example 4.1.35]. Hence, S is a natural compactification of S∗.
(ii) Another way of introduction of a “relatively compact” topology in S∗ is (a priori different than
that in (i)) w∗–topology coming from the duality C(H)∗ = T(H), i.e. the σ(T,C)-topology, where
the duality is expressed by the formula 〈̺; c〉 ≡ Tr(̺c). By the same argument as in (i), [42,
Proposition 2.6.15], the w∗–topology on S∗ coincides with the norm-topology of C∗ = T, hence
again with the trace-norm topology. ♥

56A more general definition of “subsystems” can be found in Definition 2.3.8.
57The concept of “states” will be reconsidered and generalized after introduction of “the observables” of the

considered systems in Section 2.3.
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This way of introduction of (the same, as we see) topology on S∗ leads us to another compact
set (let us denote it 〈S∗〉), a subset of which is S∗:
2.1.23 Definition. The set 〈S∗〉 is the (w∗-compact) convex span of S∗ and of the zero element
of C∗. The compact 〈S∗〉 is sometimes called [197] the quasi state space of the C∗-algebra C. ♦

Let us return now to description of the genuine mixtures. Let f ∈ F be an “observable”
(cf., however, Definitions 2.3.3, and Interpretation 2.3.11, for more elaborated concepts). If we
interpret, in accordance with the standard interpretation of formalism of QM, its value f(̺) as
“the expectation value 〈f〉̺ of f in the state ̺”, then the expectation in a (genuine mixture–) state
µ would be naturally determined by the formula

µ(f) := 〈f〉µ :=

∫

f(̺)µ(d ̺). (2.1.31)

If f is an affine function, i.e. f := ha for some a ∈ L(H) (later the denotation “affine” will be
used also for functions f which are not everywhere defined and which correspond to unbounded
operators X , f ≡ hX , cf. Sec. 2.2), and if b(µ) ∈ S∗ is the barycentre (also resultant, resp.
intuitively the “center of mass”) of µ [42], then

µ(ha) = ha(b(µ)) = b(µ)(a), ∀a ∈ L(H). (2.1.32)

This shows, that there is no observable difference between the genuine mixture µ and the cor-
responding elementary mixture b(µ) ∈ S∗ in the case, if only affine functions can be observed.
For other continuous f (i.e. for f 6≡ ha for any a ∈ L(H), let us call such functions (bounded)
nonlinear functions; they will appear as a new kind of observables, resp. generators, cf. Defi-
nitions 2.3.2, 2.3.3) one has µ(f) 6= f(b(µ)) for a general µ (identity µ(f) ≡ f(b(µ)) for all µ would
lead to f = ha for some a ∈ L(H)). Moreover, if the time evolution ϕ̃f is generated by the Hamil-
tonian vector field vf corresponding to a nonlinear f , then, even for affine ha, one has, contrary

to the case of affine generators f, µt(ha) 6≡ ha(ϕ̃
f
t b(µ)), where µt := µ ◦ ϕ̃f−t (cf. also Note 3.3.3).

This shows some reasons for making distinctions between two kinds of “mixtures” in the presence
of nonlinear observables (and nonlinear evolution generators). If we accept a sufficiently large class
of nonlinear “observables” f , e.g. f ∈ Fb(S∗) ≡ uniformly bounded infinitely differentiable
functions on S∗, then a genuine mixture µ coincides with an elementary mixture ̺ iff µ = δ̺ :=
the Dirac measure concentrated on the one-point set {̺} ⊂ S∗.

Mutually different genuine mixtures µ 6= µ′ “corresponding” to a given elementary state
̺ = b(µ) = b(µ′) can be interpreted as different extensions of a given state of the “considered
microsystem” (the observables of which are described in the traditional way - exclusively by the
affine observables) to mutually different states of a larger system (say, a macrosystem, cf. Sec-
tion 3.4, and also [31, Section II.C]) described by a larger set of observables, see Definition 2.3.3.
In this sense, the formalism described in this work, and describing (many – also “most” of the ear-
lier known – versions of) nonlinear dynamics in QM can be shown as a restriction to a subsystem
of a linear evolution of some larger (say macroscopic) quantal system, cf. also [35].

2.1.24 Interpretation.

(i) Let us consider a density matrix ̺ ∈ T+1(HI) of a “system I”, and a normalized vector Ψ ∈
HI ⊗ HII of a “composed system I+II” such, that its restriction to the “subsystem I” (i.e. the
partial trace with respect to the “system II”) gives the density matrix ̺:

Tr
(
pI(PΨ)a

)
:= Tr

(
(a ⊗ III)·PΨ

)
= Tr(̺·a), ∀a ∈ L(HI).
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Such a “system II”, and a vector–state PΨ (resp. vector Ψ), always exist for any given ̺. Let
{Φk : k ∈ K} be an orthonormal basis in HII :

∑

k∈K PΦk = III , and let {ϕj : j ∈ J} be
an arbitrary basis in the Hilbert space of the “considered system” HI . Then the set of vectors
{ϕj ⊗ Φk : j ∈ J, k ∈ K} ⊂ HI ⊗HII forms a basis in the Hilbert space of the composed system,
and there is a unique decomposition

Ψ =
∑

j∈J,k∈K
cjkϕj ⊗ Φk =

∑

k∈K




∑

j∈J
cjkϕj



⊗ Φk.

Let us define the nonnegative numbers

λk := ‖
∑

j∈J
cjkϕj‖2,

for which the normalization property of Ψ gives
∑

k∈K λk = 1, and let us define also the unit
vectors (in general mutually nonorthogonal)

ψk :=
1√
λk

∑

j∈J
cjkϕj

in the Hilbert space HI . Then we obtain for the given density matrix ̺ the expression:58

̺ =
∑

k∈K
λkPψk . (2.1.33a)

This decomposition does not depend on a choice of the basis {ϕj : j ∈ J} ⊂ HI . We see that an
arbitrary orthonormal basis {Φk : k ∈ K} in HII determines a unique decomposition of ̺. The
vector Ψ is here considered fixed, and it is written in the form:

Ψ =
∑

k∈K

√

λkψk ⊗ Φk.

Let us assume now, that an observable is “measured” on the composed system I+II such, that
it just performs a filtering of the subsystem II according to the chosen basis {Φk : k ∈ K},
corresponding (in a sense of the classical “reduction postulate” [190], cf. Footnote 42) to the
measurement of the quantity A :=

∑

k∈K αkPΦk
, where αj(j ∈ K) are arbitrary, mutually

distinct real numbers. One can imagine a situation similar to that in the Bohm version of the
Einstein-Podolsky-Rosen (EPR) “gedanken experiment”, [91, 14, 277], that the systems I and II
are in the instant of measurement (being in the state PΨ in that time) mutually very distant and
noninteracting, so that the measurement of the quantity A ∈ Ls(HII) (or, what is the same in
QM, of the quantity II ⊗A ∈ Ls(HI ⊗HII) of the composed system) “does not affect” the state of
the subsystem I. After the measurement, according to the “reduction postulate”, the state of the
composed system is

̺AΨ =
∑

k∈K
λkPψk ⊗ PΦk ,

58It might happen also Pψk = Pψm for some k 6= m.
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and the reduced density matrix, if calculated after the measurement, is again the same ̺, as
in (2.1.33a). Hence, the state (i.e. the reduced density matrix) of the subsystem I does not depend
on a choice of the measured quantity A of the subsystem II, but its decomposition (2.1.33a) is
dependent on this choice.59

The situation can be generalized to the measurement of a quantity A with degenerate discrete
spectrum: A =

∑

l αlEl, where El are orthogonal projections in HII commuting with all PΦk ,
and

∑

lEl = III . Then the state of the composed system after the reduction is

̺AΨ :=
∑

l

(II ⊗ El)·PΨ ·(II ⊗ El) =
∑

l

κl PΨl ,

with Ψl ∝ (II ⊗ El)Ψ, κl :=
∑

k∈(l) λk, and (l) := {k ∈ K : PΦkEl = PΦk}. The above decom-
position of the reduced density matrix ̺ corresponding to this alternative measurement situation
is

̺ =
∑

l

κl ̺l, T r(̺l ·a) := Tr
(
(a ⊗ III)·PΨl

)
(∀a ∈ L(HI)). (2.1.33b)

Here it is
κl ̺l :=

∑

k∈(l)

λkPψk , κl := Tr[(II ⊗ El)·PΨ]. (2.1.33c)

Now we can try, however, to interpret the density matrix ̺ obtained by the restriction to the
subsystem I after the measurement of the quantity A of the subsystem II not as an indecomposable
entity, i.e. as an elementary state, but we are going to interpret its different decompositions
(2.1.33) as different genuine mixtures. Hence we shall assume that the process of measure-
ment of A on the correlated subsystem II transforms the elementary mixture ̺ (what is an
empirically indecomposable quantity) into the corresponding genuine mixture determined by the
(empirically identifiable) decomposition (2.1.33a) into the elementary components Pψk , resp. by
the decomposition (2.1.33b) into the elementary components ̺l, with the same barycentre ̺. This
is an important difference in interpretations for nonlinear dynamics: If the evolution of the subsys-
tem I after the measurement on the subsystem II is nonlinear, its state ̺ will evolve, generally, in
course of some time after the measurement, into different states, in dependence of what quantity
was measured on the distant (and noninteracting) but correlated system II. We see now that if
we accept instantaneous “reduction of the wave packet” of the composed system, and,
moreover, if we qualify the obtained decomposition (2.1.33a) as the genuine mixture of
the components Pψk

(resp. the decomposition (2.1.33b) as the genuine mixture of the
components ̺l), then the subsequent different evolutions of the mixtures with the same initial
barycentre (obtained at different choices of the measured quantity A) can lead to distinguishable
states before a light signal coming from the distant system II can bring any information about the
quantities A measured on the system II, cf. also [107].60

(ii) Let us try to give at least a vague, intuitive formulation of an (hypothetical) alternative for
the above described transformation of an elementary mixture into a genuine one, by which the
“action at a distance” is avoided:

59The state Pψk can be called, in accordance with [94], the relative state of I with respect to the state PΦk
of II,

if the state of I + II is Ψ. We shall not discuss here, however, consequences of EQM on possible mutual influence
of different “branches” in the many world interpretation of QM, cf. [107].

60This is, perhaps, a different situation from that one discussed in [170], where a sudden “localized” change of a
nonlinear evolution generator led to instantaneous change of time evolution “at distant places”.
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In our understanding, a quantum measurement is a physical process by which a quantum in-
teraction of the micro-object with an “apparatus” leads to specific macroscopic changes of the
apparatus states, by which statistical distribution of eigenstates of the micro-object corresponding
to its measured observable in its given quantal state is “copied” into a corresponding classical
statistical distribution of mutually classically different (i.e. mutually noninterfering) “pointer posi-
tions”. A generally accepted description of such a dynamical process is still missing, [277, 14, 28].
Let us assume, however, that we have some description of this process in a framework of QT. Let
us consider the combined quantal system I + II + III, where we added to our combined system
I + II also an apparatus III. Then, during the (many times repeated) measurement of A on II,
the apparatus states (let us denote them Ψ̃k) corresponding to the classes of states of II with sharp
values αk of A (with their vectors lying in the subspaces EkHII ⊂ HII) become (in some short but
nonzero time) eventually correlated with the states ̺k of the “distant” subsystem I (that was left
undisturbed during the measurement). This correlation with “pointer positions” Ψ̃k correspods to
the “reduction of the wave packet” and it has no observable influence on the system I. According
to our present (rather provisional) hypothesis, the presumed process of transformation of ̺ into
the genuine mixture

∑
κk ̺k begins either after the measurement, or already at installing (and

activating) of the apparatus. This corresponds to two eventualities:
(first) Since different pointer positions Ψ̃k represent different macroscopic states of “the envi-

ronment” for the system I (we need not be any more interested in the future fate of the measured
subsystem II), these macroscopic states might have different “influences” (as different values of an
external potential, or a “field”) on the correlated states ̺k. These “influences” might be very weak,
just to provide a possibility to distinguish between different states ̺k in the mixed state (2.1.33b).

(second) The environment of the system I was changed by installation of an apparatus for
measurement of A on II, and this change (providing information about the set {Ek} of projections
characterizing A) performs an “influence” on I transforming ̺ into the status of the genuine
mixture from (2.1.33b).

We expect, however, that this “influences” will be spread in both the cases with finite velocity.
Hence, in a presently badly understood way, the elementary mixture ̺ changes into the correspond-
ing genuine mixture (given by the decomposition of ̺ specified by the measured quantity A of II)
in a finite time, avoiding the above described “nonlinearity reason” for a superluminal communica-
tion between I and apparatuses measuring different observables A of II; other possible “sources of
noncausality” mentioned in Subsection 1.5-d, or in the Footnote 60, needn’t be improved by such
a “mechanism”. Let us note finally that these considerations, to lead to a consistently formulated
part of QT, should be reconsidered in frameworks of Einstein relativistic theories, cf. remarks and
citations on page 38. �

Let us note that earlier attempts [47] to introduce nonlinearities into QM were connected with
trials to make drastic changes in interpretation of the formalism of QM and, contrary to the here
presented theory, they did not include the traditional “linear” theory as a specific “subtheory”.

2.2 Unbounded Generators

We have introduced the Poisson structure on the elementary state space of QM with the help of the
group U (resp. Ã) which can be considered as a “maximal possible symmetry group” of described
systems in the sense, that each orbit O̺(U) is a homogeneous space of its action in Ts, whereas
any “physically acceptable” (unitary) operation leaves all the orbits O̺(U) (̺ ∈ Ts) invariant.
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In the setting of preceding sections, generators of all there described transformations (including
time evolution) were functions f ∈ F ; the corresponding “linear” generators f = ha correspond
to bounded selfadjoint operators a ∈ L(H) only. The “realistic models” describing particles and
fields which are, e.g. invariant with respect to Poincaré, or Galilei symmetries have, however
unbounded Hamiltonians, and the generators of many symmetry subgroups are also unbounded.
These symmetry groups are usually finite–dimensional noncompact Lee groups, hence there are
no “interesting” unitary representations with all the generators bounded. Such a “more realistic”
situation cannot be described by the formalism developed up to now: To keep general ideas of our
(nonlinear) extension of quantum theory untouched, mathematically correct description requires
more sophisticated considerations: It leads to “Hamiltonian functions” only defined on dense
subsets of Ts, and these Hamiltonians are not even locally bounded.61 We shall proceed stepwise,
starting with the linear theory.

2.2-a Some probabilistic aspects of selfadjoint operators

To obtain structures useful to effective description of measurable quantities of a specific considered
system, as well as to obtain their empirical interpretation, one has to specify symmetry groups G
“smaller” than U. These groups are related to the quantal system by their continuous (in some
topologies) representations in A, resp. by their projective representations U(G) in U, cf. [268]. Such
realizations of G leave the structure of the elementary (quantum) phase space invariant. These
representations may not be analytic, and their weaker continuity properties are connected with
existence of unbounded generators. Then we are faced with the problem of description of locally
unbounded functions on S∗, playing the rôle of “observables” or “generators” f 6∈ F , corresponding
to the unbounded operators. These functions are not defined on any nonempty open subset of S∗,
nevertheless they could generate (in a specific way) one parameter subgroups of transformations
of S∗. This functions appear usually in the form f := hX , where X is an unbounded selfadjoint
operator generating the unitary group UX : t 7→ exp(−itX), and

hX(̺) := i
d

dt

∣
∣
∣
∣
t=0

̺(exp(−itX)) (2.2.1)

for such ̺, for which the derivative exists; this set of ̺ ∈ S∗ := S∗(L(H)) will be denoted by
D(hX). Let D(X)⊂ H be the domain of X , and let D(hX) := {x ∈ H : Px ∈ D(hX)}. Clearly,
D(X) ⊂ D(hX), and D(hX) is UX –invariant.

One of the main problems considered in this section will be the question of possibility of
generalization of the developed Poisson formalism to locally unbounded (not everywhere defined)
nonlinear generators of transformation groups, e.g. to some nonlinear perturbations of unbounded
affine generators hX . A partial solution of this problem will be reached with a help of group
representations.

2.2.1. Some other characterizations of D(hX) are relevant also from the point of view of possible
interpretations of the presented formalism. Let EX denote the projection–valued (spectral) measure

61The difference from the infinite dimensional Lie group U of all unitaries in L(H) consists in discontinuity of
the relevant unitary representations U(G) of noncompact finite–dimensional Lie groups G: The one–parameter
subgroups t 7→ U(exp(tξ)) ∈ U, ξ ∈ Lie(G), of U(G) ⊂ U representing Lie subgroups of G are not all Lie subgroups

of U: Some of them are discontinuous in norm–topology of L(H), what is the topology with respect to which U is
endowed with a Lie group structure.
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of a selfadjoint operator X. Let µX̺ be the probability measure on the spectrum of X: sp(X)

⊂ R, µX̺ (B) := Tr(̺EX(B)), corresponding to any ̺ ∈ S∗. The characteristic function of µX̺ is
t 7→ Tr(̺ exp(itX)). The domain D(hX) consists of all such points ̺ ∈ S∗, for which the following
limit exists and is continuous in the real parameter t, [96]:

exp(ithX(̺)) := lim
n→∞

(

Tr(̺ exp

(

i
t

n
X

)

)

)n

. (2.2.2a)

The probability measure corresponding to the characteristic function t 7→ exp(ithX(̺)) is the Dirac
measure δλ on R concentrated at λ = hX(̺). [It can be shown, that this λ can be interpreted as “a
sharp value of a macroscopic observable XΠ” in a quantum theory of infinitely large systems, cf.
[31, 24], cf. also Section 3.4.] ♥
2.2.2. Let us mention still another (probabilistic) characterization of the domain D(hX), [96,
Chap.XVII,§2.a, and Chap.XV,§4]: Let χn be the characteristic function (indicator) of the interval
(−n;n) ⊂ R, let idR denote the identity function λ 7→ λ on R, and let I denote the function
identically equal to 1 on R. Let µ(f) denote the value of the integral of the function f with respect
to a measure µ. Then D(hX) consists of those ̺ ∈ S∗(L(H)) for which the sequence of integrals
µX̺ (χn idR) (cf.2.2.1) has a finite limit for n→∞, and for which simultaneously

lim
n→∞

µX̺ (n(I− χn)) = 0. (2.2.2b)

We have in that case
lim
n→∞

µX̺ (χnidR) = hX(̺). (2.2.2c)

This shows that the existence of the first momentum µX̺ (idR) of the probability measure µX̺ :

idR ∈ L1(R, µX̺ ) (i.e. the existence of the expectation of X in the state ̺, i.e. the integrability of
the absolute value |idR|) implies ̺ ∈ D(hX). ♥
2.2.3. Similar considerations show, that ̺ ∈ Dr(X) (where Dr(X) is specified in Definition 2.2.4
below) is equivalent to the existence of the second momentum: µX̺ ((idR)2) < ∞ for ̺ ∈ Fs ∩ S∗.
Since the existence of second momentum of a probability measure on R implies the existence of the
first one, we have Dr(X) ⊂ D(hX). ♥

Defined according to (2.2.1), hX uniquely determines X , which in turn uniquely determines the
one parameter unitary group UX(t). We intend to determine the flow ϕ̃Xt ̺ := Ad∗(exp(−itX))̺
from the (densely defined) generator hX , or rather from its “differential” dhX , as a Poisson flow cor-
responding unambiguously to “the Hamiltonian hX”, and we shall generalize such a determination
of flows to nonlinear unbounded generators.

2.2-b Unbounded “linear” generators

Let us now start an investigation of possible generating of Hamiltonian flows by real–valued func-
tions defined on a dense set of S∗, and locally unbounded. It is clear that this will be only possible
for a restricted class of functions, especially if chosen from the “nonlinear” ones. We shall consider
now the most simple and basic case of a “linear” function, namely the function hX corresponding
to an unbounded selfadjoint operator X defined in the subsection 2.2-a. We shall need to choose
some subsets of the domain D(hX) where hX will be in a convenient sense “differentiable”, so that
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we shall be able to define on sufficiently large subset of S∗ the corresponding vector field, and
subsequently its flow, so that this flow will be coincident with the canonical unitary flow generated
by X .

Let us restrict our attention to subsets of “finite dimensional” density matrices ̺ ∈ F only,
what is motivated by technical consequences of Proposition 2.1.5.

2.2.4 Definitions (Domains).

(i) The domain of the selfadjoint operator X on the Hilbert space H will be denoted D(X) ⊂ H;
the subdomain of its analytic vectors is denoted by Da(X) := Dω(X) ⊂ D(X). The space of
infinitely differentiable vectors

D∞(X) :=

{

x ∈ H :
dn

dtn

∣
∣
∣
∣
t=0

exp(itX)x ∈ H, ∀n ∈ N

}

(2.2.3a)

will also be denoted by Dd(X) ⊂ D(X). Clearly Da(X) ⊂ Dd(X) ⊂ D(X).

(ii) The domain of the generator δX of the group t (∈ R) 7→ Ad∗(exp(−itX))̺, ∀̺ ∈ Ts, of
the B-space automorphisms of Ts will be denoted by D(δX):

̺ ∈ D(δX)⇔ d

dt

∣
∣
∣
∣
t=0

(
exp(−itX)̺ exp(itX)

)
∈ Ts, ∀̺ ∈ Ts. (2.2.3b)

(iii) The restricted domain of the generator δX is

Dr(δX) := D(δX) ∩ Fs ∩ S∗. (2.2.3c)

(iv) Dr(X) will denote the set of all finite real–linear combinations of one–dimensional projections
Px , x ∈ D(X), i.e the set of all selfadjoint finite rank operators with range in D(X). Dr(X) will
be called the restricted domain of X.

(v) The subset of Dr(X) consisting of operators with their range in the set of analytic vectors of
X will be denoted by Dra(X), and called the restricted analytic domain of X. The operators
in Dr(X) with range in Dd(X) will be denoted by Drd(X).

(vi) Let
Dra(δX) := Dr(δX) ∩ Dra(X).

This is the restricted analytic domain of δX . ♦
The following lemma expresses some important properties of the domain Dr(δX).

2.2.5 Lemma. For any selfadjoint operator X on H one has:

(i) The domain D(δX) of the generator δX contains exactly those ̺ ∈ Ts for which the following
two conditions are fulfilled:

a. The operator ̺ ∈ L(H) leaves the domain D(X) ⊂ H of X invariant.
b. The operator i [̺,X ] (a priori defined, in the case of validity of (a), on the domain
D(X)) is uniquely extendable to an operator lying in Ts ⊂ L(H).

(ii) The inclusion Dr(δX) ⊂ D(hX) is valid.

(iii) For all ̺ ∈ Dr(δX) it is ̺X ∈ Dr(X) ⊂ F & X̺ ∈ F (the products are considered here as
unique continuous extensions of the operators initially defined on D(X)).
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(iv) For ̺ ∈ Dra(δX) we have also X̺ ∈ Dra(X). ♣
Proof. (i) is proved in [71, Lemma 5.1 of Chap.5]. It implies, that ̺ ∈ Dr(δX)⇒ ̺X ∈ F &X̺ ∈ F,
where the products with X are considered as the corresponding (unique) bounded extensions in
L(H). From these facts we see, that, for the considered ̺, the expectation µX̺ (idR) = hX(̺)
exists, cf.(2.2.2), what in turn implies ̺ ∈ D(hX), i.e. (ii). With ̺ as in (iii), X and ̺ are defined
on the domain D(X), and the range of ̺ is in D(X); hence, both products are densely defined
finite–range operators, the first one in Dr(X). The last statement (iv) is valid due the fact that
the set of analytic vectors of X is invariant also with respect to the action of the operator X .

It will be useful to introduce the following

2.2.6 Notation. Let us denote Dr∗(δX), resp. Dr∗(X), resp. D∗(X) the variable symbols with
possibilities ∗ ∈ {◦, d, a}, where D◦(X) := D(X), e.g.. An assertion containing the symbol ∗ (in
the described contexts) will be valid for all choices of the alternatives (with the same value chosen
in all places of the assertion simultaneously), if something else will not be specified for it; the
assertion might be expressed by a sequence of sentences. That assertion might be also numbered by
attached ∗ corresponding to any of the choices. ♦

Let us formulate several useful simple implications of these facts in the following

2.2.7 Lemma*.

(*i) The domain Dr∗(δX) consists of all finite convex combinations of one–dimensional projections
Px , x ∈ D∗(X) ⊂ H, i.e. Dr∗(δX) ⊂ Dr∗(X). All domains Dr∗(δX) (for ∗ = ◦, d, a) are dense in
S∗, resp. the domains Dr∗(X) are dense in Ts, in the topology induced by ‖ · ‖1 of Ts.

(*ii) For ̺ ∈ Dr∗(δX), one has

δX(̺) = i [̺,X ] = i [̺, q̺(X)] ∈ T̺O(U) ⊂ Ts(H); (2.2.4a)

β̺(δX(̺)) = q̺(X) ∈ N̺ ⊂ F ⊂ L(H). (2.2.4b)

(*iii) The sets of vectors {i [̺, b] : ̺ ∈ Dr∗(δX), b ∈ Dr∗(X)} are all dense in T̺O̺(U), ∀̺ ∈
Dr∗(δX) in its topology given by any of the equivalent norms mentioned in Theorem 2.1.19. ♣
Proof. (*i) From Lemma 2.2.5(i), and the definition in 2.2.4(iii), as well as from the corresponding
definitions of Dr∗(δX) := Dr(δX) ∩ Dr∗(X), with the help of spectral decompositions of ̺ ∈
Dr∗(δX), the first assertion of (*i) follows immediately. It is sufficient to prove the density for
∗ = a. Density of the set Dra(X) in Ts will be proved from its density in F in ‖ · ‖1–topology,
because F is dense in Ts in this topology. But it suffices to prove arbitrary close approximatebility
of one–dimensional projections by such projections from Dra(X), i.e. by {Px : x ∈ Da(X)}. Since
Da(X) is linear and dense in H, unit vectors in Da(X) are dense in unit sphere of H (by triangle
inequality). Then, for two unit vectors x , y ∈ H, we can use:

‖x − y‖2 = 2(1− Re(x , y)) > 1− |(x , y)|2 =
1

4
‖Px − Py‖21,

where the second equation is proved by calculation of eigenvalues of dxy := Px−Py ; dxy is selfadjoint
with trace zero, and range two–dimensional, hence its two eigenvalues are opposite reals ±λ; then,
by calculating Tr(d2

xy) = 2(1 − Tr(PxPy)) = 2λ2 one obtains the desired equation. This easily
leads to a proof of density of Dra(X) in Ts. The density of Dra(δX) in S∗ follows then by a use of
convexity of both sets.
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(*ii) This is a consequence of Lemma 2.2.5(i), as well as of our constructions in Section 2.1-b, see
esp. Definitions 2.1.3.

(*iii) For any ̺ ∈ Dr∗(δX), it is {i [̺, b] : b ∈ Dr∗(X)} ⊂ T̺O̺(U). Due to inequality

‖[̺, b]‖1 ≤ 2‖̺‖1‖b‖, ∀̺ ∈ Ts, b ∈ L(H)s,

we know, that the linear mapping b 7→ i [̺, b] is continuous and can be uniquely extended to the
whole L(H)s (∋ b), the range of the extended mapping being the whole T̺O̺(U). This leads
eventually to validity of the statement.

The following assertion is important for our subsequent constructions.

2.2.8 Proposition. Let ̺ ∈ Dr∗(δX), b ∈ Dr∗(X). Then Ad∗(exp(−itb))(̺)
(≡ exp(−itb)̺ exp(itb)) ∈ Dr∗(δX), i.e. Dr∗(δX) is invariant with respect to the unitary flows
generated by b ∈ Dr∗(X). ♣

Proof. There is a projection Pb ∈ Dr∗(X) such that b = bPb (Pb might be chosen to be the range
projection of b). Then exp(ib) = exp(ib)Pb + I − Pb, hence

Ad∗(exp(−itb))(̺) =

Pb exp(−itb)̺ exp(itb)Pb + ̺− ̺Pb − Pb̺+ Pb̺Pb −
Pb exp(−itb)̺+ ̺ exp(itb)Pb − Pb̺ exp(itb)Pb − Pb exp(−itb)̺Pb.

The expression consists of a sum of elements of Dr∗(X) with ranges contained in the Hilbert
subspace determined by the orthogonal projection (

∑

j≥1 Ej) ∨ Pb ∈ Dr∗(X), where we used
the spectral projections Ej of ̺. Hence Ad∗(exp(−itb))̺ ∈ Dr∗(X). Due to unitarity of the
transformation of ̺, we have also Ad∗(exp(−itb))̺ ∈ Dr∗(δX). This proves the assertion.

Let us now define d̺hX ∈ T ∗
̺Oν(U) for ̺ ∈ Dr(δX) ⊂ D(hX). For these ̺’s, we can write

hX(̺) = Tr(̺X). According to the Proposition 2.2.8, we can write for b ∈ Dr(X):

d̺hX(i[̺, b]) = d
dt

∣
∣
t=0

hX(exp(−itb)̺ exp(itb)) =

Tr(i [̺, b]X) = i T r(b[X, ̺]) = i T r([̺, b]q̺(X)), (2.2.5)

so that d̺hX is represented by the operator q̺(X). In the calculations in (2.2.5), there was used
(iii) and (iv) of Lemma 2.2.5, as well as Lemma 2.2.7. In this way, we arrived to the

2.2.9 Definition. Let ̺ ∈ Dr∗(δX). Then the generalized differential of hX , d̺hX , is the
element of T ∗

̺O̺(U) represented by q̺(X) ∈ N̺, according to the correspondence

i·[̺, b] (∈ T̺O̺(U)) 7→ i T r([̺, b]q̺(X)), b ∈ L(H)s,

as explained above, cf.(2.2.5). ♦

The definition can be abbreviated as

d̺hX(i [̺, b]) = ad∗
̺(b)(d̺hX) = ad∗

̺(b)(q̺(X)). (2.2.6)
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Such a “differential” d̺hX is defined till now in points ̺ ∈ Dr∗(δX) as a linear functional on
vectors i [̺, b] ∈ T̺O̺(U) for b ∈ Dr∗(X) only. But these vectors are dense in T̺O̺(U) (in any
of the equivalent norms mentioned in Theorem 2.1.19), because Dr(X) is dense in L(H)s, and F

is dense in Ts, cf. Lemma 2.2.7. Consequently, we can uniquely extend d̺hX to a bounded linear
functional, d̺hX= q̺(X) ∈ T ∗

̺O̺(U) ⊂ L(H).
We shall turn now to the question, whether and how the “differential” dhX defined just on a

subset ̺ ∈ Dr∗(δX) of S∗ can determine the “unitary flow” Ad∗(exp(−itX)) on the whole state
space S∗ in a “geometric way”. We define the “Hamiltonian vector field” vX(̺) corresponding
to the function hX via its “differential” d̺hX in the point ̺ ∈ Dr∗(δX) with a help of Poisson
brackets according to (2.1.15) and (2.1.16), i.e. in the representation of tangent vectors in T̺O̺(U)
used above, we have

vX(̺) = i [̺, q̺(X)] ≡ ad∗
̺(d̺hX), ∀̺ ∈ Dr∗(δX), (2.2.7)

in accordance with equation (2.1.18). It is clear, that vectors vX(̺) are tangent to curves
t 7→ Ad∗(exp(−itX))(̺) in each point ̺ ∈ Dr∗(δX) of their definition. These curves are all
lying in the domain Dr∗(δX), since the unitary flow Ad∗(exp(−itX)) leaves Dr∗(δX) invariant.
But the closure of Dr∗(δX) in ‖ · ‖1 –topology is the whole S∗. Moreover, the functions ̺ 7→
Ad∗(exp(−itX))(̺), ∀t ∈ R are continuous in ‖ · ‖1, hence could be uniquely extended by con-
tinuity from Dr(δX) on the whole S∗. In this way, we have seen that a complete flow on S∗ is
uniquely determined by the “Hamiltonian vector field” (2.2.7) defined on a dense subset Dr∗(δX)
of S∗ only. It remained, however, partially open the question here, how to determine the flow
“from the function hX alone”, i.e. without an explicit use of the operator X , with having given the
function hX and its “directional (Gateaux, (2.1.11)), or partial derivatives” on the corresponding
domains only. The known properties of the linear operator X∗ = X might serve to us as a hint to
look for relevant properties of hX only. A description of the resulting dynamics might be given as
follows:

2.2.10. The flow ̺ 7→ ϕ̃Xt ̺ on ̺ ∈ Dra(X) corresponding to the vector field (2.2.7) can be described
by unitary cocycles (what are just unitary groups in these cases), according to eq. (2.1.26) (with
interchanged ν ↔ ̺, f ↔ h). ♣

We want to generalize the described situation to “Hamiltonian functions” generating Pois-
son (or Hamiltonian) flows, also not being of the form hX for any selfadjoint X and, moreover,
are also only densely definable in S∗. The most simple generalization is, probably, the gener-
ator h(̺) := f(hX(̺)), where f is a sufficiently differentiable real valued function on R. We
shall go further: We shall generalize and investigate the preceding constructions to functions
h(̺) := f(hX1(̺), hX2(̺), . . . hXk(̺)), f ∈ C∞

R
(Rk), for “conveniently chosen” sets of (in general

noncommuting) selfadjoint operators Xj (j = 1, 2, . . . k) on H. Before that, however, a more
general framework will be sketched.

2.2-c On unbounded nonlinear generators

As we saw in the example of selfadjoint operators and the corresponding “linear” generators –
locally unbounded Hamiltonian functions hX , the definition of a (Poisson) flow from such a func-
tion hX might be possible, if we determine from it a densely (in S∗) defined vector field vf (·)
having integral curves (lying, of course, in its domain), in an agreement with (2.1.18). Hence, the
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domain {ν ∈ S∗ : vf (ν) exists} should consist of (at least) one dimensional differentiable (C1 –)
submanifolds of (sufficiently many of) O̺(U)’s (we shall again consider ̺ ∈ Fs ∩ S∗ only).

2.2.11 Remark (Speculating on “integral” submanifolds). To make possible a use of the Poisson
structure at construction of smooth vector fields on smooth manifolds, as well as their integral
curves from only densely defined functions on O̺(U), ̺ ∈ Fs, and also to have possibility to define
Poisson brackets for several such densely defined functions, we would need algorithms to construct
some “convenient” more than one–dimensional smooth submanifolds in domain of definition of our
densely defined objects, and this seems to be a nontrivial question in a general case. A solution will
be found in subsequent sections for a specific class of densely defined generators and vector–fields
determined by Lie group representations: A given continuous unitary representation of a Lie group
determines in the state space S∗ smooth submanifolds (orbits of GCS). Hamiltonian vector fields
on these submanifolds can be defined from given “nonlinear” real–valued functions with a help
of the existing “Kählerian” structure Ψ

(
cf. (2.1.27); let us note that this structure is Kählerian

only if restricted to P (H)
)
. Existence of such apriori defined domains of definition is typical

also for some standard approaches to not–everywhere defined vector fields and/or Hamiltonian
functions, cf. [59, 179]. Let us speculate a little now on alternative possibilities for construction
of some smooth submanifolds of O̺(U)’s, determined by some apriori given objects, e.g. by an
(only densely defined) vector field vf (ν).

62 The rough idea consists in looking for possibility of
construction of some submanifolds in S∗ of more than one dimension from such a “relatively poor”
object as a vector field. These submanifolds might become a “playground” for definition of other
vector fields and their integral curves.

Let us formulate here just some “toy examples” how to define, to a given (possibly not ev-
erywhere defined) vector field vf (̺), other vector fields such that they both together (perhaps)
span a symplectic submanifold of O̺(U). Our proposals might be useful as hints for a search of
alternatives to cases described in literature, if the assumptions required there are not fulfilled.
This new vector field will be constructed via the symplectic and metric structures on O̺(U) given
by (2.1.27), i.e. by Ω̺ and Γ̺ respectively. Note, that these structures are invariant with respect
to “unitary automorphisms” of O̺(U), i.e. for a given unitary operator u ∈ U := U(H) the corre-
sponding mapping Ad∗(u) : O̺(U)→ O̺(U) leaves invariant not only the symplectic form, but also
the metric; the push–forward (Ad∗(u))∗v of a vector field ̺ 7→ v(̺) ≡ i [̺, bv(̺)] ∈ T̺O̺(U) is
d
dt

∣
∣
t=0

u exp(−itbv(̺))̺ exp(itbv(̺))u∗ = i [u̺u∗, ubv(̺)u∗], hence the pull–back of the bilinear
form Ψ̺ by the same mapping is

(
(Ad∗(u))∗Ψ

)

ν
(v(ν),w(ν)) = Ψuνu∗(

(
Ad∗(u)

)

∗v(ν),
(
Ad∗(u)

)

∗w(ν))

= 2(uνu∗)
(
βuνu∗((Ad∗(u))∗v)βuνu∗((Ad∗(u))∗w)

)

= 2Tr
(
uνbvbwu∗) = 2Tr

(
νbvbw

)
= Ψν(v(ν),w(ν)).

We shall present here two possibilities of construction of linear independent vector fields from a
given one. We do not, however, even formulate precisely a question of their “integrability” to some
integral submanifolds containing these vector fields as sections of their tangent bundles, e.g. in a
sense of the Frobenius theorem, cf., e.g. [1, 61, 9]. The integrability questions would need more
specific assumptions on the (domain of the) vector field vf .

62The vectors vf (ν) needn’t belong to a (possibly Hamiltonian, in some sense) vector field determined by a
function f ; the letter “f” might be here just a label.
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(i): Let us fix a point ν ∈ O̺(U), and a vector vf (ν) ∈ TνO̺(U). We shall construct another
vector v̌f (ν) forming with it a “canonical pair” (with respect to the form Ω). Let, for any subset
N ⊂ TνO̺(U), its orthogonal complement (in sense of the real Hilbert space structure given by Γ)
be denoted by N⊥, and the skew–orthogonal complement by N∠ := {v ∈ TνO̺(U) : Ων(v,w) =
0 ∀w ∈ N}. It is clear that N∠ is a closed linear subspace of TνO̺(U), and that N∠∠∠ = N∠, resp.
also N∠∠ = N for a closed linear subspace N , similarly as it is valid for orthogonal complements.

For any nonzero v ∈ TνO̺(U) the space [v]∠ is of codimension one. Hence
[
[v]∠

]⊥
is one–

dimensional, the nonzero vectors of which have nonzero “skew-product” with v, and are orthogonal
to it. Let us choose for any ν ∈ D(vf ) ≡ the domain of vf :

v̌f (ν) ∈
[
[vf (ν)]

∠
]⊥
, Ων(vf (ν), v̌f (ν)) := 1, Γν(vf (ν), v̌f (ν)) = 0. (2.2.8a)

We can ascribe, in this way, to any vector field vf (ν) a “canonically conjugated” vector field v̌f (ν).

(ii): An alternative way to construct another vector field ν 7→ v̌f (ν) to a given ν 7→ vf (ν) might
be as follows:

v̌f (ν) ∝ [ν, [ν, βν(vf (ν))]], vf (ν) := i [ν, b(ν)]. (2.2.8b)

This proposal allows us to construct also more than two–dimensional subspaces of TνOν(U) (ν ∈
Dr∗(δX), b(ν) ∈ Dr∗(X)) containing a given field v

(1)
f (ν) := vf (ν) together with the vector field

v
(2)
f (ν) ∝ v̌f (ν). In terms of our operator representations of TνOν(U) we can construct a sequence

of (a finite number of linearly independent) vector fields by the formula:

v
(n)
f (ν) := i·[ν,v(n−1)

f (ν)] := in ·[ν, b(ν)](n), (2.2.8c)

where [ν, b](n+1) := [ν, [ν, b](n)], [ν, b](1) := [ν, b] := νb − bν. Let us mention some properties of
these vector–fields with respect to the bilinear form Ψν , cf. Theorem 2.1.19; they are derivable
from simple properties of the commutators and traces:

Ψν(v
(n)
f ,v

(m)
f ) = (−1)k ·Ψν(v

(n−k)
f ,v

(m+k)
f ) (2.2.8d)

= (−1)n−m ·Ψν(v
(n)
f ,v

(m)
f ). (2.2.8e)

Since the symplectic form −Ων is the imaginary part of Ψν , and the metric Γν is the real part,

we see that the fields v
(n)
f and v

(n+1)
f are pointwise mutually orthogonal, whereas v

(n)
f and v

(n+2)
f

are mutually skew–orthogonal (∀n ∈ N). Observe also, that all these fields have, in a given point
ν, nonzero values simultaneously: this is due to the fact, that for ν ∈ Dr∗(δX) the mapping βν is
an isomorphism (resp. it can be considered as an automorphism, after a natural identification, cf.
Notes 2.1.4, and Proposition 2.1.5) of Nν and TνOν(U):

βν(i [ν, qν(b)]) = qν(b) = qν(qν(b)). (2.2.8f)

This allows us to extend the sequence of vector fields v
(n)
f , (n = 1, 2, . . . ) to all integers n ∈ Z.

We shall assume here that b(ν) ∈ Nν (∀ν ∈ D(vf )). We define:

v
(0)
f (ν) := βν(v

(1)
f (ν)) ≡ b(ν), v

(−n)
f (ν) := βnν

(
b(ν)

)
, ∀n ∈ Z. (2.2.8g)
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Since the ranges of ν and b(ν) are finite–dimensional, only a finite number of elements of {v(n)
f :

n ∈ Z} are linearly independent. It is also easily seen that the bilinear form Ψ̺ is nonzero on any
pair of these vectors, what follows from (2.2.8d) and from:

Ψ̺(v
(n+1)
f ,v

(n+2)
f ) = Tr

(
̺ [β̺(v

(n+1)
f ), β̺(v

(n+2)
f )]

)
= Tr

(
̺ [v

(n)
f (̺),v

(n+1)
f (̺)]

)

= i·Tr
(
̺ [v

(n)
f (̺), [̺ ,v

(n)
f (̺)]]

)

= i·Tr
(
[̺ ,v

(n)
f (̺)]2

)
6= 0, (2.2.8h)

since all the v
(n)
f (̺)’s are represented by selfadjoint trace class operators on H. ♥

We shall proceed, also in nonlinear generalizations, in the framework of Hilbert space H, since
this allows us to use some usual techniques with linear mappings and scalar product, as well as
intuition and/or interpretation from the standard QM. We believe, however, that the developed
ideas can be used also in a “purely geometrical” transcription (and possible modifications), [67, 11],
of the theory developed in this paper.

2.2.12 Notation (Domains). Let us assume, that a norm–dense linear subset D of H is given.

This means also, that any finite linear combination
∑k

α=1 cαxα of vectors xα ∈ D also belongs to
D, hence finite–dimensional subspaces generated by such vectors are subspaces of D. Let us denote
by Dr the set of all finite real–linear combinations of finite dimensional projections to subspaces
of D, Dr ⊂ Fs. In the general scheme constructed here in an analogy with preceding subsection,
the set Dr is here the object corresponding to Dr∗(X) in Subsection 2.2-b. Let D1

r+ := Dr ∩S∗ be

the object corresponding to Dr∗(δX) in Subsection 2.2-b. D1
r+ is dense in S∗, in the ‖ · ‖1–norm

topology. ♦
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2.2.13 Definitions (Generalized fields and integrability).

(i) Let h : D1
r+ → R be such that there exist

d̺h(i[̺, b]) :=
d

dt

∣
∣
∣
∣
t=0

h(exp(−itb)̺ exp(itb)), ∀̺ ∈ D1
r+, b ∈ Dr, (2.2.9a)

and that it is bounded linear in the variable i [̺, b], b ∈ Dr; let its unique bounded linear extension
is expressed by the operator q̺(Drh) := d̺h ∈ N̺ ⊂ Dr ⊂ L(H)s:

d̺h(i[̺, b]) = i T r (q̺(Drh)·[̺, b]) , ∀b ∈ L(H)s. (2.2.9b)

This densely defined function d·h: ̺ 7→ q̺(Drh) ∈ N̺, ̺ ∈ D1
r+, will be called the Dr–

generalized differential of h.

(ii) The corresponding (densely defined in S∗) (generalized) Dr–Hamiltonian vector field is:

vh(̺) := ad∗
̺(q̺(Drh)) ∈ T̺O̺(U), ̺ ∈ D1

r+. (2.2.9c)

Let us stress that values of this vector field also belong to Dr ⊂ Ts.

(iii) Let us assume that Dr contains the set V of mutually disjoint submanifolds Vι, V := {Vι : ι ∈
Υ := an index set}, such that their union ∪V := ∪ι∈ΥVι is dense in Dr. Further assume that for
a given h : Dr → R with Dr–generalized differential its Dr–Hamiltonian vector field is tangent to
Vι in any point ν ∈ Vι, ∀ι ∈ Υ, so that the restrictions of vh(ν) to Vι ∋ ν are smooth vector fields
on the all Vι’s. Then we call the Dr–generalized differential of h to be V–integrable.

(iv) Consider the situation from (iii) above, and let the differential qν(Drh) be V–integrable. Let us
assume that the local flows ϕ̃ht of these vector fields on V depend continuously on initial conditions,
i.e. the functions

(ν; t) 7→ ϕ̃ht (ν), ∀(ν; t) ∈ DΥ ⊂ ∪V × R (DΥ ⊃ ∪V × {0}), (2.2.9d)

are all continuous on the union ∪V in the topology induced from ‖ · ‖1. Here DΥ is the domain of
the definition of the local flows, and it is DΥ = ∪V × R if the flows are complete (i.e. defined for
all t ∈ R). In this case the flows on leaves of V can be uniquely extended to a flow on S∗. Then
we call the Dr–generalized differential to be S∗–integrable.63 ♦

We shall look now, for a moment, back to the “linear cases” to show that they are contained
in our present generalized scheme:

2.2.14 Proposition (Differentials for “linear” generators). Let X be a selfadjoint oper-
ator on H, let D1

r+:= Dr∗(δX), Dr:=Dr∗(X). Then the Dr–generalized differential dhX of
hX , hX(̺) := Tr(̺X), exists. The differential dhX is V–integrable for V :=

{
Vν : Vν :=

{exp(−itX)ν exp(itX) : t ∈ R}, ν ∈ Dra(δX)
}
. ♣

Proof. The proof is contained in the text following the Definition 2.2.9.

63Some variations on these definitions allowing more refined classification of flows, what are extendable to sub-
manifolds of S∗ only, are sketched in [24].
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2.2.15 Notes. We could choose in the Proposition 2.2.14 more than one–dimensional Vν as sub-
manifolds with smooth Hamiltonian vector field (2.2.7) constructed with a help of Proposition 2.2.8.
Our simplest choice was, however, enough to demonstrate a consistency feature of the theory. ♥

The “Schrödinger equation” for the unitary cocycles describing the Hamiltonian flow of the
Dr–Hamiltonian vector field vh can be written as in (2.1.23), resp. (2.1.26):

i
d

dt
uh(t, ̺(0)) =

[
q̺(t)(Drh) + h0(̺(t))

]
uh(t, ̺(0)), uh(0, ̺(0)) := IH, (2.2.10)

where ̺(t) ≡ uh(t, ̺(0))̺(0)u−1
h (t, ̺(0)), ∀̺(0) ∈ Dr. The equation (2.2.10) is an expression

of general form of dynamical (nonlinear Schrödinger) equations. We intend to discuss various
specifications of this equation in subsequent parts of this work. If the function h0 on Dr is
chosen “sufficiently nice” (e.g. sufficiently continuous, with values in M̺∩Dr), the objects in this
equation are well defined on the dense domain Dr. In specific cases, the equation (2.2.10) can be
considered as a nonautonomous (i.e. time dependent) linear Schrödinger–Dyson equation provided
the dependence t 7→ q̺(t)(Drh) is known; this “time–dependence of Hamiltonian” can be sometimes
obtained in an independent way, without solving this nonlinear equation. Such a possibility of
“elimination of nonlinearity” will arise in specific applications investigated in Section 3.5.

2.2-d Nonlinear generators from group representations

We have sketched in Subsection 2.2-c a formulation of the problem of construction of some “conve-
nient” submanifolds in O̺(U), with ̺ ∈ Dr∗(δX), on which some (on O̺(U) only) densely defined
vector fields could be determined as smooth vector fields in the corresponding tangent subbundles.
This was the case, e.g., of densely defined “nonlinear” Hamiltonian vector fields from Defini-
tions 2.2.13, but also the case of the “linear” Hamiltonian function hX , if we wanted to proceed in
the determination of the corresponding Hamiltonian flow in a geometric way (i.e. without a return
to the functional analysis connected with the selfadjoint operatorX on H). The proposals outlined
in Remark 2.2.11 were left in a very preliminary form. Analogical theory of that one for generators
in “linear case” would be, e.g. some hypothetical nonlinear generalization of the von Neumann
theory of symmetric and selfadjoint operators (“deficiency–indices” theory, cf. [219], and also
Appendix C.2);64 we are not aware of existence of such a theory.65 We have worked above with a
“large” domain Dr∗(δX), containing one–dimensional solutions of the equation (2.2.10). Rigorous
and systematic methods for solving that equation were, however, missing.66 Now we shall use Lie
group representations to allow us rigorous work with nonlinear unbounded generators of specific
kind; its specification to solution of (2.2.10) is described in Section 3.5.

Let G be a real Lie group [39], and let U(G) be its strongly continuous unitary or pro-
jective representation in H, hence U : g(∈ G) 7→ U(g)(∈ U), g 7→ Tr(̺U(g)) being continuous
on G for all ̺ ∈ S∗. Assume that U(G) has a U(G)–invariant dense set Dω(G) ⊂ H of ana-
lytic vectors, i.e. x ∈ Dω(G) ⇔ the function g 7→ U(g)x is real analytic in a neighbourhood of

64It is known that, e.g. completeness of locally Hamiltonian vector fields is (up to subsets of measure zero)
equivalent to essential selfadjointness of their generators in the “Koopman version” of CM; this follows from a
Povzner theorem, cf. [212], [1, Theorem 2.6.15 and Proposition 2.6.14].

65An exception might be a theory of unbounded derivations on C∗-algebras, cf. [229]; this could be used in our
case after an “embedding” of our nonlinear system into a larger linear one, cf. also [27, 31].

66Cf., however, [59, §4.1], where the concept of “manifold domain” was introduced; this can be applied, in the
case of single selfadjoint generator X, to its domain D(X) ⊂ H endowed with the graph–norm, cf. also (C.2.2).
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the identity e ∈ G. This is the case [13] of each strongly continuous U(G) of any finite dimen-
sional Lie group G, as well as of an analytic representation U of an arbitrary Lie group, e.g. the
defining representation of the unitary group U := U(H) inH. Let Dω(G) be the (norm–dense)
Ad∗(U(G))–invariant set of analytic elements ν ∈ S∗, i.e. the functions g 7→ Ad∗(U(g))ν from G
to Ts are real analytic around e ∈ G. Let us write also g · ν := Ad∗(U(g))ν. Let Lie(G) ≡ g

denote the Lie algebra of G, and let exp : Lie(G) → G be the exponential mapping. Then we
have U(exp(tξ)) =: exp(−itXξ), ξ ∈ Lie(G), for a selfadjoint (in general unbounded) operators Xξ

on H. The mapping ξ 7→ X(ξ) := Xξ is a Lie algebra morphism: It is linear, and on a dense
(U(G)–, and also X(Lie(G))–)invariant domain (common for all Xξ, ξ ∈ Lie(G)), e.g. on Dω(G),
satisfies the relation, [13]:

[Xξ, Xη] := XξXη −XηXξ = iX[ξ,η]. (2.2.11)

Here [ξ, η] ∈ Lie(G) denotes the Lie bracket. Let O̺(G) ⊂ O̺(U)∩Dω(G) be the Ad∗(U(g))–orbit
of the G–action on Ts through ̺, O̺(G) := {U(g)̺U(g)∗ : g ∈ G}. Let

hX(ξ)(ν) := ν(Xξ) := i
d

dt

∣
∣
∣
∣
t=0

ν(exp(−itXξ)), (2.2.12)

for ν ∈ D(hX(ξ)), cf.(2.2.1), and (2.2.2) withX := X(ξ). Let us denote Gν := {g ∈ G : U(g) ∈ Uν}
the stability subgroup of G at ν ∈ S∗ with respect to the action Ad∗(U(·)) : (g; ν) 7→ g · ν. The
following lemma shows that the set of nice (i.e. “analytic finite dimensional”) orbits of the action
of G on S∗ satisfy not only conditions on Dr stated in Definition 2.2.13, but these orbits also can
be used in the rôle of the submanifolds mentioned in the Remark 2.2.11. Let us first introduce
notation

Dωr (G) := ∩{Dra(Xξ); ξ ∈ Lie(G)}, dimG <∞, (2.2.13)

i.e. the Ad∗(U(G))–invariant set Dω
r (G) ⊂ Dω(G) consists of finite dimensional density matrices

with ranges in Dω(G).

2.2.16 Lemma. Let G be a finite–dimensional Lie group, and let ν ∈ Dω(G). Then Oν(G) is an
embedded submanifold [61] of Ts lying in S∗. If ̺ ∈ Dωr (G), then ̺ ∈ Dra(Xξ), and d̺hX(ξ) ∈ N̺,
for all ξ ∈ g. The vectors vX(ξ)(̺) := ad∗

̺(d̺hX(ξ))(ξ ∈ g ≡ Lie(G)) form the linear space
T̺O̺(G). The union of the submanifolds Oν(G) (ν ∈ Dωr (G)) composes a norm–dense subset of
S∗. The vectors vX(ξ)(̺), ̺ ∈ Dωr (G), compose generalized vector fields vX(ξ)(·) (ξ ∈ Lie(G)) on

S∗ generating the flows (t; ̺) 7→ ϕ̃ξt (̺) := Ad∗(U(exp(tξ)))̺. ♣

Proof. Due to the continuity of U(G), and because T is a Hausdorff space, Gν is a closed (hence
Lie) subgroup of G. This implies that Ad∗(U(·))ν can be considered as a bijective mapping of the
analytic manifoldG/Gν onto the orbitOν(G). This mapping is analytic, and its differential (i.e. the
tangent map) maps the tangent space Te(G/Gν) onto a finite–dimensional subspace of TνTs, which
is complementable. This fact together with the Ad∗(U(·))–invariance of Dω(G) implies, [40], that
Oν(G) is an embedded submanifold of Ts. The second, and the third assertions are implied by the
considerations developed in the Subsection 2.2-b, since the vector–fields vX(ξ)(ν):= ad∗

̺(d̺hX(ξ))

generate the flows ϕ̃ξ which were used to formation of the orbit O̺(G). The existence of a dense
subset of S∗ of analytic elements lying in Dωr (G) with respect to the norm–topology of Tsin S∗
implies the fourth assertion. Differentiation of these flows demonstrates also validity of the last
statement.
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Let us extend now our definition of Poisson brackets (2.1.12) to densely defined functions
hX(ξ) (ξ ∈ Lie(G)) defined on a dense subset of S∗ consisting of orbits Oν(G). According to the
construction of orbits Oν(G) from the “flows of vX(ξ)(·) generated by hX(ξ)”, it is clear that the
vector fields vX(ξ)(·) are tangent to those orbits everywhere where they are defined. Let ν ∈ Dωr (G).
Since qν(Xξ) = dνhX(ξ) ∈ Nν (ξ ∈ Lie(G)), and also νXξ ∈ F, we can define the commutator
i [dνhX(ξ), dνhX(η)] ∈ L(H)s, and the Poisson bracket according to the relation (2.1.15), cf. also
Definitions 2.1.3:

{hXξ , hXη}(ν) := i ν([dνhXξ , dνhXη ]) = ad∗
ν(qν(Xξ))(qν(Xη)). (2.2.14a)

On the other hand, according to (2.2.11), one also has

hX[ξ,η]
(ν) = Tr(νX[ξ,η]) = −i T r(ν[Xξ, Xη]) = −i ν([qν(Xξ), qν(Xη)]), (2.2.14b)

what gives the result:
{hXξ , hXη}(ν) = −hX[ξ,η]

(ν). (2.2.14c)

We shall consider this relation as the definition of the Poisson bracket in the Lie algebra of
functions hX(ξ) (ξ ∈ Lie(G)) defined on their common domain

D(F) := {ν ∈ S∗ : the Fréchet differential of g 7→ ν(U(g)) exists}, (2.2.15a)

what implies67 that68

D(F) ⊂ ∩{D(hX(ξ)) : ξ ∈ Lie(G)}. (2.2.15b)

The intersection ∩{D(hX(ξ)) : ξ ∈ Lie(G)} is the domain consisting of those ν ∈ S∗ for which the
function g 7→ ν(U(g)) is Gateaux differentiable. If dimG < ∞, then the (continuous) Gateaux
differentiability implies Fréchet differentiability, cf. [235, Lemma 1.15], hence

D(F) = ∩{D(hX(ξ)) : ξ ∈ Lie(G)}, for dimG <∞. (2.2.15c)

The derivation property of Poisson brackets (Proposition 2.1.10) allows us to extend definition
of this Poisson bracket to polynomials in variables hXξ (ξ ∈ Lie(G)) on the domain D(F). The
derivation property for the Poisson bracket of our not everywhere defined functions follows from the
derivation property of commutators (also of unbounded operators on common invariant domains)
via the equations (2.2.14) valid on D(F). If we want to use polynomials in the variables hXξ as
generators of evolution of our generalized quantummechanical system determined by the described
Poisson structure on S∗, we have to define also Poisson brackets of these polynomials with differen-
tiable (locally bounded) functions f ∈ F . These are naturally determined for ̺ ∈ Dωr (G) ⊂ D(F)
by the formula:

{hXξ , f}(̺) := i ̺([q̺(Xξ), d̺f ]). (2.2.16)

This relation determines the vector fields vXξ(·) on O̺(G) in accordance with
Lemma 2.2.16.

Now we shall define the mapping F, what appears to be one of the most useful objects for our
subsequent considerations:

67Here the Fréchet differential can be understood as the differential of a mapping defined on the Banach manifold
G, cf. [40, 235, 61].

68For explanation of the notation D(F) see Definition 2.2.17 below.
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2.2.17 Definitions (Domains and momentum mapping F). Let Lie(G)∗ ≡ g∗ denote the dual
space to the Lie algebra of G (recall that Lie(G) is a normable topological algebra also for infinite–
dimensional G). Define also the restricted domain Dr(F) := Dωr (G) ⊂ D(F), cf. (2.2.13),
and (2.2.15), of the mapping F (the Momentum mapping), cf. [7, 1], which is defined on the
domain D(F) as follows:

F : D(F)→ Lie(G)∗, ̺ 7→ F(̺) := F̺, (2.2.17a)

with Fξ(̺) ≡ F̺(ξ) := hX(ξ)(̺).

Let us denote also by fξ : Lie(G)∗ → R the functions fξ(F ) := F (ξ) := (the value of F ∈
Lie(G)∗on the vector ξ ∈ Lie(G)). The domain of F, i.e. the set D(F) := ∩{D(hX(ξ)) : ξ ∈
Lie(G)} ⊂ S∗(L(H)s) is Ad∗(U(G)) –invariant.69

One can prove immediately validity of the following equivariance property:

Fg·̺ := F(Ad∗(U(g))̺) = Ad∗(g) ◦ F(̺), for all ̺ ∈ D(F), and all g ∈ G, (2.2.17b)

since U(g)XξU(g)∗ = XAd(g)ξ for all ξ ∈ Lie(G); here Ad∗(G) is the coadjoint representation
of G in Lie(G)∗, i.e. the dual representation to the adjoint representation Ad(G), cf. Defini-
tion A.4.10,

Ad(g)ξ :=
d

dt

∣
∣
∣
∣
t=0

g · exp(tξ) · g−1. (2.2.17c)

Let F(̺) be called the (value of the) U(G)-field F corresponding to the microscopic state ̺. ♦

2.2.18 Remark. The continuity of of the mapping F(̺) : ξ 7→ F(̺)(ξ) for ̺ ∈ D(F) is trivial
for finite dimensional G, since each finite dimensional linear function is continuous (in the unique
l.c.–topology); in the case of a general Lie group representation (we restrict our attention to
the representations with a dense analytic domain Dωr (G) ⊂ D(F)) the continuity for ̺ ∈ D(F)
is implied by the definition of points ̺ ∈ D(F): Fréchet differentiability means linearity and
continuity of the obtained mapping

ξ 7→ hXξ(̺) ≡ Tr(̺Xξ) = i dg=e[̺(U(g))](ξ).

We shall usually consider in the following, however, finite–dimensional Lie groups G. ♥
2.2.19 Remark. Let us note that the states ̺ ∈ D(F) are exactly those normal states of a con-
stituent microsystem of a macroscopic one (in the description of infinite quantal systems composed
of equal “microscopic constituents”, cf. Section 3.4) in infinite (symmetric) tensor products ω̺ of
which the “macroscopic observables” XξΠ (ξ ∈ Lie(G)) are defined:

ω̺ :=
⊗

p∈Π

̺p ∈ S∗(A∗∗) (̺p ≡ ̺), (2.2.18a)

ω̺(XξΠ) = F(̺)(ξ) ≡ F̺(ξ) := hXξ(̺), (2.2.18b)

XξΠ := “w”− lim
|Λ|→∞

1

|Λ|
∑

p∈Λ

Xp, (2.2.18c)

69For a general definition, and also for various applications of momentum mappings cf., e.g. [1, 180].
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where p ∈ Π distinguishes copies of the “microscopic constituents”, Λ is a finite subset of these
copies, and Xp are “equal observables” for distinguished copies p ∈ Π. The limit in the formula
above is taken in a specific weak (“w”) topology (we shall not specify it here, see, e.g. [31]).
In this connection, the introduced function F(̺) is called also the U(G)–macroscopic field
corresponding to the “microscopic state” ̺.
Observe also, that the value of the U–macroscopic field corresponding to ̺ ∈ S∗ (for the
defining representation U → U of the unitary group of H) is ̺ itself: The dual space to the
Lie(U) := iL(H)s can be identified with L(H)∗s containing the (normal) state space S∗ as an
Ad∗(U)–invariant subset. This is in a sense maximal “classical macroscopic phase space” S∗ :
F(ν) ≡ FU(ν) = ν (∀ν ∈ S∗). Such a “macroscopic field” separates points of the elementary
quantum phase space, i.e. the macroscopic field FU determines corresponding microscopic states.
This can be considered as a formalization of the conventional belief of QM that a
macroscopically determined “preparation procedure” determines the corresponding
microscopic state of a considered quantummechanical system uniquely. ♥

We could temporarily take the point of view that only “macroscopic properties” of the system
(in the sense of Remark 2.2.19) described by the values of F are interesting for us. Then it would
be interesting to know in what extent the values F(ν) separate the points ν of an orbit O̺(G).

2.2.20 Lemma. Let ̺ ∈ Dr(F), ξ, η ∈ Lie(G). Then

d

dt
Fexp(tη)·̺(ξ) = F̺([Ad(exp(−tη))ξ, η]), (2.2.19)

for all t ∈ R. In particular, if we have a fixed η ∈ Lie(G) such that the derivative in (2.2.19)
vanishes for all ξ ∈ Lie(G) at one value of t ∈ R, then it vanishes for all ξ at all values of t ∈ R.
♣

Proof. By a use of the identity
U(g)XξU(g−1) = XAd(g)ξ,

as well as of the relation

d

dt

∣
∣
∣
∣
t=0

Fexp(tη)·̺(ξ) = F̺([ξ, η]), ∀ξ, η ∈ g, (2.2.20)

cf.(2.2.11), and (2.2.17), we obtain

Fexp(tη)·̺([ξ, η]) = Tr
(

U(exp(tη))̺U(exp(−tη))X[ξ,η]

)

(2.2.21a)

= −i T r
(

̺U(exp(−tη))[Xξ, Xη]U(exp(tη))
)

(2.2.21b)

= −i T r
(

̺ [U(exp(−tη))XξU(exp(tη)), Xη]
)

(2.2.21c)

= −i T r
(

̺ [XAd(exp(−tη))ξ, Xη]
)

(2.2.21d)

= F̺([Ad(exp(−tη))ξ, η]). (2.2.21e)

After a subsequent application of (2.2.20) with ̺ 7→ exp(tη) · ̺, the preceding calculation gives the
result.
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This lemma gives an answer to the question on separation properties of F on O̺(G):
Let η ∈ Lie(G) be such that F̺([ξ, η]) = 0, ∀ξ ∈ Lie(G). Then F(exp(tη) · ̺) = F(̺) for all

t ∈ R, hence the points exp(tη) · ̺ ∈ O̺(G) for different values of t cannot be distinguished by the
values of the field F. The vectors η form the Lie algebra of the stability subgroup of G at the
point F(̺) with respect to the action of the Ad∗(G)–representation denoted by GF(̺). Clearly, it
is valid

2.2.21 Lemma. Let G̺ ⊂ G be the stability subgroup of the Ad∗(U(G))–action of G on S∗, at
the point ̺ ∈ S∗. Then G̺ ⊂ GF(̺), and the equality G̺ = GF(̺) is valid iff the restriction of the
mapping F to O̺(G) is a bijection onto an Ad∗(G)–orbit in Lie(G)∗. ♣

2.2.22 Remark. A definition of Poisson bracket on O̺(G), with ̺ ∈ Dωr (G), equivalent to that
in (2.2.14), can be given with a help of the (strongly) symplectic structure Ω̺ by definition of a
closed two–form ι∗̺Ω̺ – the pull back of the “overlying” form Ω by the embedding ι of the manifold
O̺(G) intoO̺(U), in the case if the obtained two–form on the submanifoldO̺(G) is nondegenerate.
If the restricted symplectic structure ι∗̺Ω̺ is degenerate, we can obtain a symplectic manifold by
factorization of O̺(G) according to the orbits of stability subgroups GF(ν) leaving the values
F(ν) ∈ g∗, ν ∈ O̺(G) invariant, [26, 27]. ♥

One can construct examples of representations U(G) with both even– and odd–dimensional
orbits O̺(G) (̺ ∈ Dr(F)) (for finite–dimensional G [27], cf. also our Subsection 3.3-c). Orbits of
the Ad∗(G)–representation are always “even–dimensional”: They are endowed with a canonical
Kirillov–Kostant symplectic structure corresponding to the standard Poisson structure (called also
Berezin brackets) on Lie(G)∗ ≡ g∗:70

{fξ, fη}(F ) = −F ([ξ, η]) := −f[ξ,η](F ). (2.2.22)

If vξ(F ) ∈ TF (g∗) (ξ ∈ Lie(G)) are the vectors tangent at F ∈ g∗ ≡ Lie(G)∗ to the flows
(t;F ) 7→ Ad∗(exp(tξ))F , then the Kirillov–Kostant symplectic form ΩK can be expressed as

ΩKF (vξ,vη) = −F ([ξ, η]). (2.2.23)

Comparison of the relation (2.2.22) with (2.2.14) shows, that the mapping F is a Poisson
morphism, [275]: The functions

F
∗fξ := fξ ◦ F = hX(ξ) =: Fξ ≡ fξ

on Dr(F) satisfy (2.2.14), what leads to a definition of Poisson brackets for all functions f on
O̺(G) (̺ ∈ D(F)) which are expressible in the form 71

f := F
∗f := f ◦ F, f ∈ C∞(g∗,R). (2.2.24)

2.2.23 Remark. In the case of infinite–dimensional groups, we cannot expect reflexivity of g: For
g := L(H)s= Lie(U) = T∗

s and infinite–dimensional Hilbert spaceH one has g∗ = L(H)∗s 6= Ts, and
g∗∗ is strictly larger than g. Then we have to be careful in reading (2.2.24): If the differentiation

70These considerations might also be valid for infinite–dimensional Lie groups, cf. [7, Appendix 13].
71We shall usually distinguish typographically, in the following text, real valued functions f, h defined on the dual

of the Lie algebra, g∗ ≡ Lie(G)∗, from the “corresponding” functions f := F∗f,h := F∗h defined on domains lying
in S∗. To stress the difference of domains, we shall write also f, e.g. for arbitrary functions f ∈ F(S∗).
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of f ∈ C∞ is taken in the canonical norm–topology of g∗, then the first differentials of f ’s belong
generally to L(H)

∗∗
, and needn’t be expressible as bounded operators on H. The space L(H)

∗∗
is,

however a von Neumann algebra in a canonical way, [228, 255, 77, 78, 42], hence also endowed with
a canonical Poisson–commutator structure, which is unique extension of that of L(H). Another
possibility would be to take derivatives on g∗ in the weak∗–topology (in some sense, cf. [156] for a
theory of differentiation on locally convex spaces), in which case we could stay in g (∋ df); in this
case we would work with a restricted set of functions f differentiable in a weaker than norm–sense.
We shall consider norm differentiability, if another possibility is not mentioned explicitly. Most of
formulas can be considered, however, also in another interpretation. ♥

The functions f : O̺(G) → R of the form (2.2.24) will play a rôle of (nonlinear, unbounded –
in general) generators of transformation groups (e.g. of time evolution) in our theory, cf. Proposi-
tion 2.3.20. Their mutual Poisson brackets are defined in accordance with (2.2.14) in the following
way:

{F∗f,F∗h}(ν) := F
∗{f, h}(ν) ∀ν ∈ D(F), ∀f, h ∈ C∞(Lie(G)∗,R), (2.2.25a)

where the bracket on the right side of the relation is the Berezin bracket. The equation (2.2.25a)
shows that the mapping F of D(F) onto its image in g∗ is a Poisson morphism (resp. map-
ping), cf. [275]. It follows, that trajectories of the Hamiltonian flow corresponding to Hamiltonian
function h := h◦F on D(F) are projected onto trajectories of the Hamiltonian flow corresponding
to the Hamiltonian function h on coadjoint orbits of G. We shall find later also a possibility of
determination of flows on D(F) from given Hamiltonian flows on g∗. For ν ∈ Dr(F), f ∈ F , and
h ∈ C∞(Lie(G)∗,R), we shall extend our definitions of the Poisson brackets as follows:

{F∗h, f}(ν) := dF(ν)h ◦ {F, f}(ν), (2.2.25b)

where dF(ν)h ∈ L(Lie(G)∗,R) (= Lie(G), in the case of weak differentiability, cf. e.g. Remark 2.2.23)
is the differential of h in the point F(ν) ∈ Lie(G)∗, {F, f}(ν) ∈ Lie(G)∗ is defined by its values
{Fξ, f}(ν) := {hX(ξ), f}(ν) ∈ R on the elements ξ ∈ Lie(G), and {hX(ξ), f} is defined in (2.2.16).

Let us note also, that

d̺(F
∗f) = q̺(X(dF(̺)f)), for ̺ ∈ Dr(F).

Let {ξj : j = 1, 2, . . .dim(G) <∞} be a basis of g = Lie(G) and let Fj := F (ξj) be coordinates
of F ∈ g∗ in the dual basis. Then the Poisson bracket (2.2.25b) can be expressed as

{F∗h, f}(ν) =
∑

j

∂jh(F(ν)){hX(ξj), f}(ν), (2.2.25c)

and the Poisson bracket (2.2.25a) can also be written in the form:

{F∗f,F∗h}(ν) =
∑

j,k

∂jf(F(ν))∂kh(F(ν)){Fj , Fk}(F(ν)). (2.2.25d)

Observe that (cf. Theorem 2.1.19) the restriction to the submanifold O̺(G) of the symplectic form
Ω defined in (2.1.27) on O̺(U) (i.e. the pull–back of Ω by the embedding of O̺(G) into O̺(U))
coincides with the pull–back of the Kirillov–Kostant form ΩK by the mapping F:

(
F
∗ΩK

)

ν
(v,w) = Ων(v,w), (2.2.25e)
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for ν ∈ O̺(G), v,w ∈ TνO̺(G), and ̺ ∈ Dr(F).
The formulas (2.2.25b), (2.2.25c) show that the function Q := F∗Q, Q ∈ C∞(g∗,R), generates

a generalized (densely defined) vector field vQ on S∗ with values (for dimG <∞):

vQ(ν) =
∑

j

∂jQ(F(ν)) vX(ξj)(ν). (2.2.26a)

For an arbitrary G, and such Q that dF(ν)Q ∈ g ⊂ g∗∗ one has:

vQ(ν) = ad∗
ν(qν(X(dF(ν)Q))). (2.2.26b)

This describes a class of Hamiltonian (resp. Poisson) generalized vector fields generating the flows

ϕ̃Qt leaving the corresponding U(G)–orbits in the state space S∗ invariant. One can see that the
generating Hamiltonian functions Q are constant on the orbits of the action Ad∗(U(GF(ν))), i.e.

Q(Ad∗(U(exp(tη))ν)) ≡ Q(ν), η ∈ Lie(GF(ν)).

This suggests an idea how to restrict the Poisson actions of other generators to the orbits O̺(G),
cf.2.2.26. We shall also introduce

2.2.24 Definition (Poisson structure on submanifolds of O̺(U)). Let N be a submanifold
of O̺(U), and Ων , ν ∈ O̺(U) be the symplectic form from (2.1.27). Let the restriction of Ω to N ,
i.e. the pull back with respect to embedding ιN : N → O̺(U), ΩN := ι∗NΩ be nondegenerate. Then
the symplectic structure ΩN on N will be also called the restriction of the Poisson structure
on S∗ to N . ♦

Let us formulate now a theorem containing some results and consequences of the preceding
considerations:

2.2.25 Theorem. Let Q ∈ C∞(g∗,R), Q := Q ◦ F, hence Q ∈ C∞(Oν(G),R), ∀ν ∈ Dr(F).
Assume that dF(̺)Q ∈ g for some ̺ ∈ Dr(F) (this assumption might be nontrivial for infinite–
dimensional G). Then vQ(ν) from (2.2.26b) is a Hamiltonian vector field on O̺(G) (hence, it
is tangent to O̺(G), everywhere on O̺(G)) corresponding to the Poisson structure on O̺(U)
determined by the pull–back of F, (2.2.25a), or, equivalently, to the “original” Poisson structure
on S∗ restricted to the (‖ · ‖1–dense) collection of orbits Oν(G) lying in Dr(F). Then the (local)
flow ϕ̃tQ leaves the orbits Oν(G) invariant. ♣

We shall now formulate concepts describing Hamiltonian dynamics and symmetries on “al-
lowed” submanifolds of O̺(U).

2.2.26 Definitions (Classical and restricted G–dynamics).

(i) Let Ran(F)⊂ g∗ denote the image of D(F) under F. We shall consider g∗ either with its
canonical (coming from that of g) norm–topology, or with its w∗–topology (again with respect to
the canonical norm–topology of g, [39]; this will be different from the norm–topology for infinite–
dimensional G). Let EF denote the closure of Ran(F) in that topology. The space EF will be also
called the G–classical (alternatively: G–macroscopic) phase space of the system. Let by
C∞(M,R), M ⊂ g∗, be denoted the set of all infinitely differentiable functions on an (arbitrary)
open neighbourhood of M in the corresponding topology (we shall not specify here the way of
differentiation on nonnormable lc–spaces, cf. however [156]).
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(ii) If the Dr–generalized differential of f is S∗–integrable we say that f generates the Poisson
flow ϕ̃f on S∗.
(iii) Let a densely defined real function f : Dr → R generate a Poisson flow on S∗, and let there
is a differentiable function f on (an open – in the corresponding topology – neighbourhood of) EF,
f ∈ C∞(EF,R) such, that f ≡ F∗f := f ◦ F on Dr. Then f is a G–classical generator. 72

(iv) Let f generate a Poisson flow on O̺(U) (the submanifold O̺(U) ⊂ S∗ can be substituted for S∗
in obvious modifications of preceding definitions). Let ν be such that Oν(G) ⊂ D(F)∩O̺(U)∩Dr,
and let the restriction fν of f to Oν(G) can be expressed in the form

fν(F(ν′)) ≡ fν(ν′) := f(ν′), for ν′ ∈ Oν(G), (2.2.27)

with some fν ∈ C∞(Ad∗(G)F(ν),R), hence fν = F∗fν . Then the function f will be called a νG–
classical generator. (Hence, the same function f can be a νG–classical generator for several
different orbits Oν(G).)

(v) Let f be a νG–classical generator. Its flow ϕ̃f needn’t leave the orbit Oν(G) (⊂ O̺(U)) invari-
ant.73 Let ϕ̃ν,f be the (Poisson) flow on the orbit Oν(G) corresponding to the vector field on Oν(G)
generated by fν according to (2.2.25b) and (2.2.26) (with h, resp. Q replaced by fν). The flow ϕ̃ν,f

will be called the νG–restriction of the flow ϕ̃f to the orbit Oν(G). ♦

Let us present now, without detailed explanation (hence without an analysis and proofs), some
examples of νG–classical generators.

2.2.27 Examples. Let a representation U(G) be given as above, and let F be the corresponding
momentum mapping. Let Y be a selfadjoint operator on H, and let hY be the corresponding
(densely defined, generalized) generator. Let Oν(G) ⊂ Dr(F) ∩ Dra(δY ), with Dra(δY ) denoting
the set of analytic elements of δY belonging to Fs. Then hY is a νG–classical generator, e.g., in
any of the following cases:

(i) Y := Xξ for some ξ ∈ g.

(ii) Y := iN [X(ξ1), [X(ξ2), [. . . [X(ξN ), A] . . . ]]], where ξj ∈ g, (j = 1, 2, . . .N), and A is such a
selfadjoint operator on H that hA is a νG–classical generator. The commutators can be considered
here in a generalized sense, [27], so that it ensures existence of hY in the points ̺ ∈ Oν(G) in the
sense of (2.2.2). This can lead to νG–classical generator hY even in some cases, when the above
expression does not determine a well defined linear operator Y .

(iii) All stability subgroups GF(ω) (ω ∈ Oν(G)) of points F(ω) ∈ F(Oν(G)) ≡ Ad∗(G)F(ν) are
symmetry groups of the operator Y :

U(g)Y U(g−1) = Y, ∀g ∈ ∪{GF(ω) : ω ∈ Oν(G)},

and, moreover, hνY ∈ C∞(Oν(G),R).

(iv) The orbit Oν(G) is such, that GF(ω) = Gω, ∀ω ∈ Oν(G). The subgroups Gω ⊂ G are stability
subgroups of the points ω of the orbit Oν(G) for the considered action: g 7→ Ad∗(U(g))ω = ω ⇔
g ∈ Gω. ♥

72More sophisticated and more distinctive (and also more complicated) work with domains was presented in [24];
the corresponding modifications of concepts connected with domains presented in this paper can be, however, seen
without being explicitly formulated here.

73This is a difference with respect to G–classical generators, cf. also Proposition 2.3.10.
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Restrictions of “true quantum–mechanical dynamics” to various submanifolds of “coherent
states” (i.e. to orbits Oν(G)) are often considered [150, 222, 223] as approximations (sometimes
called “quasiclassical”) to the “true dynamics”.74 This is not, however, a “good approximation”
for a general (linear) quantum dynamics, and what are conditions for well controlled validity (i.e.
a relevance) of such approximations is not yet, as far as the present author knows, generally
established.

2.2.28 Remark. The U(G)–restriction ϕ̃ν,f of the quantal flow ϕ̃f needn’t be “close” to ϕ̃f for a
general νG–classical generator f, not even for “classical” (or “macroscopic”) quantities described
by expectations of a distinguished subset of selfadjoint operators. One can compare, e.g., the
evolution of the expectations hX(ξ) of quantum “observables” Xξ under ϕ̃f , i.e. the function

(t; ξ) 7→ hX(ξ)(ϕ̃
f
tν) ≡ Fξ(ϕ̃

f
tν) ∈ g∗, (2.2.28)

with the restricted evolution Fξ(ϕ̃
ν,f
t (ν)), for the same initial conditions. ♥

Let us illustrate this remark by a simple example, cf. also [27, 4.1.10].

2.2.29 Illustration (Restricted and “global” flows might be “very” different).
Let us take H := L2(R, dq), and let

ψ ∈ H, ψ(q) := π− 1
4 exp

(

−1

2
q2
)

;

let us set ψz := Uzψ, with z := q − ip ∈ C, and Uz := exp(i(pQ − qP )). Here Q and P are the
Schrödinger operators of position and linear momentum in QM:

Qχ(q) ≡ qχ(q), Pχ(q) ≡ −i ∂
∂q
χ(q), χ ∈ H.

Let the (artificial) “generator of time evolution” be H := α · Pψ , α ∈ R, i.e. it is proportional
to a one–dimensional projection. We shall consider the restriction of the corresponding flow to
the orbit Oψ(GWH) of the 3–dimensional Weyl–Heisenberg group GWH (cf. also Subsection 3.3-b)
defined by the injective mapping of the “classical phase space” C ∋ z into the projective Hilbert
space: z (∈ C) 7→ P zψ := UzPψU

∗
z ∈ P (H). If we parameterize points of the orbit by z ∈ C, then

the restriction hψH of the corresponding Poisson generator hH to the orbit is:

hψH(z) ≡ Tr(P zψH) = α exp

(

−1

2
zz

)

, (2.2.29a)

with z 7→ z being the complex conjugation. The restricted flow is identical (by the identification
z ←→ P zψ) to the Hamiltonian flow

ϕ̃ψ,Ht z ≡ exp(−ithψH(z))z, (2.2.29b)

generated by the Hamiltonian function (2.2.29a) on the classical phase space R
2 with the symplectic

form Ω ≡ dp ∧ dq. The “true quantal flow” with the same initial condition z = q − ip is

ϕ̃Ht z := Tr(exp(−itH)Pψz exp(itH)(Q− iP ))

≡ (1− α−1hψH(z))z + α−1hψH(z) exp(−itα)z.
(2.2.29c)

74These “restrictions” were called in [27] “classical projections” of quantummechanical evolutions.
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By comparing these two evolutions of “the same classical quantities”, i.e. the two motions in C,
we see two uniform motions on mutually tangent circles with different radii and different fre-
quencies. This shows that, for general Hamiltonians, the “classical projections” needn’t be any
approximations to the “true quantum dynamics”. ♥

The next assertion shows in what sense the restricted generators also are of relevance for the
(unrestricted) quantum theory.

2.2.30 Proposition. Let f be a νG–classical generator and let fν be its restriction to Oν(G).
Then, by considering the definitions (2.2.25) of Poisson brackets on Oν(G), for all ν′ ∈ Oν(G),
and for any Q ∈ C∞(g∗,R), the following relations are valid:

{Q, f}(ν′) = {Q, fν}(ν′) = F
∗{Q, fν}(ν′), (2.2.30)

where Q := F∗Q, and fν =: F∗fν , and where the first bracket is defined according to (2.2.25b) (or,
equivalently, by the formula (2.1.15) with a help of generalized differentials of Q and f). ♣
Proof. The second equation in (2.2.30) is just the first equation of (2.2.25). The unrestricted
Poisson bracket on S∗ occurring on the left side of (2.2.30) is equal, according to (2.2.14b), to the
derivative of f along to the vector field (2.2.26) at each point ̺ ∈ Oν(G). This implies, that the
derivative dν′ f(vQ) = {Q, f}(ν′) in any point ν′ ∈ Oν(G) of an arbitrary function only depends on
its restriction fν to Oν(G). One has dν′ f(vQ) ≡ dν′ fν(vQ) on Oν(G), and the last derivative is
expressed by the Poisson bracket (2.2.25) on Oν(G). This proves the first equation.

2.2.31 Remark. The definitions (2.2.14) of the Poisson bracket on an Ad∗(U(G))–orbit Oν(G)
were formulated with a help of selfadjoint operators on (dense domains of) H, so that our con-
struction of the Poisson structure on Oν(G) is not an “intrinsic construction” on the orbit alone: It
uses the values of the differentials of the functions hX(ξ) and f as elements of infinite–dimensional
spaces T̺Oν(U) for points of a G–orbit, ̺ ∈ Oν(G) ⊂ O̺(U) (which is finite–dimensional in the
case dimG <∞). The differential d̺f cannot be calculated in general cases from the restriction of
f ∈ F to the orbit Oν(G) only. If Oν(G) is a symplectic manifold with the symplectic structure ob-
tained by pull–back of the Kirillov–Kostant form ΩK on F(Oν(G)) = Ad∗(G)F(ν), or equivalently,
if the restriction of the bilinear forms Ω̺, ̺ ∈ Oν(G) to Oν(G) (i.e. to T̺Oν(G)× T̺Oν(G), ∀̺ ∈
Oν(G)) is nondegenerate, then we have defined on Oν(G) the necessary isomorphism (at least
for dimG < ∞) between T̺Oν(G) and T ∗

̺Oν(G) (̺ ∈ Oν(G)). In this special case, we can cal-

culate restrictions ϕ̃ν,f of the flows ϕ̃f to the orbit Oν(G) with a help of the restrictions fν , cf.
Definition 2.2.26(iv), only. ♥

Let us look now on some properties of the “classical phase space” EF ⊂ Lie(G)∗. Let conv0(B)
be the convex hull of a subset B of some locally convex space, and let conv(B) be its closure. Let
E0

F
:= F(P (H) ∩ Dω(G)). Then we have:

2.2.32 Proposition. The range of F, Ran(F), is a convex, Ad∗(G)–invariant subset of Lie(G)∗

containing conv0(E0
F
) = F(Dr(F)). If dim(G) < ∞, then Ran(F) = EF, i.e. it is a closed subset of

Lie(G)∗. ♣
Proof. The mapping F : D(F) → Lie(G)∗ is affine, and D(F) is convex, since D(hX(ξ)) is convex
and hX(ξ) is affine. Hence Ran(F) is convex, and conv0(E0

F
) ⊂ Ran(F). One can see from the

definitions that conv0 = F(Dr(F)), and that Dr(F) is norm–dense in D(F) ⊂ S∗. The Ad∗(G)–
invariance follows from (2.2.17), and from the Ad∗(U(G))–invariance of D(F).
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Let dimG <∞. The closedness of Ran(F) can be proved by construction of a projection–valued
measure on g∗ representing the commutative group (linear space) g, resp. the commutative algebra
of “classical observables” C∞(g∗,R) (generated by the functions fξ(F ) := F (ξ), ξ ∈ g, F ∈ g∗),
[27, 31]. The support of this measure is identical with Ran(F), hence Ran(F) is closed.

2.3 Symmetries, Dynamics and Observables

It was shown in Sections 2.1, and 2.2, how real–valued functions f : ν 7→ f(ν), (ν ∈ S∗) can be
used in the rôle of generators of the one–parameter families ϕ̃f of transformations of elementary
states. Differentiable functions on phase spaces of CM are used in double rôle: as the generators,
as well as “observables”, i.e. as a certain objects ascribing (numerical) values of possible results
of specific measurements to states ν to which the measurements are applied. Selfadjoint operators
X represent both these objects in QM: they are generators of the unitary groups exp(−itX) on
H, and also observables with probability distributions µXν , cf. (1.5.9), and point 2.2.1, of their
(real) values measured in the state ν. We include into the presented scheme also such a double
rôle and the standard interpretation for the functions hX : Besides of being generators according to
assertion 2.2.10, they also could be considered as observable quantities with n–th momenta ν(Xn)
(if they exist) of the probability measures µXν calculated directly from hX , as it is indicated in
formula (3.3.5) of Subsection 3.3-a, cf. also [63]. Difficulties arise, however, in trials to interpret a
nonlinear function f defined on (a subset of) S∗ in a rôle of an observable in the traditional way,
as it will be shown in Interpretation 2.3.15, in Note 3.3.3, as well as in Interpretation 3.3.4.

Now we shall show that, on the other hand, the use of nonlinear generators of transformation
groups in QM implies also necessity of introduction of some nonlinear “observables” together with
the affine ones.

Let us assume that we have a flow ϕ̃f generated by a nonlinear generator f according to
Section 2.1, and let uf be the corresponding solution of (2.1.23). For any “observable” ha (a ∈
L(H)s), one has “a natural time–evolved form”:

hta(̺) := ha(ϕ̃
f
t̺) ≡ Tr(̺uf(t, ̺)

∗ a uf(t, ̺)),

and the functions hta are not generally of the form ha(t), i.e.

̺ 7→ Tr(̺uf(t, ̺)
∗ a uf(t, ̺))

are not affine functions of ̺ for all t ∈ R; this can be seen, e.g., from [31, Proposition 4.3].

2.3.1 Interpretation. We propose an interpretation scheme, in which a numerical–valued func-
tion f on S∗ can have several different interpretations as “observables” in EQM. The “appropriate
choice” of the class of observables of the system depends also on the chosen symmetry group
G entering into the description of the considered system. From our point of view, the speci-
fied symmetry group G could be interpreted as a group of motions of (a relevant part of) the
macroscopic background determining physical meaning of the “observables”, i.e. quantities used
for description of empirical specification of states of a given physical system. We can interpret
the genuine mixtures (cf. Subsection 2.1-e) as describing states of a “microscopic subsystem” of
a composed system consisting of the “microscopic subsystem” (i.e. the considered one) and a
“macroscopic background”. This “background” can interact with the considered quantum system
also without being influenced by it; it can be represented, e.g. by an infinite number of copies of
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the “considered quantum system” interacting mutually by a type of quantum mean–field interac-
tion, [131, 31, 32, 33, 264, 265, 266, 267]. The genuine mixture of the “microsystem” corresponds
to a nontrivial statistical distribution of values of macroscopic observables XΠ(ξ)): The values of
some “macroscopic observables” of this “macrosystem” (describable in classical terms) are corre-
lated with the states of the “microsystem” entering into the support of the measure determining
the genuine mixture, cf. also Remark 2.2.19. �

We shall introduce now a (in a certain sense minimal) set of nonlinear functions representing
observables and containing all the usually used “linear observables” of QM which is invariant with
respect to a sufficiently large class of (nonlinear) dynamics and also with respect to the symme-
try group specified by the representation U(G), as it was introduced in Section 2.2-d. We shall
introduce also other concepts (generators of different kinds, e.g.) forming with the chosen set of
observables a consistent closed theory. This set of concepts specifies a method of determination
a subtheory from the overwhelmingly large set of possible (mathematically admissible) “genera-
tors”, and “observables” of possible formally extended quantum theories. The usefulness of the
(representation of the) group G is here (at least) twofold, interpretational, and technical:

(interpretation) The group G, if interpreted a priori in terms of some “macroscopic variables”,
cf. Remark 2.2.19, can serve as a theoretical tool for specification of interpretation of math-
ematically specified “observables”, as well as symmetry transformations generated by a dis-
tinguished class of “generators”.

(technicality) The strongly continuous unitary representation U(G) is an effective device to
select the dense set D(F) of points, as well as of submanifolds O̺(G), where the differential–
geometrical objects as “differentials”, or “vector fields” can be defined from a specified (by
the same representation) set of generators, which are locally unbounded for many physically
relevant cases (“generically” for physically relevant noncompact group representations).

2.3.2 Definitions (G–generators).

(i) Let GGcl denote the Poisson algebra of G–classical generators: f ∈ GGcl ⇔ f = F∗f := f ◦ F

for some f ∈ C∞(EF,R). Let ẼF(f) ⊂ Lie(G)∗ be some (for each f separately chosen) open
neighbourhood of EF in Lie(G)∗ endowed with one of the canonical topologies, cf. Definitions 2.2.26.
The Poisson structure on GGcl is expressed by (2.2.25).

(ii) Let f be densely defined real–valued function on S∗ such that its Dr–generalized differential
exists and it is S∗–integrable, cf. Definition 2.2.13. Let ν 7→ vf(ν) be the corresponding Dr–
Hamiltonian vector field and assume, that its flow ϕ̃f is complete, and leaving D(F) invariant.
Let, moreover, the flow can be described by uf(·, ·) : R × S∗ 7→ U satisfying (2.1.24), (2.1.25), and
also (2.1.23) on a “sufficiently large” subdomain of Dr(F) (cf. Definition 2.2.13). Then f will be
called a (quantum) G–generator.

(iii) Let, for the quantum G–generator f of the above definition (ii), F(ϕ̃f
tν) = F(ϕ̃f

tν
′) for all

ν′ ∈ F−1[F(ν)], for any (t; ν) ∈ R × D(F); the G–generator f is called then a G–(classically)
deterministic generator. In this case, we shall denote

ϕf
t[F(ν)] ≡ F(ϕ̃f

tν);

this relation determines a flow ϕf on EF.
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(iv) A quantum G–generator which is not G–(classically) deterministic is called a G–(classically)
stochastic generator: The quantum flow ϕ̃f does not determine a classical flow, and a “corre-
sponding” classical evolution might be considered (?) as a stochastic process.

(v) Let a G–(classically) deterministic generator f be such that one can choose

uf(t, ν) ≡ uf(t, ν
′), ∀ν′ ∈ F

−1[F(ν)], (∀(t; ν) ∈ R×D(F)); (2.3.1)

then we can (and we shall) write uf(t, F ) := uf(t, ν
′) for ν′ ∈ F−1[F ], F ∈ EF. Let the mappings

(cf. Definitions 2.3.3 for CG)

τ f
t : CG → CG, h 7→ ht, ht(F ) := uf(t, F )−1h(ϕf

tF )uf(t, F ) (2.3.2)

be C∗-automorphisms of CGfor all t ∈ R. Then f is called a G–symmetry generator. The set
of all G–symmetry generators will be denoted GG. It is GGcl ⊂ GG, as will be shown in Proposi-
tion 2.3.10, and Theorem 2.3.16. ♦

These definitions of different types of generators (of evolutions, or symmetry groups) specify also
their relations to the corresponding transformations induced in the set of “classical variables” de-
termined by the chosen (unitary representation U(G) of the) group G. “Observables” in EQM are
not sufficiently determined by real–valued functions on S∗; the quantummechanical interpretation
needs possibility of determination of probability distributions in any point ̺ ∈ S∗ for general ob-
servable quantities. The following definitions of observables respect also the requirement of their
invariance with respect to “Heisenberg–picture–transformations”, into which nonlinearities bring
modifications with respect to the linear case: One has to distinguish between transformations of
elementary states (described by density matrices) and corresponding transformations of observ-
ables (described, e.g., by operator valued functions of density matrices). This distinction ensures
“conservation of transition probabilities” also in nonlinear QM.

2.3.3 Definitions (G–observables).

(i) Let the s∗(L(H),D(F))–topology on L(H) be given by the family of seminorms pν , p
∗
ν (ν ∈ D(F))

determined by their values pν(x) := ν(x∗x)1/2, and p∗ν(x) := ν(xx∗)1/2 on x ∈ L(H). Let f and h be
uniformly bounded operator–valued functions on EF, f: EF → L(H), F 7→ f(F ), ‖f‖ := sup{‖f(F )‖ :
F ∈ EF} < ∞, which are s∗(L(H),D(F)) – continuous.75 Let Cbs be the set of all such functions
endowed with (pointwise) operations: (f + λh)(F ) := f(F ) + λh(F ), (fh)(F ) := f(F )h(F ), and
f∗(F ) := f(F )∗, λ ∈ C. It can be shown [27] that Cbs with these algebraic operations and the norm
is a C∗-algebra. The elements of Cbs are unrestricted bounded G–observables.

(ii) Let BU := U(G)′′ be the von Neumann subalgebra of L(H) generated by U(G). Let CG

(resp. CGU ) be the C∗-subalgebra, [27], of Cbs generated by the uniformly bounded operator–valued
functions

hx,γ,f : F (∈ EF) 7→ hx,γ,f(F ) := U(γ(F ))∗ xU(γ(F ))f(F ),

for all x ∈ L(H) (resp. ∀x ∈ BU ), γ ∈ C(EF, G), f ∈ Cb(EF,R); elements of CG will be considered
also as operator–valued functions on D(F) obtained by pull–back by F:

f ∈ CG ⇒ f : ̺(∈ D(F)) 7→ f(F(̺)).

75Remember that a topology on g∗ is here understood to be one of the two canonical topologies, which are
mutually equal for finite–dimensional group G, cf. definition (i) in 2.2.26.
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The set CG (resp. CGU ) is called the C∗–algebra of (quantum, bounded) G–observables
(resp. the C∗–algebra of UG–observables) of the system. Any f = f∗ ∈ CG will be called a
G–observable. Elements x ∈ L(H) are considered as elements of CG for any U(G): They are
identified with the constant functions hx : F 7→ hx(F ) := x on EF. Elements hx (x ∈ L(H)s)
generate a (complex) subalgebra of elementary quantum observables denoted by CGq which

is a subset of CG isomorphic to L(H) (for any choice of U(G)). Any uniformly bounded element
f = F∗f ∈ GGcl will be considered also as the element of CGU (⊂ CG) described by the scalar–valued
function hf : F 7→ hf (F ) := I ·f(F ) on EF. The G–observables of this form will be called the
(bounded) G–classical observables. They belong to CGcl := I·C(EF,C) ⊂ CGU , I := IH.

(iii) The unbounded G–observables (resp. UG–observables) are functions Y : F 7→ Y (F )
on EF with values in unbounded selfadjoint operators Y (F ) on H, with the spectral measures EY (F )

such that the functions EY (·)(B) : F 7→ EY (F )(B) ∈ P(L(H)) (cf. Note B.4.1) belong to CG (resp.
to CGU ) for any Borel set B ⊂ R. Note that we needn’t specify the domains of the operators Y (F )
here. ♦

2.3.4 Definitions (Function representation of observables).

(i) Let us denote hf : ν 7→ hf(ν) := ν(f[F(ν)]). The mapping f(∈ CG) 7→ hf is not injective. Let us

introduce the functions ĥf(·, ·) of two variables (̺; ν) ∈ S∗ ×D(F), (̺; ν) 7→ ĥf(̺, ν) := ̺(f[F(ν)]).

Then hf ≡ ĥf(ν, ν), ν ∈ D(F). The mapping f 7→ ĥf(·, ·) is an injection into the set ĈG of real-

valued functions f̂ defined on the product S∗ ×D(F) such that the dependence ̺ 7→ f̂(̺, ν) is affine

bounded continuous for each fixed ν, and f̂(̺, ν) ≡ f̂(̺, ν′) for all ν′ ∈ F−1[F(ν)] = (a level set

of the mapping F), for each fixed ̺ ∈ S∗. Continuity properties of the functions ν 7→ ĥf(̺, ν)

are determined by properties of F and by the continuity of F 7→ f(F ). The element ĥf ∈ ĈG
will be called the function representative of the (bounded) G–observable f of the system;

elements of ĈG will also be called the G–observables. The first variable ̺ ∈ S∗ in f̂(̺, ν) will
be called the quantum variable, and the second one, ν ∈ D(F), will be called the G–classical
variable (cf. Section 3.4 for motivation of such terminology) of the (function representative of

the) observable f̂ ∈ ĈG. The function hf : ν 7→ hf(ν) := ν(f[F(ν)]) will be called the reduced
function representative of f ∈ CG.

(ii) Functions hY , and ĥY , for unbounded observables Y , can be introduced as (not everywhere
defined) function representatives of unbounded observables, in analogy with the case (i) of

bounded observables, i.e. ĥY (̺, ν) ≡ Tr
(
̺Y
(
F(ν)

))
on a corresponding domain in S∗ ×D(F) (the

domain specification would be here, generally, difficult). ♦

We shall next introduce states (as linear functionals on an algebra of “observables”) corre-
sponding to the general concept of “genuine mixtures” introduced in the Subsection 2.1-e. They
will be “suited” also to the just introduced constructions determined by the representation U(G).

2.3.5 Definitions (G–states).

(i) Let MG be the set of regular Borel probability measures on D(F) (with its Borel structure
coming from the metric topology of S∗). The genuine mixtures µ ∈ MG determine the set SclG of
the G–classical states ωµ of the considered system: The elements ωµ ∈ S(CG) := (CG)∗+1 (:=
the state space of the C∗-algebra CG) are determined by their values ωµ(f), f ∈ CG expressed by the
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integrals:

ωµ(f) := µ(hf) ≡
∫

ν(f
(
F(ν)

)
)µ(dν), ∀f ∈ CG. (2.3.3)

Elementary states ̺ ∈ D(F) are represented by Dirac measures δ̺ concentrated at ̺.

In these states, the values of the quantum variable ̺ of ĥf(̺, ν) copy those of the classical
variable. If the “microscopic state” described by the quantum variable is not connected with the
classical variable in this way, one arrives at definition of more general states:

(ii) Let ˆ̺ : D(F)→ S∗, ν 7→ ˆ̺(ν) be a Borel function. Let the state ωµ, ˆ̺ ∈ S(CG) be defined by

ωµ, ˆ̺(f) :=

∫

ˆ̺(ν)(f
(
F(ν)

)
)µ(dν) ≡

∫

Tr
(

ˆ̺(ν)f
(
F(ν)

))

µ(dν). (2.3.4)

The set of all such states ωµ, ˆ̺ ∈ S(CG) will be denoted by SG. The elements ωµ, ˆ̺ of SG will be
called G–states. Clearly SclG ⊂ SG. The functions ˆ̺ playing the described rôle will be called here
quantum deviation functions. For ωµ, ˆ̺ ∈ SclG one has ˆ̺(ν) ≡ ν. ♦

2.3.6 Definition (G–systems). Let a unitary continuous representation U(G) of a Lie group G
be given. The model of a (quantummechanical) physical system of EQM in which the sets of its
(“system determining”) generators, states, and (bounded) observables coincide with the sets of the
G–symmetry generators GG, G–classical states SclG , and G–observables CG (resp. UG–observables
CGU ) respectively is called the G–classical (resp. UG–classical) quantum system, or just the
G–system (resp. UG–system), based on the representation U(G). The G–system (resp. UG–
system) will be also denoted by ΣG (resp. by ΣUG). One has ΣG = ΣUG for irreducible U(G).
♦

2.3.7 Remark. This (basic) definition will need, probably, further elaboration. The bracketed
expressions “system determining”, and “bounded” has to indicate, that also other generators etc.
are possibly acceptable in the theory. Similar remarks might be, probably, added to several other
parts of the here presented (working) version of the theory, called here “EQM”. ♥

The definition of “G–systems” leads to a formally (and, perhaps, also intuitively) natural, and
also “operationally” transparent, definition of “subsystems”:

2.3.8 Definition (GI–subsystems).
Let a G–system be given by U(G), and let GI ⊂ G be a Lie subgroup of the Lie group G. The
restriction U(GI) of U(G) to GI is a continuous unitary representation of GI . The GI–system
ΣGI (resp. UGI–system ΣUGI ) determined by this restriction is the GI–subsystem (resp. UGI–
subsystem) of ΣG. ♦

Let us note that the definition of states of a subsystem given in Subsection 2.1-e with a help
of the “partial trace” fits into a special case of the presently introduced definition of the UGI–
subsystems: It should be chosen G := U(HI+II)–the unitary group of the set of all bounded
operators on HI+II = HI ⊗HII , and as the Lie subgroup we choose GI := U(HI) ∼ U(HI)⊗ IHII

,
with U(·) being their defining (identical) representation(s). The linear QM can be considered here
as described by the subalgebra of CGU consisting of constant functions only (what is an alternative
to the choice G := {e}, cf. point 3.1.1).
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2.3.9. Let us express now the Poisson bracket between the reduced function representatives of two
observables f, l in CG. This is done by a repeated use of the composite–mapping theorem, [1, 61].
For the case n := dimG <∞, from (2.2.14), and (2.2.25) we have:

{hf, hl}(ν) ≡ i ν
(
[f(F(ν)), l(F(ν))]

)
+ i

n∑

j=1

ν

(
∂f(F(ν))

∂Fj

)

ν
(
[X(ξj), l(F(ν))]

)

+i

n∑

j=1

ν

(
∂l(F(ν))

∂Fj

)

ν
(
[f(F(ν)), X(ξj)]

)

+
∑

j,k

ν

(
∂f(F(ν))

∂Fj

)

ν

(
∂l(F(ν))

∂Fk

)

F
∗{Fj, Fk}(ν). (2.3.5)

One can immediately deduce from this expression also expressions for Poisson brackets of specific
cases of elementary quantum and G–classical observables. ♥

We shall formulate now the solution of a quantummechanical dynamical equation of a G–
system in terms of a classical equation on the group manifold G. The solution will also show us
that G–systems are “self-consistent” in the sense that the G–(classical) generators generate flows
leaving the sets of G–observables, G–generators, as well as the G–classical states together with
their algebraic and topological structures invariant.

Let us assume dimG < ∞. Let γ : G → G be a differentiable mapping, let e ∈ G be the unit
element, g ≡ TeG. The tangent mapping Teγ : TeG→ Tγ(e)G is defined by

Teγ(ξ) :=
d

dt

∣
∣
∣
∣
t=0

γ(exp(tξ)) ≡ Tt=0γ(exp(·ξ)), ξ ∈ g.

Let Rg : g′ 7→ Rgg
′ := g′g (g, g′ ∈ G) be the right action of G onto itself. Let us identify the

tangent space TF g∗ in any point F ∈ g∗ with g∗ itself in the canonical way (as any tangent space
to a linear space), and let its dual T ∗

F g∗ be identified with g∗∗ = g (canonical identification for
reflexive spaces). Then, for any Q ∈ C∞(EF,R), and any F ∈ EF, we have dFQ ∈ g. The set EF is
Ad∗(G)–invariant, cf. Proposition 2.2.32.

2.3.10 Proposition. Let U(G) be as above, and Q ∈ C∞(EF,R), with complete Poisson flow ϕQ

on EF. Let Q := F∗Q ∈ GGcl , i.e. Q is a G–classical generator, cf. Definition 2.2.26(iii). Then there
is a unique infinitely differentiable solution gQ : R× EF → G, (t;F ) 7→ gQ(t, F ) of the differential
equation on the group manifold:

d

dt
gQ(t, F ) = TeRgQ(t,F )(dFtQ) ∈ TgQ(t,F )G, gQ(0, F ) ≡ e, (2.3.6a)

with Ft := ϕQt F , for all F ∈ EF. The function gQ satisfies the cocycle identity:

gQ(s, ϕQt F )gQ(t, F ) ≡ gQ(s+ t, F ), (2.3.6b)

and it determines the flow ϕQ according to the following relation:

ϕQt F ≡ Ad∗(gQ(t, F ))F. (2.3.7)
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The flow ϕ̃Q generated by the Hamiltonian vector field vQ(·) from (2.2.26) is then given on D(F)
by

ϕ̃Q
t ̺ ≡ Ad∗

(
U [gQ(t,F(̺))]

)
̺, ̺ ∈ D(F), (2.3.8)

with g 7→ U(g) being the given unitary representation of G. Hence, ϕ̃Q
· leaves all the orbits O̺(G)

invariant. ♣

Proof. The flow ϕQ leaves the Ad∗(G)–orbits invariant, since it is a Poisson flow and the Ad∗(G)–
orbits are symplectic leaves of the Poisson (–Berezin) structure on g∗, [178, 7, 275]. Hence Ft ∈
EF (F ∈ EF) for all t ∈ R, and dFtQ ∈ T ∗

Ft
g∗ ≡ g := Lie(G). The vectors TeRg(dFQ) ∈ TgG (g ∈ G)

form a right–invariant vector field on G for each F ∈ EF, and vQ(g; t;F ) := TeRg(dFtQ) (t ∈ R, g ∈
G) are values of t–dependent vector fields (for any F ∈ EF) on G. Their infinite differentiability
follows from the properties of Q. The existence and uniqueness of the solution gQ of (2.3.6)
fulfilling (2.3.6) are then consequences of the theory of ordinary differential equations on manifolds,
cf. [40].

Let ξ ∈ g. The derivative of [Ad∗(gQ(t, F ))F ](ξ) ≡ F (Ad(gQ(t, F )−1)ξ) at t = 0 equals,
according to (2.3.6), to F ([ξ, dFQ]), what can be rewritten in the form of Berezin bracket for
ξ := dFh, h ∈ C∞(g∗,R):

d

dt

∣
∣
∣
∣
t=0

h
(
Ad∗(gQ(t, F ))F

)
= dFh

(
d

dt

∣
∣
∣
∣
t=0

Ad∗(gQ(t, F ))F

)

= {Q, h}(F ).

This, together with (2.3.6), proves (2.3.7).
The generator Q ∈ GGcl generates, on the other hand, a Poisson flow ϕ̃Q on S∗. Since Q =

F∗Q, (2.3.8) is proved by (2.2.25), (2.3.6), and (2.3.7).

2.3.11 Interpretation.

(i) Let us assume that a standard measuring procedure can be associated with a given mathematical
quantity f ∈ CG (or with a quantity that can be described by an unbounded selfadjoint operator–
valued function F 7→ Y (F )) which leads to a numerical result λ at each individual repetition
of the measuring performed on the system–object. We understand here that with each such
individual measuring act there is necessarily accompanied a registration ≡ detection of a copy of
considered system–object. This means that, contrary to often accepted definition of “measurement
process” in QM, performing a statistical empirical test measuring the (average/per time) number of
incoming systems in a beam (leavig a preparation apparatus), as well as of the (average/per time)
number of systems approaching (entering) the apparatus, a knowledge of efficiency parameters of
the apparatus, and also exact knowledge of (calculated) final state of measured objects “entered into
the apparatus” (i.e. the state just before being detected by a “counter”), all of this together
is not sufficient for presence of a measuring act. Or, in other words, the result λ of
each individual measuring act should be represented by a (macroscopic) change of initial state
of measuring device which is observable as a stable mark (i.e. a “trace” repeatably testable by
different, namely by any “correspondingly educated”, human observers with the same result of the
tests with, possibly, standard statistical deviations), e.g. a “new pointer position λ of the measuring
apparatus”.76 (It might be useful to stress also here that such a measurement process is not yet
satisfactorily formalized in QT.)

76According to this understanding of the content of the “process of measurement in QM”, the measurement of
a spin–coordinate of a 1/2–spin particle by a Stern–Gerlach apparatus is not realized after passage of the particle
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We assume that this λ belongs to the union of the spectra sp[f(F)] of selfadjoint operators f(F)
(resp. spectra of generally unbounded Y (F ) 7→ f(F )):

λ ∈ ∪{sp[f(F )] : F ∈ EF} ⊂ R.

(ii) We propose the following interpretation of the introduced observables f ∈ CG, or, more gen-
erally, of any (“sufficiently measurable”, so that the integrals in (2.3.9) can be defined, cf. Defi-
nition 2.3.3(iii)) selfadjoint operator–valued function Y : F (∈ EF) 7→ Y (F ) =

∫

R
λEY (F )(dλ), cf.

also [27, 33, 31, 265, 266, 267]:
Let µ ∈ MG be a genuine mixture, and let ˆ̺ be a quantum deviation function, both together

defining the corresponding state ωµ, ˆ̺, cf. Definition 2.3.5. Let B ⊂ R be a Borel set. The
probability of realization of the detected values λ ∈ B at repeated measurements of the observable
Y : F 7→ Y (F ) in the (repeatably “identically” prepared) state ωµ, ˆ̺ is expressed by:

prob(Y ;µ; ˆ̺)(B) ≡
∫

D(F)

ˆ̺(ν)
(
EY (F (ν))(B)

)
µ(dν), with ˆ̺(ν)(E) := Tr(ˆ̺(ν)E), (2.3.9)

if the integral exists. �

Let us illustrate this general interpretation scheme on more specific examples:

2.3.12 Examples.

(i) Let µ ∈MG be a genuine mixture describing the state ωµ ∈ SclG of a system, let B ⊂ R be a Borel
set, and let EY (F ) be a projection (spectral) measure of the selfadjoint operator Y (F ), F ∈ EF.
Then probability of finding in B the obtained value (i.e. the result) of a measurement of the
observable: ν 7→ Y (F(ν)) in the state ωµ is

prob(Y ∈ B;µ) ≡ prob(Y ;µ)(B) =

∫

D(F)

ν
(
EY (F(ν))(B)

)
µ(dν). (2.3.10a)

For the specific choice of the measure µ := δν , we have then

prob(Y ; δν)(B) = ν
(
EY (F(ν))(B)

)
≡ Tr

(
ν ·EY (F(ν))(B)

)
, (2.3.10b)

what is the usual probability distribution of the measuring results in QM of the observable described
by the operator Y (F(ν)) performed on the system prepared in the (elementary) state ν ∈ D(F).
The expectation (if it exists) of an observable f ∈ CG in any state ωµ is expressed by (2.3.3).

(ii) Let us choose in the above formulas Y (F ) := hξ(F ) := fξ(F )I ≡ F (ξ)I (ξ ∈ Lie(G)); then

Ehξ(F )(B) = δF (ξ)(B)I = χB(F (ξ))I, (2.3.10c)

where χB is the characteristic function (= indicator) of the set B. Hence hξ ∈ CGcl is a classical
observable. Let us denote Fξ(ν) := F(ν)(ξ)∈ R, ξ ∈ g, ν ∈ D(F). In the considered case we
have

prob(hξ, µ)(B) =

∫

D(F)

χB(Fξ(ν))µ(dν) = µ
(
F
−1
ξ [B]

)
=: µξ(B), (2.3.10d)

where the measure µξ ≡ µ ◦ F
−1
ξ on the real line R was introduced. ♥

across the inhomogeneous magnetic field, in spite of the fact that the wave function of the state of such a particle is
splitted into two “macroscopically separated” beams: QM does not exclude a possibility of rejoining and interference
of the two beams, hence they are not yet “macroscopically distinguished”. The spin–component is measured only
after detection of the particle described by the two–beam state vector, i.e. only after the “in which beam–question”
is practically resolved (by an appearance of a “macroscopic trace” corresponding to just one of the eventualities).
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We shall now define transformation laws τQ for observables,

f 7→ ft := τQ
t (f), f ∈ CG,

corresponding to the actions of the flows ϕ̃Q on S∗ described in the Proposition 2.3.10. We shall
assume that

hf(ϕ̃
Q
t (ν)) ≡ hft

(ν), (2.3.11)

what corresponds to the transition from the Schrödinger to the Heisenberg picture in QM. This
assumption is reflected in the following definitions.

2.3.13 Definitions (G–transformations).

(i) Let us consider a G–system. Let us choose some Q ∈ GGcl , Q = F
∗Q, with complete flow ϕ̃Q on

S∗. Then ϕQ determined by ϕQ
t F(ν) ≡ F(ϕ̃Q

t ν) is the flow with Hamiltonian Q on EF. Let uQ be
the solution of (2.1.23) (with f replaced by Q), cf. also Definition 2.3.2(v). Then, for an arbitrary
G–observable f ∈ CG, we set:

ft(F ) := τQ
t (f)(F ) := uQ(t, F )−1f(ϕQ

t F )uQ(t, F ). (2.3.12a)

In terms of (2.3.7) and (2.3.8), we can write also uQ(t, F ) = U(gQ(t, F )), hence:

τQ
t (f)(F ) ≡ U(gQ(t, F )−1) f(ϕQ

t F )U(gQ(t, F )) ≡ Ad
(
U(gQ(t, F )−1)

)
f(ϕQ

t F ). (2.3.12b)

We shall call τQ the one–parameter G–symmetry group generated by Q.

(ii) Let a Lie group continuous unitary representation U(G) be given. Elements of the Lie algebra g

of G are represented by affine functions hX(ξ) ∈ GGcl , ξ ∈ g, which are generators of one–parameter
groups of symplectic isometries of our elementary phase space S∗. Let a subgroup σ(G) ⊂∗-Aut CG
of ∗-automorphisms of the C∗-algebra of observables CG be determined by:

[σ(g)f](F ) := U(g) f(Ad∗(g−1)F )U(g−1), ∀ f ∈ CG, g ∈ G, F ∈ EF. (2.3.12c)

The function hX(ξ) (ξ ∈ g) generates the flow ϕ̃ξ on S∗, and for f ∈ CG one has:

hf(ϕ̃
ξ
tν) ≡ ν

(
(σ[exp(tξ)]f)(F(ν))

)
= hf(Ad

∗(U(exp(tξ))
)
ν). (2.3.12d)

The automorphism group σ(G) is induced by the unitary representation U(G). We also have
the expression of an arbitrary one–parameter G–symmetry group τQ ⊂ ∗-Aut CG in terms of σ(G),
cf. Theorem 2.3.16:

(τQ
t f)(F ) ≡ [σ(gQ(t, F )−1)f](F ). (2.3.12e)

The group σ(G) is called the G–automorphism group of CG.

(iii) Let f̂ be a function–representative of an observable. Its evolution τ̂Q
t : f̂ 7→ f̂t under the

G–symmetry group τQ is expressed with a help of the function gQ(·, ·) from (2.3.6) as

f̂t(̺, ν) ≡ τ̂Q
t (̂f)(̺, ν) := f̂(Ad∗

(
U(gQ

(
t,F(ν)

)
)
)
̺, ϕ̃Q

t ν). (2.3.12f)

The transformation group τ̂Q
t is the one–parameter G–symmetry group of the function rep-

resentatives generated by Q. ♦
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2.3.14 Remark (Transition probabilities). Let us stress here that in the general case

Ad∗
(
U(gQ

(
t,F(ν)

)
)
)
̺ 6≡ ϕ̃Q

t ̺, for F(̺) 6= F(ν). (2.3.13a)

The transformation law for observables described in Definitions 2.3.13 leads to a natural nonlinear
generalization of the usual (“linear”) transformation of “transition probabilities”.

(linear case): In the linear case, time evolution is described in QM by a strongly–continuous
one–parameter group U(t) of unitary transformations, i.e. U(t) ≡ exp(−itX) for a selfadjoint
Hamiltonian operator X . Expectation values of an arbitrary (“linear”) observable Y = Y ∗ in time
evolved states ̺t ≡ Ad∗(U(t))̺ are

Tr(̺tY ) = Tr(U(t)̺U(−t)Y ) = Tr(̺U(−t)Y U(t)) =: Tr(̺Yt) (2.3.13b)

where the “Heisenberg picture” of the time evolution t 7→ Yt := U(−t)Y U(t) (expressed in
terms of observables, instead of the evolution of states) was introduced. It is now trivial to see
that the expression

Tr(̺tY−t) ≡ Tr(̺Y ) (2.3.13c)

remains constant in t ∈ R for any selfadjoint “observable Y ”.
If one inserts now into Tr(̺Y ) for the observable Y ∗ = Y a one–dimensional projection Py,

and for the density matrix another projection Px, then one obtains the well known “conservation
of transition probabilities”77

Tr(PxPy) ≡ |〈U(t)x|U(t)y〉|2 = |〈x|y〉|2. (2.3.13d)

This seems to be usually interpreted as a trivial consequence of equal unitary transformation of
the two vectors x, y ∈ H entering into the scalar product. Hence it is usually interpreted as an
expression of the fact that “the transition amplitude between two state vectors x, y ∈ H” does
not depend on time, if both states are evolved by the same time transformation U(t).

This (mis–)interpretation is repeatedly presented in connections with definitions of “symme-
tries” in QM, [281], and with the celebrated Wigner’s theorem, which can be formulated in the
following way:

(Wigner’s theorem): Let φ : P (H)→ P (H) be a bijection conserving “transition probabilities”,
i.e.

Tr(PxPy) ≡ Tr(φ(Px)φ(Py)), ∀x, y ∈ H, (2.3.13e)

then there is either unitary or antiunitary bijection Uφ : H→ H such that φ(Px) ≡ PUφx, ∀x ∈ H.
Symmetries in QM are then defined as transformations φ, resp. Uφ, satisfying conditions of the

Wigner’s theorem.
After reformulating the two mentioned interpretations of the “transformations of probability

amplitudes” in the nonlinear case, we shall return to the problem of a choice between these two
interpretations in Interpretation 2.3.15.

77This interpretation of “transition probabilities”, by which one of the vectors represents state preparation
(“source”), and the another corresponds to a detector, connected with their invariance at symmetry transformations,
is also in accordance with [121, I.3.1].
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(nonlinear case 1): Extending the above last mentioned (mis–)interpretation mechanically to
nonlinear case, one obtains “non-conservation of transition probabilities”:78

Tr(ϕ̃Q
t (Px)ϕ̃

Q
t (Py)) = (2.3.13f)

Tr
(
U(gQ(t,F(Px)))PxU

∗(gQ(t,F(Px)))U(gQ(t,F(Py)))PyU
∗(gQ(t,F(Py)))

)
,

what cannot be constant in time t ∈ R for all Px ,Py if

U∗(gQ(t,F(Px)))U(gQ(t,F(Py))) 6≡ eiα(t)IH, α(t) ∈ R.

Hence, if we calculate the “transition probabilities” according to the algorithm taken from the
linear QM in the case of nonlinear evolutions, we obtain “generically” their dependence on the
parameter of transformations (on the time). This seems to be in contradiction with the usual
meaning of “transformation groups” in quantum theory.

(nonlinear case 2): Let us now, however, accept the first mentioned interpretation of the “tran-
sition amplitudes”, i.e. that |〈x|y〉|2 is the expectation value of the “observable Py” in the “state
Px” (or vice versa). “Observables” in our generalized (nonlinear) quantum mechanics are repre-
sented by operator valued functions of “elementary states” ̺ ∈ S∗, possibly via the momentum
mapping F, or by the corresponding function representatives. The transformation groups act on
them in accordance with the equations (2.3.12), hence the transformations depend (generally) on
points F(̺) of Lie(G)∗, hence on the states ̺. Expectation of an observable ̺ 7→ f(F(̺)) in the

elementary state ̺ equals Tr(̺f
(
F(̺)

)
), cf.(2.3.3). If we transform ̺ as ϕ̃Q

t (̺), and the observable

f is transformed simultaneously by the automorphism group transformation τQ
−tf, (2.3.12), and we

calculate then the expectation of the transformed observable in the transformed state, we obtain
in accordance with (2.3.13e) and (2.3.13c)

Tr
(
ϕ̃Q
t ̺·(τQ

−tf)(F(ϕ̃Q
t ̺))

)
(2.3.13g)

= Tr
(
U(gQ(t,F(̺)))̺U∗(gQ(t,F(̺)))U(gQ(t,F(̺)))f(F(̺))U∗(gQ(t,F(̺))

)

= Tr
(
̺f(F(̺))

)
,

i.e. the result independent of t ∈ R, as it is usually required. If the observable is, e.g. f(F(̺)) ≡ Py
, i.e. it is independent of ̺, then again it should be transformed by the same way, so that the
transformed observable becomes, in general case, a function of ̺. Hence, for ̺ := Px, one has

Tr
(
U(gQ(t,F(Px)))PxU

∗(gQ(t,F(Px)))U(gQ(t,F(Px)))PyU
∗(gQ(t,F(Px))

)
≡ Tr(PxPy),

(2.3.13h)
and the time invariance of transition probabilities is, trivially, again obtained. ♥

We shall now return to the interpretation question of the “transition probability” Tr(PxPy).

2.3.15 Interpretation (Probabilities and measurements). If we use the concept “probability”
in connection with our empirical experience, it is always (perhaps) connected with a quantification
of “observed phenomena”, or of “occurred events”. A meaning of sentences like: “The probability
of the chosen value of possible eventuality is α > 0” appears to us (in empirical sciences) unspecified

78We write here U∗(g) ≡ U(g)∗.
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without the “eventuality” being in some sense “realizable”. After an experience with QM, we know
that “an event” is always correlated with a change of some macroscopically observable (hence
classical, in a general sense) parameter value. We conclude from this that probabilities ascribed to
states in QM should be connected with the quantummechanical “process of measurement”: They
express some “weights” connected with (macroscopic) results of measurement; these weights are
usually interpreted as “frequencies of occurrence” of specific results at repeated preparations of
“the same microscopic state” and consecutive measurements of “the same physical observable”
(let’s note that this time–ordering corresponds to our, perhaps a priori, demand of causality).

All empirically interpretable (and verifiable) assertions of QM are formulated in terms of “prob-
abilities”, expressed usually by squares of moduli of “probability amplitudes”. These probabilities
are often called, cf. [202], the “transition probabilities”. Let us ask now, what “transitions”,
or/and transitions between what things are meant in this formulation? The mentioned probabilities
are of the form Tr(PxPy) ≡ |〈x|y〉|2 for normalized vectors |·〉 ∈ H corresponding to pure states of
the considered microscopic system. The standard interpretation scheme of QM (cf. [75, 202]) tells
us that if a system is prepared in the state |x〉 and the measured observable Y has nondegenerate
pure point spectrum (i.e. a complete orthonormal set of eigenvectors |yj〉, j ∈ J ≡ an index set,
Y |yj〉 = λj |yj〉, λj ∈ R, ∀j ∈ J, λj 6= λk for j 6= k), hence if it is possible to write

|x〉 =
∑

j∈J
〈yj |x〉|yj〉, ∀x ∈ H,

then only possible results of the measurement of the quantity Y are the numbers λj , j ∈ J , and
the probability of obtaining the result λj in a vector state |x〉 at measuring of Y equals to

prob(Y = λj ;x) = |〈yj |x〉|2.

This interpretation is the generally accepted one (according to the present author’s knowledge).
The denotation of this probability as “transition probability” can be understood in connection with
the Dirac–von Neumann “projection (resp. reduction) postulate”, [75, 190], stating that after
obtaining the result λj the measured microsystem changes abruptly its initial state |x〉 into the
eigenstate |yj〉 of the measured quantity Y corresponding to the obtained result λj . Hence, there
is assumed a “transition x 7→ yj” of the microsystem.79

A remarkable (in the presented formulation mathematically trivial) fact is the symmetry of
prob(Y = λj ;x) with respect to interchange of the vectors x and yj . This formal mathematical
symmetry (although not being without some deep physical content) might (mis–)lead us to consider
occurrence of the vectors x and yj in the “transition probability” also as physically symmetric. We
have to keep in mind, however, that the eigenvectors yj are here in the rôle of labels of macroscopic
“pointer positions”, whereas the vector x represents a preparation procedure for the microsystem.
This can be expressed with a help of the spectral measure EY of Y :

prob(Y ∈ B;x) = Tr(PxEY (B)), B ∈ B(R),

where we have EY ({λj}) ≡ Pyj , in the considered specific case. This physical asymmetry remains
valid irrespective of (non-)acceptance of the “projection postulate” of Dirac and von Neumann.

79This postulate, however, needn’t be accepted: It cannot be usually (or even always?) verified if the measured
system is really detected. As an exception might be considered the “indirect” measurement, when a correlated
system is detected, what is the case of EPR–like processes. We prefer not to formulate any assumptions on the form
of states of measured systems arising after measurements of a general type.
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To conclude, we hope that it is seen from the above considerations that in the (mathemat-
ically symmetric) expression Tr(PxPy) for probability of a certain measurable (i.e. observable)
phenomenon described in QM, the interpretation of the two vectors x, y should be mutually dif-
ferent: One of the vectors represents a given (prepared) state of the micro-object, and the second
represents a measured observable. This leads also to formulation of the symmetry transformation
rule for these expressions generalized to our nonlinear EQM. Those symmetry transformations
leave the “transition probabilities” invariant also for nonlinear generators. An a priori requirement
for such an invariance is, however, of little determinative power, from the point of view of our
presently defended interpretation, cf. also [35]. �

2.3.16 Theorem. Any G–symmetry group τQ of a G–system (resp. UG–system) is a σ(CG,SclG)–
continuous one–parameter group of ∗-automorphisms τQ ⊂ ∗-Aut CG (resp. ⊂ ∗-Aut CGU ). The
relation

hf(ϕ̃
Q
t ν) = ν(τQ

t f(F(ν))), ∀f ∈ CG, ∀ν ∈ D(F), ∀t ∈ R. (2.3.14)

is satisfied for this group of automorphisms of the C∗-algebra of G–observables CG. ♣
Proof. The algebraic properties of τQ, and also the τQ–invariance of CGU are consequences of (2.3.12),
and of the cocycle identities (2.3.6), (2.1.24). Relation (2.3.14) is a consequence of (2.3.7), (2.3.12),
(2.2.17), and of the relation (2.3.8). The σ(CG,SclG )–continuity, i.e. that for all µ ∈MG, f ∈ CG the

functions t 7→ ωµ(τ
Q
t f) are continuous, and ωµ ◦ τQ

t ∈ SclG (∀t ∈ R), follows from (2.3.12), (2.3.3),
the continuity properties of f, gQ, and U , as well as from the Lebesgue dominated convergence
theorem.

2.3.17 Remark. The flow ϕ̃Q is determined by the automorphism group τQ uniquely. This
association needn’t be, however, injective: Different automorphism groups of CG can, for a general
U(G), lead to the same flow ϕ̃Q on the elementary state space S∗. This possible ambiguity
can be seen from (2.1.26), where different operator–valued functions ν 7→ f0(ν) with values in
the commutant {ν}′ can be chosen, cf. also [31, eqs. (2.29), (2.30)]. The whole state space–
transformation groups of S(CG) defined as the dual mappings to the one–parameter groups τQ

are, of course, different for the different τQ. We could try, e.g., to transform by them general
states from SG. ♥
2.3.18 Interpretation. The theorem 2.3.16 shows, that our nonlinear dynamics can be described
with a help of a ∗-automorphism group of our algebra of observables CG, resp. of CGU , which
is a C∗-algebra, hence it corresponds to standard linear descriptions of quantum systems, cf.
[119, 42, 92, 121]. Since our C∗-algebra CG is essentially (a weak completion of) the tensor–
product algebra L(H) ⊗ C(EF,C) (let us ignore here some topological aspects of definitions), it
corresponds intuitively to a quantummechanical system composed of the “traditional” one, de-
scribed by observables in L(H), and of a “classical subsystem” with the “generalized phase–space”
EF. Hence, our nonlinear quantum dynamics can be considered as a specific restricted description
of dynamics (in Schrödinger picture) of a general quantum (“linear”) system obtained by express-
ing just the evolution of “microscopic elementary states (resp. mixtures) ∈ S∗” (as states on the
algebra of “microscopic observables” in L(H)) only, and leaving the evolution of other degrees of
freedom of the composed system explicitly unnoticed. For some further comments of this point cf.
Section 3.4. �

2.3.19 Remark. We shall be interested now in the possibility to represent the Lie algebra elements
ξ ∈ g by some nonlinear generators hξ ∈ GGcl , and, correspondingly, to represent the group G
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by continuous “nonunitary” Poisson automorphisms of S∗. We shall formulate here one of such
possibilities obtained “trivially” by a “nonlinear” Poisson morphism from the linear representation
U(G). This possibility was in [274] classified as “equivalent” to the linear representation. This
equivalence is, of course present from the abstract mathematical point of view of theory of Poisson
systems. But the quantummechanical interpretation depends on the metric structure Γν on S∗,
which is not invariant with respect to such Poisson morphisms. Hence, the physics obtained
by such a “trivial delinearization” of U(G), as well as of other “G–structures” based on
U(G) might be quite different from physics coming by traditional way from the linear
representation U(G). ♥

The following proposition describes an example of mechanism of the mentioned “delineariza-
tion” (cf. Remark 2.3.19) of the G–structures based on U(G).

2.3.20 Proposition (Nonlinear G–realizations). Let the G–system based on a unitary con-
tinuous representation U(G) be given. Let ψ be a Poisson automorphism of EF (specified, e.g. with
a help of an open neighbourhood of EF) leaving each symplectic leaf invariant:

ψ∗{f, h} = {ψ∗f, ψ∗h} for f, h ∈ C∞(EF,R). (2.3.15)

Let hξ := fψξ := F
∗ ◦ ψ∗fξ, ξ ∈ g. Then fψξ ∈ GGcl , and

{fψξ , fψη }(ν) = −fψ[ξ,η](ν) for ν ∈ D(F), ξ, η ∈ g, (2.3.16)

and the association hX(ξ) 7→ fψξ (ξ ∈ g) is a Poisson Lie algebra isomorphism.

Let Φψ(g) := ψ−1 ◦ Ad∗(g) ◦ ψ : EF → EF; the mappings Φψ(g) form a group of Poisson
automorphisms of EF such, that its one–parameter subgroups

Φψξ : t 7→ Φψξ (t) := Φψ(exp(tξ))

are the flows generated by fψξ := ψ∗fξ (ξ ∈ g). Then fψξ are generators of their “lifts” Φ̃ψξ to

the Poisson automorphism groups of S∗ determined by the G–symmetry groups τξ,ψ := τQ with
Q := fψξ according to the equations (2.3.12), hence also

hk(Φ̃
ψ
ξ (t)ν) ≡ ν

(
(τξ,ψt (k))(F(ν))

)
, ∀k ∈ CG. ♣

Proof. Recall that (cf. Definition 2.2.17)

hX(ξ)(ν) ≡ fξ(F(ν)) = F
∗fξ(ν), ν ∈ D(F),

and the pull–back has trivial kernel in C(EF,R). Since Ran(F) consisting of Ad∗(G)–orbits is dense
in EF, a continuous function fη identically vanishes on each orbit lying in EF, hence vanishes on

EF, iff there vanishes ψ∗fη. It follows that the association hX(ξ) 7→ fψξ (∀ξ ∈ g) is a bijection. It is
linear in ξ, and the formulas (2.2.25), (2.3.15), and (2.2.22) show the conservation of the Poisson
brackets, hence the validity of (2.3.16).

It remains to prove, that the “deformed” flows Φψξ are generated by fψξ . Let h ∈ C∞(EF,R).
Then

d

dt

∣
∣
∣
∣
t=0

h
(
Φψξ (t)F

)
= dψF

(
(ψ∗)−1h

)
◦ ad∗

ξ(ψF ) = (ψF )([dψF ((ψ∗)−1h), ξ])

= {fξ, (ψ∗)−1h}(ψF ) = ψ∗{fξ, (ψ∗)−1h}(F ) = {fψξ , h}(F ), (2.3.17)
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where we define (−ad∗
ξ) := (adξ)

∗, the dual mapping of the inner differentiation of the Lie algebra,
adξ : η 7→ [ξ, η]. This proves the proposition.

2.3.21 Examples. As a large class of examples of mappings ψ occurring in the Proposition 2.3.20,
we can choose ψ := ϕQt for any nonlinear Q ∈ C∞(EF,R) with complete Hamiltonian vector field
(hence flow) on EF, with a fixed value of t ∈ R. The question of a physical interpretation of such
“nonlinear deformations” of the “linear” U(G) is left open here. ♥

Let us consider now the specific case of a physical system described (in the sense of EQM)
by a C∗-algebra C := C(E ,A), with E an Hausdorff compact, and A a simple unital C∗-algebra,
cf. Definition B.2.5; the continuity of f(∈ C) : F (∈ E) 7→ f(F )(∈ A) is here uniform in the norm
of A. E.g., we can use dimH < ∞ and U(G) irreducible in our previous costructions, and then
we shall have A := L(H), and E(⊂ g∗) some compact convex Ad∗–invariant set. In this case
C ∼ A⊗C(E), [228], and the structure of such systems can be described now with some additional
details. Let us mention first, [31, Proposition 2.6]:

2.3.22 Lemma. The pure states ω ∈ S(C)(i.e. extremal points of the σ(C∗, C)–compact S(C)= C∗+1)
are of the form

ω(f) = ωA

(
f(Fω)

)
, ∀f ∈ C, (2.3.18)

where ωA ∈ S(A) are pure states on A, and Fω ∈ E is fixed. ♣
It could be useful to compare this assertion with Definition 2.3.5 to see what states of the

C∗-algebra C are not contained in the set of states determined by that definition.
Let us now describe the general form of symmetry–transformations (i.e. the automorphisms

of C) of such a system, cf. [36], and [32, Remarks 3.15] for more complete (but there unproved)
formulations:

2.3.23 Proposition. Let a C∗-algebra C := C(E ,A) be given as above. Then there is a canonical
bijection between γ ∈ ∗-Aut C, and couples {ϕγ ; γ̂}, where ϕγ is an arbitrary homeomorphism of E,
and γ̂ is an arbitrary mapping γ̂ : E → ∗-Aut A, F 7→ γ̂F , with the functions F 7→ γ̂F (x) (∀x ∈ A)
being all norm–continuous. The bijection is determined by the identity

γ(f)(F ) ≡ γ̂F
(
f(ϕγF )

)
, (2.3.19)

valid for all f ∈ C. ♣
Proof. Due to the simplicity of A, the abelian subalgebra C(E) of C coincides with its center
Z := Z(C). The center Z is invariant with respect to any ∗-automorphism of C, hence the restriction
of γ to C(E) is also an automorphism. The Geĺfand–Najmark theory of commutative C∗-algebras
(cf. [188, 104, 102], and also Example B.2.3(iii)) implies that the ∗–automorphisms of C(E) are in
a bijective correspondence with homeomorphisms ϕ of E onto itself.

(i) Let γ ∈ ∗-Aut C. Then the corresponding homeomorphism ϕγ is defined by:

(γf)(F ) =: f(ϕγF ), ∀f ∈ C(E) ⊂ C, ∀F ∈ E .

Let an arbitrary x ∈ A be considered as a constant function – an element x̂ ∈ C := C(E ,A), x̂(F ) ≡
x ≡ x·I(F ), where I(F ) = 1, ∀F ∈ E . Then the value γ(x̂)(F ), f ∈ E of γ(x̂) ∈ C will be denoted
by

γ̂F (x) := γ(x̂)(F ), ∀F ∈ E , ∀x ∈ A.
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The pointwise character of algebraic operations in C(E ,A) implies that in this way defined γ̂ : F 7→
γ̂F is a mapping to ∗–morphisms of A into itself.

We shall show that γ̂F is a nonzero morphism (hence an isomorphism, due to simplicity of A)
for any F ∈ E . A general element f of C is uniformly approximated by elements of the form

f′ :=
∑

j

xj ·fj, f′(F ) ≡
∑

j

x̂j(F )·fj(F ), xj ∈ A, fj ∈ C(E) ⊂ C, (2.3.20)

hence also by the elements of the form γ(f′), since γ is a ∗-automorphism of C. For the elements
of the form (2.3.20) one has

γ(f′)(F ) ≡
∑

j

γ̂F (xj)·fj(ϕγF ). (2.3.21)

For a zero morphism γ̂F0 it would be γ(f)(F0) = 0 for all f ∈ C, what cannot happen, since both
A, and C(E) are unital. It follows that γ̂F ∈ ∗-Aut A, ∀F ∈ E .

The formula (2.3.21) implies then (2.3.19) due to continuity of all the γ̂F , as well as of γ:

γ(f′)(F ) ≡ γ̂F




∑

j

xj ·fj(ϕγF )



 .

The continuity of γ̂ : F 7→ γ̂F follows from the continuity of each function F 7→ γ(f)(F ), f ∈ C.
(ii) Let us now have given any homeomorphism ϕγ of the Hausdorff compact E onto itself, as well
as an arbitrary strongly continuous family γ̂ : E → ∗-Aut C, F 7→ γ̂F . Let us define the mappings
ϕ : C → C, and γ0 : C → C as follows:

ϕ(f)(F ) := f(ϕγF ), γ0(f)(F ) := γ̂F
(
f(F )

)
, ∀f ∈ C, F ∈ E . (2.3.22)

The continuity and the morphism properties of the given γ̂·, and ϕγ show that both the mappings
ϕ, and γ0 introduced in (2.3.22) are ∗–automorphisms of C. Hence the formula (2.3.19) determines
an automorphism γ : C → C as the composition of these two automorphisms: γ := γ0 ◦ ϕ ∈ ∗-
Aut C.

This proposition allows us to view also a degree of generality of the before introduced “G–
transformations”, cf. Definition 2.3.13, at least in the present simple case: Without further sym-
metry requirements, the general automorphism group contains much more continuous subgroups
than we have introduced in Definition 2.3.13. It might be worth mentioning that, under some
continuity requirements onto γ ∈ ∗-Aut A (πg–normality, [36, 32]), the homeomorphism ϕγ can
be, in specific models (mean–field, cf. also Subsection 1.1-b, and Section 3.4), uniquely determined
by the set of automorphisms {γ̂F : F ∈ E}.
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3 Specifications and Applications

It will be shown in this chapter that the general scheme for dynamical theories developed in
Chapter 2 applies to a wide scale of existing physical theories. Different specifications of the
formal scheme mainly consist in choices of classes of “generators”, “observables”, and “states”, cf.
Definitions 2.3.2, 2.3.3, and 2.3.5.

A choice of the representation U(G) belongs to important general tools for such a specification,
i.e. a determination of a G-system, cf. Definition 2.3.6. There are, however, also other possible ways
for determination of a specification; some of them are connected with models already published in
literature. Let us give first a review of some of these specifications.

3.1 A Review of Considered Specifications

There is a whole array of general physical theories and/or their “caricatures”, resp. “approxi-
mations” covered by the general model of our “Extended Quantum Mechanics” (EQM)
described in Chapter 2. Let us mention here briefly some typical of them, resp. some of possible
applications of EQM; most of these will be described in some details later in this chapter:

3.1.1 (Quantum Mechanics).

Traditional (linear) quantum mechanics (QM) is obtained as the specification corresponding to
the G–system with trivial group G ≡ {e} ≡ {one–point set consisting of the unit element e ∈ G},
cf. Section 3.3, esp. Subsection 3.3-b. Another possibility of obtaining QM from EQM is the
restriction of any G–system to the subalgebra CGq ⊂ CG, and accepting only such generators the

flows of which leave CGq invariant. ♠
3.1.2 (Nonlinear Quantum Mechanics).

Nonlinear extensions of QM “living” on the projective Hilbert space P (H), and containing in
their sets GG all “relevant” generators is called here the nonlinear QM (NLQM). A specific choice
of “observables” also depends on the accepted interpretation scheme; the same concerns the set of
states of a chosen theory. Note here that, in the framework of this “specification”, it is possible to
describe also the “general theory”, because, e.g. all density matrices could be expressed by unit rays
in the Hilbert space H of Hilbert–Schmidt operators, cf. Remark 3.2.1; such an approach seems,
however, in a certain sense “unnatural”, because it needs some additional restrictions. NLQM will
be shortly discussed in Subsections 3.3-a, and 3.3-e. ♠
3.1.3 (Subsystems in Macroscopic Environment).

The ideas leading to the theory presented in this work are closely connected with models of
infinite quantum systems with specific dynamics “of mean–field (MF) type”, cf. [131, 31, 32, 33,
265, 186, 88]. We shall not go into details on this point in this paper. It was shown, however, in
Theorem 2.3.16, that all the nonlinear evolutions generated by G–(classical) generators Q ∈ GGcl
can be described as one–parameter groups of ∗-automorphisms of a C∗-algebra, namely the C∗-
algebra CG. Let us note here that this C∗-algebraic description allows us, in this formal framework,
to distinguish elementary mixtures from genuine ones: In the case if the domain EF ⊂ g∗

can be identified with the whole S∗ (what is possible in the case of the choice G := U := U(H)),
elementary mixtures are just the pure (i.e. extremal) states of the abelian C∗-subalgebra CGcl ⊂ CG.
For some further comments see Section 3.4. ♠
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3.1.4 (Classical Mechanics).

Classical mechanics (CM) of a system with a symmetry group G is also contained in EQM:
Let a “kinematical” symmetry group G of a classical Hamiltonian system be given; we shall

assume for simplicity that it is a connected and simply connected Lie group. Let the phase space
of this system be a homogeneous space of G, the action of G being there symplectic. This phase
space can be identified with a coadjoint orbit of the group G, or of its one–dimensional central
extension, [149]. Natural generalizations of these systems are Poisson systems “living” on an
Ad∗(G)–invariant part of Lie(G)∗ ≡ g∗, cf. Section 1.4, and also Appendix A.4 (for literature
on classical mechanics see also [278, 1, 7, 256, 173, 8, 180]). We can see from Section 2.3 that
our scheme of EQM restricted to the algebra CGcl leads to description of any such “G–symmetric”
CM–system as a subsystem of our (quantal) G–system. ♠

3.1.5 (Hartree–Fock Theory).

Specific “quasiclassical” and/or “selfconsistent” approximations for QM described as dynamics
on manifolds of generalized coherent states, [222, 150, 200, 201], i.e. the “classical projections of
QM”, [27], are contained in EQM as well; these specifications include the systems obtained by the
“time–dependent variational principle”, [201, 155]. An important special case of these is the time–
dependent Hartree–Fock approximation; the corresponding (infinite dimensional) set of generalized
coherent states consists now from all Slater determinants of an N–fermion system, and the group
G is the whole unitary group of one–particle Hilbert space, cf. Subsection 3.3-d. ♠

3.1.6 (Specific Time–Dependent QM).

A class of quantummechanical systems with time–dependent Hamiltonians can be found as a
subtheory of EQM; it appears to be identical with the corresponding (time independent) NLQM.
This class includes, as a special case, the nonlinear dynamics (for pure states) proposed by Weinberg
in [274].80 The “integrability” of such systems is determined by integrability of corresponding
classical Hamiltonian systems; cf. Sections 3.5, 3.6. ♠

80There is no need of any restriction by U(G) in finite dimensional Hilbert spaces.
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3.1.7 (Aspects of Quantum Measurement).

The developed theory provides a possible framework for dealing with the old fundamental
question of QM – the measurement problem, resp. the problem of “collaps of wave packets”. Such
a possibility is here, however, except of several included remarks and notes at various places of the
text, left just on the level of this unspecified hypothesis. ♠

Since the large part of this chapter will consist of formal constructions on a unique Kählerian
orbit O̺(U), i.e. the projective Hilbert space P (H) consisting of one–dimensional projections ̺ ≡
̺2, it would be useful first to examine the manifold structure of P (H) in some details. Our
analysis is mainly based on the earlier author’s works [26, 27]; the obtained structures, as well as
used mathematical devices are essentially identical with independently composed papers by Cirelli
et al., cf. mainly [63, 62].

3.2 Structure of Projective Hilbert Space

Let H be a complex Hilbert space. Elements x of H will be naturally associated with the
corresponding elements x ∗ of the topological dual space H∗ of H via the Riesz lemma, i.e.
x ∗(y) := (x , y) (∀y ∈ H); the mapping x 7→ x ∗ is an antilinear isometry of H onto H∗. The
space of Hilbert–Schmidt operators H will be (linearly and isometrically) identified with the tensor
productH⊗H∗ in such a way, that the operator (in the Dirac notation, [75]) |x 〉〈y| ≡ x⊗y∗ ∈ L(H)
acts as follows:

|x 〉〈y|z := |x 〉〈y|z 〉 := (y, z )x , ∀z ∈ H.
The scalar product in H is then

(
x ⊗ y∗, z ⊗ u∗)

2
= Tr

(
|y〉〈x |·|z 〉〈u|

)
= (x , z )(u, y) ≡ 〈x |z 〉〈u|y〉.

3.2.1 Remark. There is a natural question whether the dynamics (in general – nonlinear) of
density matrices described in Chapter 2 as dynamics on the orbits O̺(U) with arbitrary dim(̺) can

be described equivalently as a “corresponding” dynamics on the projective Hilbert space P (H̃) ∋ ̺
of some “another” Hilbert space H̃, i.e. a dynamics on the “one–dimensional” orbit O̺(Ũ) with

dim(̺) = 1, Ũ := U(H̃) ≡ (the unitary group of L(H̃)). This question can be motivated, e.g.,
by the fact, that any density matrix ̺ in a separable Hilbert space H can be considered as the
“partial trace”, [71, Section 10.1], of a one–dimensional projection Px on a tensor–product space
H⊗K interpreted usually as the Hilbert space of a composed QM–system containing the considered
system (occurring in the state ̺) as a subsystem described in H (this assertion is almost trivial:
it can be proved by an explicit construction of Px from ̺); cf. also (iii) below. Let us mention
here three possibilities of description of “mixed states dynamics” by a dynamics of vector–states
projected to some P (H̃):

(i) Let us recall that the trace–class operators are T ⊂ H ⊂ L(H), where the space H is the space of
Hilbert–Schmidt operators endowed with a canonical Hilbert space structure. This shows that one
could formulate all the theory of Chapter 2 “in principle” on the orbit of the unitary group U(H)
of H consisting of one–dimensional projections of H, i.e. the projective Hilbert space P (H) of H.
This would need, however, an additional work to distinguish what elements of P (H) are relevant
in what physical situations and, moreover, what unitary transformations in H correspond to those
used in Chapter 2.
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(ii) Another possibility to describe also density matrices and their (possibly nonlinear) dynamics
in framework of a projective Hilbert space comes from elements of the Tomita–Takesaki theory of
modular Hilbert algebras, cf. [254, 42]: Let H̃ be Hilbert space of a faithful weakly∗–continuous
representation of the considered von Neumann algebra of observables (in our case it is L(H)) with
a cyclic and separating vector; that part of P (H̃) which is the image by the canonical projection
H̃→ P (H̃) of the natural positive cone P in H̃, cf. [42, Section 2.5.4], describes the whole S∗(L(H)).

(iii) The last possibility to be mentioned here is that one considering the density matrix ̺ ∈ T(H)
as the partial trace of some Px ∈ P (H⊗K). Let us assume that both the Hilbert spaces H and K
are infinite–dimensional separable. If {ϕ(1)

k ; k ∈ Z+} ⊂ H is an orthonormal basis of H such that
the given density matrix ̺ is

̺ =

∞∑

j=1

λj |ϕ(1)
j 〉〈ϕ

(1)
j |,

then, for any orthonormal basis {ψ(2)
k , k ∈ Z+} of K, the vector x ∈ H⊗K defined by

x :=
∑

j∈Z+

√

λjϕ
(1)
j ⊗ ψ

(2)
j

has the desired property: For any A ∈ L(H), with IK the identity in L(K), one has

Tr(̺A) := TrH(̺·A) ≡ TrH⊗K(Px ·A⊗ IK).

This formula defines the mapping TrK : Px 7→ ̺ called the partial trace, cf. [71]. The mapping
TrK can be extended by linearity to whole space T(H⊗K) of trace–class operators on the Hilbert
space of the “composed system”. Let, e.g., uf (t, ̺) be a unitary cocycle describing (nonlinear)
evolution of ̺ ∈ T(H) according to Proposition 2.1.15. Then

̺(t) ≡ uf (t, ̺)̺uf (t, ̺)
−1,

and the corresponding evolution of x ∈ H⊗K can be chosen as

x (t) ≡
∞∑

j=1

√

λj
(
uf (t, ̺)ϕ

(1)
j

)
⊗ ψ(2)

j .

Now one has to solve the problem whether and how this evolution can be described by a unitary
cocycle ˜uh(t, x ) acting on P (H⊗K).

We do not intend to elaborate further these remarks in this work. They were mainly mentioned
here to stress importance of the special orbit of U(H): the projective Hilbert space P (H). ♥

The projective Hilbert space P (H) will be considered as a complex–analytic manifold, the
structure of which will be presently described.

3.2.2 Notation. The elements of P (H) will be identified with one–dimensional projections and
denoted also by boldface lowercase letters: y ≡ Py ∈ P (H), y ∈ y, i.e. we shall consider elements
of P (H) interchangeably as equivalence classes in H: y := {x ∈ H : ∃λ ∈ C, x = λy}, and as
one–dimensional projections Py ≡ Py. In the case if (0 6=)y ∈ H is expressed by a formula written
in any type of letters, then we shall use the boldface expression in boldface brackets to write down
the corresponding symbol for the class y ∈ P (H), y ∈ y := (formula). ♥
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Let us define now an atlas on the manifold P (H):

3.2.3 Definitions (Atlas on P (H)).

(i) The topology of P (H) will be defined as the factor–topology coming from the Hilbert–space
norm–topology of H. It can be shown, [27], that this topology is equivalent to several other natural
topologies induced on P (H) by its embedding to the Banach spaces L(H), H, Ts, or also to several
weak topologies coming from the duality relation (Px;C) 7→ Tr(CPx) ≡ 〈C;Px〉.
(ii) The charts on P (H) consist of neighbourhoods

Vy := {Px ∈ P (H) : Tr(PxPy) 6= 0} (3.2.1a)

of the points y ∈ P (H), and their (y–dependent) mappings

θy : Vy → [y]⊥, Px 7→ θy(x) := ‖y‖2(y, x )−1(I − Py)x (3.2.1b)

onto the complex orthogonal complements [y]⊥ (considered as complex Hilbert subspaces of H) of
nonzero y ∈ H, y ∈ y.

3.2.4 Proposition. The mapping θx is a homeomorphism of Vx onto [x]⊥ (with the norm–topology
of H). The set

{(Vx; θx) : 0 6= x ∈ H} (3.2.2a)

is an atlas on P (H) defining a complex–analytic manifold structure consistent with the topology of
P (H). ♣
Proof. For any yj ∈ Vx, and any yj ∈ yj (j = 1, 2), it is y1 6= y2 iff (x, y2)y1 6= (x, y1)y2, hence
according to (3.2.1), θx is injective.

For any z ∈ [x]⊥ and y := z + x, we have y ∈ Vx (since x 6= 0), and θx(y) = z, hence θx is
bijective. Let ‖x‖ := 1. For zj ∈ [x]⊥, yj := zj + x (j = 1, 2) the identity

1− Tr(Py1Py2) =
1

(‖z1‖2 + 1)(‖z2‖2 + 1)

(
‖z1 − z2‖2 + ‖z2‖2 ·‖(I − Pz2)(z1 − z2)‖2

)
(3.2.2b)

implies the bicontinuity of θx. For any 0 6= xj ∈ H, j = 1, 2, and for z ∈ θx1(Vx1 ∩ Vx2), we have

θx2 ◦ θ−1
x1

(z) = ‖x2‖2
x1 + z

(x2, x1 + z)
− x2, (3.2.2c)

and we can see, cf. [40, 58], that the mapping

θx2 ◦ θ−1
x1

: θx1 (Vx1 ∩ Vx2)→ θx2 (Vx1 ∩ Vx2) (3.2.2d)

is a complex analytic function.

The tangent space TyP (H) of P (H) at y ∈ P (H) will be identified with the linear space
of classes of mutually tangent differentiable curves at y as in the finite dimensional case, [1,
61, 152]; this is in accordance with our results from Subsection 2.1-b, cf. Definitions 2.1.3, and
Proposition 2.1.5. For any differentiable mapping θ of a neighbourhood of y onto a neighbourhood
of θ(y) in another differentiable manifold, the corresponding tangent mapping Tyθ maps the vector
v ∈ TyP (H) represented by a curve t 7→ cv(t) (cv(0) = y) onto the vector tangent at θ(y)
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represented by the curve t 7→ θ(cv(t)). If x ∈ Vy (hence y ∈ Vx), Tyθx maps TyP (H) onto [x ]⊥,
and the choice of x := y ∈ y (in the index of θx ) leads to a natural (y–dependent) identification
of TyP (H) with [y]⊥ (and also with Vy). The vector v ∈ TyP (H) (let y be fixed) is mapped onto
vx := Tyθx (v) ∈ [x ]⊥,

vx :=
d

dt

∣
∣
∣
∣
t=0

θx (cv(t)). (3.2.3a)

One can choose, e.g.,

cv(t) := (exp(−itB(v))y) = Ad∗
(
exp(−itB(v))

)
Py, (3.2.3b)

where B(v) is a selfadjoint element of L(H) representing an arbitrarily chosen vector v ∈ TyP (H)
in this way. With such a choice of B(v), one has the expression

vx = −i (x , y)−1‖x‖2
(

I − PyPx
Tr(PyPx)

)

B(v)y. (3.2.3c)

For x = y, this leads to
vy = −i (I − Py)B(v)y. (3.2.3d)

Specifying v by the choice of any v ∈ [y]⊥, and by the choice

B(v) := i ‖y‖−2(|v〉〈y| − |y〉〈v |), (3.2.3e)

one obtains vy = v . With a chosen y ∈ y, and the corresponding “identification θy” of TyP (H)
with [y]⊥, one can identify v ≡ v ≡ vy. For different choices of x in (3.2.3), on the other hand,
one obtains expressions vx and vz of v in different charts θx and θz related mutually by

vz = ‖x‖−2(z , y)−1‖z‖2(x , y)

(

I − |y〉〈z |
(z , y)

)

vx. (3.2.4)

Let us note that (z , y)−1|y〉〈z | = PyPz/T r(PyPz). One can now also check validity of the following
two mutually inverse relations:

vx = (x , y)−1‖x‖2
(

I − PyPx
Tr(PyPx)

)

vy , (3.2.5a)

and
vy = ‖x‖−2(x , y)(I − Py)vx. (3.2.5b)

We shall consider P (H) as a real analytic manifold endowed with (integrable, [63]) complex struc-
ture

J ∈ T 1
1 (P (H))

(T rs (M) denotes the vector space of all r–times contravariant and s–times covariant smooth tensor
fields on a manifold M) defined as the section y 7→ Jy ∈ L([y]⊥) with (Jyv)y := ivy, i.e. the
complex structure is determined by the given multiplication by the imaginary unit “i” in H. The
Kähler metrics Γ ∈ T 0

2 (P (H)) on P (H), cf. [26, 27, 63], called also the Fubini–Study metrics, can
be expressed in the following form:

Γy(v,w) := 2‖y‖−2Re(vy,wy), v,w ∈ TyP (H). (3.2.6)
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The corresponding symplectic form Ω ∈ T 0
2 (P (H)) is then expressed by:

Ωy(v,w) := Γy(v, Jw) = −2‖y‖−2Im(vy,wy). (3.2.7)

These structures coincide on P (H) with those coming from the tensor field Ψ, cf. (2.1.27).

3.2.5 Lemma. The two–form Ω in (3.2.7) coincides with the restriction to the orbit P (H) of the
form Ω from (2.1.27). ♣
Proof. The mapping βν defined in (2.1.7) for ν := y ∈ P (H) has the form βy(c) = i[c, Py], where
c ∈ TyOy(U) ⊂ Ts is represented (cf. Definitions 2.1.3(iii)) by a bounded operator. If a vector
v ∈ TyP (H) corresponds to the curve

t 7→ cv(t) := (exp(−itB(v))y) = Ad∗(exp(−itB(v))
)
Py, (3.2.8a)

then the corresponding operator is

c = ċv :=
d

dt

∣
∣
∣
∣
t=0

cv(t) = i[Py, B(v)]. (3.2.8b)

By a use of Definitions 2.1.3(iv), one obtains βy(ċv) = qy(B(v)). Inserting these expressions
to (2.1.27), we obtain the relation

Ωy(v,w) = i T r
(
Py[qy(B(v)), qy(B(w))]

)
, (3.2.8c)

what is identical with the result of the corresponding insertions from equations (3.2.3) into (3.2.7).

Expressed in the chart θx, the Kähler structure Ψ on P (H) has the form:

Γy(v,w) − iΩy(v,w) = 2‖y‖−2Tr(PxPy)(vx, (I − Py)wx). (3.2.9)

Inserting from (3.2.3) into (3.2.6) and (3.2.7), one obtains an expression of the Kähler structure
in terms of the selfadjoint operators B(v(x)) and B(w(x)) representing the vector fields v and w
in any point x ∈ P (H), cf. also (2.1.27):

Ψy(v,w) = 2‖y‖−2(vy,wy) =

2Tr
(
PyB(v(y))B(w(y))

)
− 2Tr

(
PyB(v(y))

)
Tr
(
PyB(w(y))

)
.

(3.2.10)

It can be shown, [62], that the distance function d(x,y) on P (H) corresponding to the Rieman-
nian metrics Γ is expressed by81

d(x,y) =
√

2 arccos
√

Tr(PxPy), (3.2.11)

with values in the interval
[

0; π√
2

]

.

The linearity of conventional quantummechanical time–evolutions, as well as other symmetry
transformations is closely connected with the metrics (3.2.11). The corresponding mathematical
formulation is in fact a rephrasing of the very well known Wigner theorem, cf. Remark 2.3.14, [281,
284]:

81The derivation of the distance d(x,y) is easy after accepting the (plausible looking) assumption, that any
geodesic is contained in the submanifold of P (H) homeomorphic to a real two–dimensional sphere representing the
projective Hilbert space of the two–dimensional complex subspace of H spanned by {x, y}. The nontrivial part of
the proof consists in justification of this assumption, [30].
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3.2.6 Proposition. Let Φ be any bijection of P (H) onto itself conserving the distance function d
from (3.2.11). Then there is a linear, or antilinear isometry uΦ of H onto itself representing Φ in
the sense that Φ(y) = (uΦy) for all y ∈ P (H) (0 6= y ∈ y). If uΦ is linear, then Φ conserves also
the symplectic form Ω:

(Φ∗Ω)y (v,w) := ΩΦ(y) (Φ∗v,Φ∗w) = Ωy(v,w), (3.2.12)

i.e. Φ is an isometric symplectomorphism of P (H). The mapping Φ changes the sign at the
symplectic form Ω in the case of antilinear uΦ: Φ∗Ω ≡ −Ω. ♣

Proof. Conservation of d means conservation of the “transition probabilities” Tr(PxPy), ∀x , y ∈
H\{0}; this means also conservation of the metric tensor Γ. According to the Wigner theorem there
is unitary or antiunitary bijection uΦ : H → H, as stated in the proposition. But the symplectic
form is invariant with respect to unitary transformation, as was shown in the Remark 2.2.11. The
last part of the proposition is a consequence of the fact that antiunitary mappings u change the
value of the scalar product in H to its complex conjugate: (ux, uy) = (y, x). For more details cf.
[62, 27, 63].

3.2.7 Remark. A general (“nonlinear”) symplectomorphism of P (H) does not conserve Γ (equiva-
lently: the distance function d). This might be considered as a strong argument for linearity of QM,
since, as we shall see soon in Section 3.3, the metric tensor leading to this distance function is a tool
for geometric reformulation of the probability interpretation of QM. By introducing the “nonlinear
observables” and their nonlinear transformations, and also the corresponding interpretation based
on the “two point function representatives” of observables, cf. Definitions 2.3.3, and 2.3.4, we have
overcame the difficulty with noninvariance of this “interpretational device” with respect to general
symplectomorphisms. ♥

3.3 Symplectic Form of QM and NLQM; Restrictions of QM

The traditional (linear) quantum mechanics (QM) is completely described by kinematics and dy-
namics on P (H), i.e. the effects connected with other parts of the “elementary quantum phase
space” S∗ containing density matrices ̺ 6= ̺2 which are described by the formalism of Chapter 2
can be reproduced by the restriction of that formalism to the “one–dimensional” orbit P (H) only,
and by “dynamics independent” manipulations with objects defined on it. This is due to linearity,
since the used transformations (time evolutions, symmetries) of S∗ are then affine mappings, and
expectations also affinely depend on ̺ ∈ S∗.

In the terminology of Chapter 2, QM can be obtained as theG–system on an infinite–dimensional
separable Hilbert space H with the trivial group G := {e}. In this case, the set GGcl of G–classical
generators consists of constants. The set GG of G–symmetry generators, on the other hand, con-
tains (densely defined) functions hY corresponding to all selfadjoint operators Y . Observables

can be represented by affine functions hf only, since their function representatives ĥf do not de-

pend on the G–classical variable ν in the ascription (̺; ν) 7→ ĥf(̺, ν). The “genuine mixtures”
µ, µ′ ∈ MG corresponding to the same barycentres b(µ) = b(µ′) are not mutually distinguish-
able by measurements of the G–observables, neither they could be distinguished after a use of
symmetry transformations (resp. evolutions) in the framework of this G–system. The “permit-
ted” (possibly unbounded) generators and observables include (densely defined) affine functions
ν 7→ hX(ν) := ν(X) corresponding to selfadjoint operators X .
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We shall consider “nonlinear extensions” of this QM–system (i.e. of the G–system with trivial
G := {e}) by allowing evolutions of states by nonlinear generators.82 To be able to deal also with
the questions of “integrability” of also nonlinear functions of these hX ’s, see Definitions 2.2.13, it is
useful to (choose and to) consider these X ’s as selfadjoint generators of some unitary representation
V (S) of a “symmetry group S” associated with the considered system (e.g. S could be the 2n+1–
dimensional Weyl–Heisenberg group, i.e. the standard one–dimensional central extension, [149,
268], of the commutative 2n–dimensional group of translations in classical linear 2n–dimensional
phase space, see below in this section). These versions of nonlinear quantum mechanics (NLQM)
are not symmetric with respect to transitions between Schrödinger and Heisenberg pictures: They
can be used in Schrödinger picture only, since a nonlinear (i.e. nonaffine) transformation of S∗
cannot be expressed by some “transition to adjoints”, [41], as a transformation of the algebra of
linear observables: this algebra could not stay invariant with respect to such a transformation.

Another way of “transitions to nonlinearity” in QM consists in restrictions of (linear) dynamics
of QM to submanifolds of P (H) (or also of Ts), e.g. to some orbits O̺(S) of a representation
V (S). We can obtain in that way also usual “quasiclassical”, or “self-consistent” approximations,
e.g. WKB, or Hartree–Fock approximations as versions of NLQM, cf. also our Subsections 3.3-c
and 3.3-e. The group S needn’t be interpreted, however, as a group of transformations of a “classical
background” (cf. Section 3.4) being dynamically connected with the system, as it is in the case of
G–systems with nontrivial G and general (nonlinear) G–generators. Only affine functions ν 7→ f(ν)
(and their restrictions)83 defined on dense sub–domains of S∗ are used here in the rôles of the
generators as well as observables. All the “traditional” quantities are “essentially contained” in
the sets of corresponding quantities of any G–system: D(F) is dense in S∗, and for calculation of
any bounded (hence continuous) observable f∗ = f ∈ CGq (≡ L(H), cf. Definition 2.3.3) one can use
values hf(ν) for ν ∈ D(F) (cf.(2.3.3), and Interpretation 2.3.11). The general observables hX used
in the rôle of generators could, however, violate the relation ϕ̃Xt D(F) ⊂ D(F) for some G–systems.

We shall describe in this section the symplectic reformulation (equivalent to the usual Hilbert
space formulation) of traditional (linear) QM, as well some of its restrictions to submanifolds of
P (H) leading to nonlinear dynamics (corresponding, e.g., to some “quasiclassical approximations”)
the general form of which was described in Chapter 2. Let us first, however, formulate briefly a
general nonlinear quantum mechanics (NLQM) on the projective Hilbert space P (H) to point out
some differences between QM and NLQM.

3.3-a Generalized quantum mechanics on P (H)

We shall consider here a general (nonlinear) EQM, but we shall restrict our attention to dynamics
and kinematics restricted to P (H) only. Let us choose also a Lie group G and its unitary repre-
sentation U(G) such, that the space of generators GG includes all the (nonlinear) generators we
want to use in the theory. Let us consider, however, only elementary quantum observables CGq ,
cf. Definition 2.3.3(ii), in the rôle of bounded observables we intend to interpret in the considered
model. Hence, for nonlinear evolutions, the Heisenberg picture will not be used. We shall call the
chosen system a restricted G–system (i.e. restricted to the “restricted quantum phase space”

82Such an extension of QM can be obtained by restriction of a G–system with nontrivial G in the way, that we
shall admit linear observables only, i.e. the observables represented by nonconstant operator–valued functions on EF

will be ignored (cf. Definitions 2.3.3).
83Restrictions of affine functions to submanifolds O̺(S) considered as Hamiltonians on the phase spaces O̺(S)

lead generally, however, to nonlinear dynamics on these submanifolds.
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P (H) ⊂ S∗, with the restricted set of observables CGq ).
If Xj = X∗

j are elements of the representation dU(g) of the Lie algebra g of G, then the typical

form of the (“restricted”) generators Q ∈ GG will be

Q : ν(∈ P (H)) 7→ Q(ν) ≡ Q(ν(X1), ν(X2), . . . ),

with Q ∈ C∞(g∗,R). The corresponding nonlinear Schrödinger equations are discussed in Sec-
tions 3.5, 3.6, and also in Subsection 3.3-e.

Let us denote FP (H) := C∞(P (H),R) the differentiable functions on the Banach manifold
P (H). The differential df ∈ T 0

1 (P (H)) of f ∈ FP (H) can be determined by the formula

dxf(w(x)) :=
d

dt

∣
∣
∣
∣
t=0

f
(
(exp(−itB(w(x)))x)

)
, (3.3.1)

with B(w) specified in (3.2.3), for any vector field w ∈ T 1
0 (P (H)). The symplectic form Ω is

strongly nondegenerate [61] on P (H) (cf. Theorem 2.1.19), hence it associates with each f ∈ FP (H)

a unique Hamiltonian vector field vf on P (H) such that

Ω(vf ,w) = −df(w), ∀w ∈ T 1
0 (P (H)). (3.3.2)

The (local) flow ϕ̃f of vf leaves Ω invariant, hence for the Lie derivative £vf we have:

£vfΩ = 0.

The Poisson bracket {f, h} := Ω(vf ,vh) ∈ FP (H) determines the differential equation (equivalent

to the Schrödinger equation for affine f) for the Hamiltonian flow ϕ̃f . Also the following formula
(well known from CM, [7, 1]) is valid here:

dh(vf ) = {f, h} (∀h ∈ FP (H)).

We shall formulate now a necessary and sufficient condition under which a function f ∈ FP (H) is
affine, i.e. is expressed by a linear operator:

3.3.1 Proposition. Let f ∈ FP (H), and let vf is the corresponding Hamiltonian vector field on
P (H). Let Γ be the canonical (Kählerian) metrics on P (H). Then £vfΓ ≡ 0 iff there is a bounded
selfadjoint operator a = a∗ ∈ L(H) such that:

f(x) ≡ ha(x) := Tr(Pxa), 0 6= x ∈ x. (3.3.3a)

In the case of f = ha, vf is complete, and one has

ϕ̃ft (x) = (exp(−ita)x), t ∈ R, x ∈ P (H), 0 6= x ∈ x. (3.3.3b)

Hence the flows of those Hamiltonian vectors fields vf which conserve the metrics Γ on P (H)
correspond to norm continuous one–parameter unitary groups on H. ♣
A proof is contained in [63, Propositions 3.4, and 3.5], resp. in [27].

Let us introduce also the Riemann bracket [[·, ·]] in accordance with [63]:

[[f, h]] := Γ(vf ,vh). (3.3.4)

An immediate consequence of (3.2.10) and of the Proposition 3.3.1 is the following lemma, cf.
also [63]:
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3.3.2 Lemma. Let ha ∈ FP (H) be defined for any a ∈ L(H) by (3.3.3). Then for any selfadjoint
a, b ∈ L(H), the following formula holds:

2ha ∗ hb := 2ha·b = [[ha, hb]]− i{ha, hb}+ hahb. (3.3.5)

The mappings a 7→ ha(x) (x ∈ P (H)) are continuous in the weak operator topology. ♣
Due to (3.3.5), we can calculate Tr(Pxa

n) (∀n ∈ N) in terms of the function ha, what allows
us to express the probability interpretation of QM in differential geometrical terms on P (H):
The formula (3.3.5) leads us (via the functional calculus) to a rule for calculation of hf(a) for an
arbitrary real bounded Borel function f defined on the spectrum σ(a) of a = a∗ ∈ L(H)s. Then
the number hf(a)(x) ≡ Tr(Pxf(a)) can be interpreted as the expectation value of the “observable”
(represented by the operator) f(a) obtained by averaging of repeated measurements of f(a) in the
(repeatedly prepared) pure quantum state x ∈ S∗. The probability of finding measured values of
a selfadjoint a ∈ L(H)s in an interval J ⊂ R is then expressed by taking for f the characteristic
function χJ of that interval:

prob(x, a ∈ J) = Tr(PxχJ(a)). (3.3.6)

Calculating expectations of arbitrary selfadjoint a in L(H) for any (elementary) mixture ̺ ∈ S
in the standard way from the expectations in pure states (by corresponding convex combinations),
we obtain the result Tr(̺a), in accordance with QM.

Let us stress also here that each ̺ such that ̺2 6= ̺ ∈ S∗ can be decomposed in uncountably
many different ways into (not necessarily orthogonal) convex combinations

̺ =
∑

j

λjPx(j), λj ≥ 0,
∑

j

λj = 1,

of one–dimensional projections Px(j), x(j) ∈ H (representing pure states).84 Different decom-
positions (Px(j);λj ; j ∈ J), and (Px′(j′);λ

′
j′ ; j

′ ∈ J ′) of a given ̺ can be represented, in an-
other language, by probability measures µ̺, µ

′
̺ on the state space S∗ with the same barycentre

b(µ̺) = b(µ′
̺) = ̺, the measures being concentrated on at most countable sets of points (i.e. on

the sets {Px(j) : j ∈ J}):
µ̺({Px(j)}) = λj , ∀j ∈ J,

hence the states ωµ (µ = µ̺, µ
′
̺, . . . ), all representing the same ̺, give the following expressions

for expectation values of a ∈ L(H)s:

ωµ(a) :=

∫

S∗

ν(a)µ(dν) ≡
∫

S∗

Tr(aν)µ(dν)

=

∫

P (H)

Tr(aν)µ(dν) =

∫

P (H)

ha(Px)µ(dPx)

=
∑

j∈J
ha(Px(j))µ({Px(j)}) =: Tr(b(µ)a) = Tr(̺a).

(3.3.7)

In “orthodox” linear QM the states corresponding to measures on S∗ with the same resultant (cf.
page 56) are indistinguishable. This is one of the important differences of QM from NLQM (also
in the framework of our restricted model of EQM).

84This is an essential difference of QM from CM.
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3.3.3 Note. Let Q be a nonlinear generator of time evolution in our theory. Then, according
to Proposition 3.3.1, its flow ϕ̃Q does not conserve the canonical metrics Γ, hence it does not
conserve the distance function d : P (H) × P (H) → R+. From the expression (3.2.11) of the
distance function d(Px, Py) we see that, in turn, it does not conserve the “transition probabilities”
Tr(PxPy) = |〈x|y〉|2 between the states x,y ∈ P (H). This shows, however, that different measures
µ 6= µ′ with the same barycentres b(µ) = b(µ′) can have different barycentres after some time

t 6= 0 : b(µ ◦ ϕ̃Q
−t) 6= b(µ′ ◦ ϕ̃Q

−t), and validity of some of the equalities in (3.3.7) will depend on
time (cf. also Subsection 2.1-e). This might lead to prediction of superluminal communication (for
a specific, but rather conventional, interpretation of the process of measurement in QM), as is
pointed out in the Interpretation 2.1.24. ♥
3.3.4 Interpretation. In the traditional interpretation of QM, the expectation value of the nu-
merical results of measurement of an “observable f” (i.e. a scalar–valued function f of quan-
tum states y, in this case an “affine” one, resp. Kähler function in the terminology of [63])
in an arbitrary (pure) state y ∈ P (H) equals to its value f(y), i.e. for f:=hX , the expecta-
tion is hX(y) = Tr(PyX) = 〈y|X |y〉, if ‖y‖ = 1. The calculations of these expectations are
closely connected, in the orthodox QM, with eigenstates of the operators X (assume now, that
X has pure point spectrum). In terms of the presented “geometric formulation”, the eigenvectors
x(k) ≡ |x(k)〉 ∈ H,

X |x(k)〉 = κk|x(k)〉, k ∈ K,
∑

k∈K
Px(k) = IH,

resp. the one–dimensional eigenprojections Px(k) ≡ x(k) ∈ P (H), are exactly the “stationary
points” of the generators hX , cf.3.3.5.

Stationarity of the points x(k) is rather a “dynamical property”. The observable probabilities
can be expressed with a help of the projection measure EX of X : EX(J) := χJ (X), as above,
see (3.3.6).

Let us denote the eigenprojections of X corresponding to single eigenvalues κk by Ek,

Ek := EX({κk}) :=
∑

j∈K:κj=κk

Px(j).

Then the probability of obtaining the result κk, if X is measured on the system prepared in the
state y ∈ P (H), is

prob(y;X = κk) = Tr(EkPy).

The values of these probabilities, for dimEk = 1, i.e. Ek = Px(k), are the above discussed (cf.
Remark 2.3.14) “transition probabilities”, and the values of the function hX in these points
Px(k) are just the measured eigenvalues, hX(x(k)) = κk. Hence the expectation value of X with
pure point spectrum in an arbitrary y ∈ P (H) is

〈X〉y :=hX(y) =
∑

k∈K
Tr(Px(k)Py)hX(x(k)) ≡ Tr

(
∑

k∈K
hX
(
x(k)

)
Px(k)Py

)

=Tr

(
∑

k∈K
κkPx(k)Py

)

≡ Tr(XPy).
(3.3.8)

The first sum is often interpreted in the sense of classical probability, [96], by considering
occurrences of different κk (better: of different orthogonal eigenstates) as independent “events”,
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and the function x(k) 7→ Tr(PyPx(k)) is a measure on the space of these “events” determined
by the state y ∈ P (H), and consisting of the “transition probabilities”. If the concept of the
“transition probabilities” (which is coming from an interpretation of quantum measurement) were
taken seriously also for NLQM, and the rôle accepted for the stationary points {x(k) ∈ P (H) :
dx(k)f = 0} =: S(f) of a “nonlinear observable” f (cf. [274]) were formulated as above, in the
case of linear observables,85 with keeping unchanged the above formula (3.3.8) for calculation of
expectations, i.e. if we postulated something like

〈f〉y :=
∑

x∈S(f)

Tr(PxPy)f(x), ∀y ∈ P (H),

then we would come to a contradiction: The “nonlinear” function f would be affine:

f ≡ hY , Y :=
∑

x∈S(f)

f(x)Px.

This consideration indicates that a “traditional–like” interpretation of observables expressed as
numerical functions on P (H) (our “reduced function representations”, cf. Definitions 2.3.4) cannot
be used in NLQM. �

3.3.5 Lemma. Let X = X∗ be any selfadjoint operator on H with corresponding (densely defined)
function hX on P (H). Let x 7→ dxhX be its generalized differential (cf. Definition 2.2.9) defined
on the domain D(hX), cf. also Lemma 2.2.7, and Proposition 2.2.8. Then the points x(k) lying in
the domain of dhX in which the differential vanishes, satisfy the relation

dx(k)hX = 0⇔ X |x(k)〉 = κk|x(k)〉, (x(k) ∈ x(k) ∈ P (H)),

i.e. they are exactly the one–dimensional eigenspaces of X. ♣

Proof. The differential dxhX can be represented, according to considerations in Subsection 2.2-b,
on its domain by the bounded operator

dxhX = qx(X) ≡ PxX(IH − Px) + (IH − Px)XPx = PxX +XPx − 2PxXPx,

and its vanishing implies commutativity of Px with X , i.e. invariance of the one–dimensional
subspace x with respect to the action of X . For proof of the converse, the arguments go in the
reversed order.

Let us stop here with general considerations, and we shall turn to more specific cases now.

3.3-b The Weyl–Heisenberg group and CCR

The 2n+ 1–dimensional Weyl–Heisenberg group GWH (it is also called the Heisenberg group)
can be chosen in our theory either in the rôle of the group G defining a G–system, cf. Defini-
tion 2.3.6, or in the rôle of the above mentioned Lie group S determining domains for generalized
fields (cf. Definition 2.2.13). We shall investigate here the action of the standard irreducible

85This means that we would work with such an “observable” as with a random variable in the sense of Kolmogorov
formulation of probability theory, by which the stationary states form the the whole space of “elementary events”.
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Schrödinger representation U(GWH) of GWH on H in some details, as well as the quantum kine-
matics and dynamics constructed with a help of it. As an expression of the corresponding Lie
algebra relations between generators we obtain the usual definitions of canonical commutation
relations (CCR).

Let us recall that the 2n + 1–dimensional group GWH can be defined as the group of square
(n+ 2)× (n+ 2)–matrices, [149, 288]:

g(q, p, s) :=





1 −q s
0 In pT

0 0 1



 , (3.3.9a)

where q := {q1, q2, . . . qn} ∈ Rn, p := {p1, p2, . . . pn} ∈ Rn, s ∈ R, In is the unit n × n–matrix,
pT is the transposed row p (i.e. the column vector), and 0’s have an appropriate meaning of zero
submatrices according to their place in the matrix. The group multiplication is represented by the
matrix multiplication:

g(q, p, s)g(q′, p′, s′) = g(q + q′, p+ p′, s+ s′ − q ·p′), (3.3.9b)

with q·p′ :=
∑

j qjp
′
j . Let’s note that pT (or p) can be considered as an element of the dual (Rn)∗,

hence its value on q ∈ Rn is 〈pT ; q〉 := q ·p :=
∑

j qjpj .

The group GWH is a central extension, [149, 268], of the commutative group R2n ∋ (q; p) ≡ x
(with respect to the addition x+x′) by the additive group R, corresponding to the multiplier (in
additive notation) [268, Chap. X] m̃(x, x′) ≡ −p′ ·q.
3.3.6 Note (Multipliers and quantization). The commutative group R2n is naturally identified with
a classical phase space, or with the group of its translations. As any commutative group, it has
only one–dimensional linear (unitary) irreducible representations. It has, however, many (mutually
inequivalent) infinite–dimensional projective representations, i.e. “unitary representations up
to a phase factor”. Namely multipliers m(x, y), x, y ∈ R2n, i.e. real–valued functions on the direct
product of two copies of the group, R2n × R2n, satisfying

m(x + y, z) +m(x, y) ≡ m(x, y + z) +m(y, z), m(x, 0) ≡ m(0, x) ≡ 0, (3.3.10)

are the (logarithms/i of the) phase factors of the (noncommutative) projective representations. In a
more general setting, let G be a Lie group, and say V (G) be its continuous projective representation
with a multiplier m: Let g1 ·g2 ∈ G denotes the multiplication in G (e.g. addition in R2n). Let
m be a multiplier of G, i.e. m : G × G → R satisfying the relations in (3.3.10), with, e.g.,
m(g1 ·g2, g3) 7→ m(x + y, z), etc. The projective m–representation V (G) is characterized by
unitarity of the all V (g)’s, and by the relation:

V (g1 ·g2) ≡ exp(i·m(g1, g2))V (g1)V (g2). (3.3.11a)

One can make from these “unitary up to factors” representations V (G) genuine unitary represen-
tations of larger noncommutative groups Gm constructed from the original group G (e.g. from our
G := R2n) with a help of the corresponding multipliers m. These central extensions Gm of a
Lie group G are constructed as follows:

Let (g;λ) ∈ G × S1, with S1 := {λ ∈ C : |λ| = 1}. Then the central extension Gm of the
group G by the commutative group S1 (resp. by R, if the “corresponding logarithms” are taken)
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corresponding to the multiplier m consists of the couples (g;λ), and the group multiplication is
defined by

(g1;λ1)·(g2;λ2) :=
(

g1 ·g2; exp
(
i·m(g1, g2)

)
λ1λ2

)

. (3.3.11b)

This simple procedure makes from a (say, commutative) group G another (noncommutative) group
Gm, provided m is not exact; exactness of m means the existence of a real function a : G → R

such, that
m(g1, g2) ≡ a(g1 ·g2)− a(g1)− a(g2). (3.3.11c)

If the difference of two multipliers m1 −m2 (what is always again a multiplier) is exact, m1 and
m2 are (mutually) similar, or cohomologous.

Let us take now the m–representation V (G). It can be “translated” into a unitary representa-
tion V (Gm) of Gm as follows:

V
(
(g;λ)

)
:= λ−1V (g). (3.3.11d)

There is a certain “both-sided” correspondence between projective “m–representations” of G,
and a class of unitary representations of Gm. For details cf. [268, Theorem 10.16]. As we shall see
in a while, traditional “quantization” of classical flat phase spaces corresponds to specific choice
of a multiplier of G := R2n, determined by the experimental value of the Planck constant ~. ♥

To any similar multiplier m̃′ related to m̃ by a real–valued function a : (G ∋)x 7→ a(x), a(0) =
0:

m̃′(x, x′) ≡ m̃(x, x′) + a(x+ x′)− a(x) − a(x′) (3.3.12a)

corresponds the central extension isomorphic to GWH . The choice a(q; p) := 1
2p·q gives the following

group–multiplication in GWH (corresponding to a reparametrization of the abstract group GWH)

g̃(q, p, s)g̃(q′, p′, s′) = g̃(q + q′, p+ p′, s+ s′ +
1

2
(q′ ·p− p′ ·q)), (3.3.12b)

and the corresponding matrix representation is

g̃(q, p, s) :=





1 −q s− p·q/2
0 In pT

0 0 1



 , (3.3.12c)

what corresponds to the form usually used in QM, as will be clear soon.
The Lie algebra of GWH can be described as the matrix algebra consisting of derivatives of

matrices g(q, p, s) with respect to the parameters. Let the basis {ξj , ξ0; j = 1, 2, . . .2n} in the Lie
algebra Lie(GWH) be chosen such, that an arbitrary element ξ ∈ Lie(GWH) is of the form

ξ(α, γ, β) ≡
n∑

j=1

(
αjξn+j + γjξj

)
+ βξ0 ≡





0 −α β
0 0n γT

0 0 0



 , (3.3.13a)

where αj , γj , β ∈ R, j = 1, 2, . . . n. We shall use this parametrization here.
The commutation relations on Lie(GWH) are expressed by this basis as

[ξj+n, ξk+n] = 0, [ξj , ξk] = 0,

[ξj , ξk+n] = δjkξ0, j, k = 1, 2, . . . n.
(3.3.13b)
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Those elements F of the dual Lie(GWH)∗ for which F (ξ0) 6= 0 can be parametrized in the basis
dual to the chosen one in Lie(GWH) by parameters q0, p0 ∈ Rn, s0 ∈ R \ {0} in such a way, that
they can be conveniently described by the matrix

F (q0, p0, s0) ≡





0 0 0
s0p

T
0 0n 0

s0 s0q0 0



 . (3.3.13c)

The value of the linear functional F with F (ξ0) 6= 0 on the element ξ is then

F (ξ) := 〈F ; ξ〉 ≡ Tr
[
F (q0, p0, s0)ξ(α, γ, β)

]
= (q0 ·γ − p0 ·α+ β)s0. (3.3.13d)

For F ’s with F (ξ0) = 0, we have

F (ξ) ≡
n∑

j=1

(
αjF (ξn+j) + γjF (ξj)

)
+ βF (ξ0) =

n∑

j=1

(
αjF (ξn+j) + γjF (ξj)

)
. (3.3.13e)

The coadjoint action on elements with F (ξ0) 6= 0 is expressed then by

Ad∗
(
g(q, p, s)

)





0 0 0
s0p

T
0 0n 0

s0 s0q0 0



 =





0 0 0

s0
(
p0 + p

)T
0n 0

s0 s0
(
q0 + q

)
0



 . (3.3.13f)

It is easy to see that the points F ∈ Lie(GWH)∗ with F (ξ0) = 0 are all stable with respect
to Ad∗(GWH)–action. Hence, the Ad∗(GWH)–orbits are either single points F with F (ξ0) = 0
covering a 2n–dimensional hyperplane, or the whole hyperplanes with fixed s0 6= 0. Let us note that
the action of Ad∗

(
g(q, p, s)

)
does not depend on the parameter s ∈ R, hence its above expression

is independent also on the considered reparametrization of GWH .
All irreducible unitary representations πλ of GWH (which are more than one–dimensional) can

be parametrized by a real parameter λ 6= 0, and they are realized in H:=L2(Rn) as follows (in the
parametrization of (3.3.9), [288]):

[πλ(g(q, p, s))ψ](q′) = eiλ(s+p·q′)ψ(q′ − q), ∀ q, q′, p ∈ R
n, s ∈ R, ψ ∈ L2(Rn). (3.3.14)

The generators of πλ corresponding to the chosen parameters are

−i λPj := ∂
∂qj

∣
∣
∣
0
πλ = − ∂

∂q′j
= −iX(ξj+n), (3.3.15a)

i λQj := ∂
∂pj

∣
∣
∣
0
πλ = i λq′j · (i.e. multiplication by the variable q′j)

= −iX(ξj), j = 1, . . . n, (3.3.15b)

i (λ)2X0 := ∂
∂s

∣
∣
0
πλ = i λI = −iX(ξ0), (3.3.15c)

where the labels “0” at the derivatives denote differentiations in the unit element of GWH .
The Schrödinger representation of CCR can be considered as that one given by the generators

of πλ with λ := 1
~
. We shall need, however, the “corresponding” group representation of GWH

expressing the Weyl form of CCR. If we use the parametrization of GWH from (3.3.12), we obtain
the rewriting of the representation πλ from (3.3.14) in the form Wλ (the Weyl form):

[Wλ(q, p, s)ψ](q′) = eiλ(s+p·q′− 1
2 p·q)ψ(q′ − q), ∀q, q′, p ∈ R

n, s ∈ R, ψ ∈ L2(Rn). (3.3.16)
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3.3.7 Notation. Let us denote the projective representation of the commutative group R2n

usually referred to as “the Weyl form of (the representation of) CCR”, by Wλ(x) := Wλ(q, p, 0)
with {q; p} =: x ∈ R2n. Note that the projective representation Wλ of R2n differs from the “corre-
sponding” unitary representation of GWH just by a “phase factor”:

Wλ(q, p, s) ≡Wλ(x)·eiλs,

hence the Ad∗(·)–action of both representations on T(H) is identical – it depends on elements of
the factorgroup GWH/R = R2n only.

Let Xj := Qj, Xj+n := Pj , j = 1, 2, . . . n, X0 := 1
λI, cf.(3.3.15), be selfadjoint generators of

Wλ. Let ST = −S = S−1 be the 2n× 2n–symplectic matrix with elements

Sj j+n = −Sj+n j := 1, j = 1, 2, . . . n; Sjk = 0 otherwise.

For selfadjoint operators X,Y on H, let [X,Y ] ≡ XY −YX denote the commutator on its domain,
and [X,Y ] = i Z, for selfadjoint X,Y, Z on H will mean equality of operators restricted to their
common domain. ♦

The operators Xj, j = 0, 1, 2, . . .2n satisfy the (Heisenberg form of) the canonical commu-
tation relations (CCR) on a common dense domain:

[Xj , Xk] = i SjkX0, j, k 6= 0, (3.3.17a)

[Xj , X0] = 0, j = 1, 2, . . .2n. (3.3.17b)

The Weyl form of CCR is

Wλ(x+ x′) = exp

(
iλ

2
x·S ·x′

)

Wλ(x)Wλ(x
′), (3.3.18)

and the unitary operators Wλ are expressed by

Wλ(x) ≡ exp (i λX ·S ·x) := exp



i λ
2n∑

j,k=1

XjSjkxk



 . (3.3.19)

The following useful relation is then valid:

Wλ(x)
−1XjWλ(x) ≡ Xj + xjI, ∀j ∈ {1, 2, . . .2n}, xj ∈ R. (3.3.20)

3.3.8 Notation. Let us write W (x) ≡ W1/~(x). Let us define Vν := {Ad∗(W (x))ν : x ∈ R2n} =
Oν(G) with G := GWH , and V := {Vν : ν ∈ Dr(F)}, with F given by W1/~(GWH), cf. Defi-
nition 2.2.17 . Let X(x) := X ·S ·x be a selfadjoint generator of the (projective) representation
W (R2n), i.e. the generator of the one–parameter unitary group t 7→ exp(−itX(x)). The densely
defined Hamiltonian function generating the corresponding flow on the Poisson manifold Ts is
hX(x). Let us denote also x·ν := W (x)νW (x)∗ ≡ Ad∗(W (x))ν. ♦

3.3.9 Proposition. (i) With the notation from 3.3.8, the (densely defined) function hX(x) has
Dr(F)–generalized differential, which is V–integrable.
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(ii) The orbits Vν are embedded submanifolds of Ts, each diffeomorphic to the “flat phase space”
R2n.

(iii) The restrictions of the symplectic forms Ων introduced on Oν(U) to the orbits Vν are nonde-
generate, and the restrictions of the Momentum mapping F to these orbits are symplectomorphisms
onto the coadjoint orbit of GWH “corresponding” to the choice of s0 = −λ := − 1

~
, cf.(3.3.21). ♣

Proof. (i) The proof of integrability trivially follows from Lemma 2.2.16 and Proposition 2.2.14 ,
since the integral curves of the Hamiltonian vector field corresponding to dhX(x) leave all Vν , (ν ∈
Dr(F)) invariant.

(ii) The second assertion follows from the Lemma 2.2.16, and from its proof. A more intuitive
argument is seen from the Momentum mapping F restricted to any Vν with a help of (3.3.20):
In view of (2.2.17), the j–th component of F(x·ν) can be expressed as:

Fx·ν(ξj) = Tr
(
νW (x)∗X(ξj)W (x)

)
=

{

Fν(ξj)− λqj , for j = 1, 2, . . . n,

Fν(ξj) + λpj−n, for j = n+ 1, . . . 2n.
(3.3.21)

what proves bijection of Vν onto R2n.

(iii) The (densely defined) vector fields vj := vξj corresponding to the basis {ξj , j = 0, 1, . . .2n}
of GWH form a basis of T̺(Vν) for any ̺ ∈ Vν for all Vν . These vector fields are proportional
to the Hamiltonian vector fields corresponding to hXj for the selfadjoint generators Xj of the
representation W1/~(GWH). The vector field v0 is identical zero. According to (2.1.30), (2.2.7),
and (2.2.4), one has

Ω̺(vξ,vη) = i T r
(
̺[X(ξ), X(η)]

)
, (3.3.22)

resp. from (2.2.25) one has
F
∗{hξ, hη} = {F∗hξ,F

∗hη}.
The Kirillov–Kostant symplectic form on an Ad∗(GWH) orbits through F has the form (2.2.23):

ΩKF (vξ,vη) = −F ([ξ, η]).

From the CCR (3.3.17) one has

Ω̺(vj ,vj+n) = −Ω̺(vj+n,vj) = i T r
(
̺[X(ξj), X(ξj+n)]

)
(3.3.23)

= −i λ2Tr
(
̺[Qj , Pj ]

)
(3.3.24)

= −Tr(̺X(ξ0)) = −s0 = λ, (3.3.25)

and for the remaining indices j, k : Ω̺(vj ,vk) = 0. For the Kirillov–Kostant form we have

ΩKF (vj ,vj+n) = −F ([ξj , ξj+n]) = −F (ξ0), (3.3.26)

what corresponds to (3.3.23) in accordance with the equation (2.2.25d); this proves the symplecto-
morphism property of F. The commutation relations (3.3.17) show nondegeneracy of the restricted
form ΩV

̺ := ι∗VΩ̺ for all relevant ̺.
It remains to prove that F maps all Vν onto a unique orbit. The basis {ξj, j = 0, 1, . . .2n} ⊂

Lie(GWH) determines global coordinates on the dual Lie(GWH)∗, F (ξj) being the coordinates
of F ∈ Lie(GWH)∗ in the dual basis. It is clear from (3.3.21) that on any Vν there is a point
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̺0 such that F(̺0)(ξj) = 0, j = 1, 2, . . . 2n. The coordinates of other points on those orbits are

then F(x·̺0)(ξj) = (−1)[
n+1+j
n+1 ]λxj , j = 1, 2, . . .2n, and the remaining coordinate F(x·̺0)(ξ0) ≡

Tr(νX(ξ0)) = −λ = −~−1, (3.3.15), hence it is constant on the orbit and of equal value on all
orbits, i.e. on all the images F(Vν) ⊂ Lie(GWH)∗. This proves the last statement.

3.3.10 Remark. These considerations showed that the choice of a specific value of Planck constant
in QM corresponds mathematically to the choice of the coadjoint orbit of GWH labelled by s0 =
−λ = − 1

~
determining a unitary representation of this group and, in this way, also determining

Heisenberg uncertainty relations and many physical effects connected with them. Since unitary
equivalent representations lead, as a rule, to indistinguishable physics, validity of the mathematical
theorem about unitary inequivalence of representations (3.3.14), or (3.3.16), for different real values
of λ, “can be seen” also from the known physical measurability of the Planck constant ~. ♥

3.3-c Restricted flows with linear generators on O̺(GWH)

Let X be a selfadjoint operator on a Hilbert space H, and let U(G) be a continuous unitary
representation of a connected Lie groupG. Assume that the orbit ofAd∗(U(G)) through ̺ ∈ Dr(F),
cf. Definition 2.2.17, belongs to the domain of X , O̺(G) ⊂ Drd(δX). Let us assume further in this
subsection that the function hX is constant on the submanifolds Ad∗

(
U(GF(ν))

)
ν for all ν ∈ O̺(G),

i.e. that it is a ̺G–classical generator, cf. Definition 2.2.26(iv). This would be trivially the case, if
the momentum mapping F is injective on the orbit O̺(G), i.e. if the orbit O̺(G) is diffeomorphic
to the coadjoint orbit Ad∗(G)F(̺). For further examples of ̺G–classical generators cf.2.2.27. We
can now define the corresponding classical Hamiltonian h̺X

h̺X : Ad∗(G)F(̺)→ R, h̺X(Fν) := hX(ν) ≡ Tr(νX), ∀ν ∈ O̺(G) (3.3.27)

what is an infinitely differentiable function on the coadjoint orbit through F̺. The function h̺X will
be also called the (classical) Hamiltonian induced by (X ;U(G)) on the orbit Ad∗(G)F(̺).
The restriction of hX :

h̺X : O̺(G)→ R, ν 7→ h̺X(ν) := Tr(νX) (3.3.28)

generates the restricted flow of X , to the orbit O̺(G).
Let us choose now G := GWH , and X := H , with

H :=
1

2

n∑

j=1

1

mj
P 2
j + V (Q1, Q2, . . . Qn), (3.3.29)

(cf.3.3.7) with some “convenient” real function V : Rn → R. The “correct quantum evolution”
given by z(∈ H) 7→ zt := exp(−itH)z (we set here λ = ~ = 1) leads to the Ehrenfest’s relations
for expectations 〈Xj〉t := 〈zt|Xj |zt〉, (j = 1, 2, . . . , n):

d

dt
〈Qj〉t =

1

mj
〈Pj〉t, (3.3.30a)

d

dt
〈Pj〉t = −〈∂jV (Q1, . . . , Qn)〉t. (3.3.30b)

These relations are not differential equations for the functions t 7→ 〈Xj〉t, if the potential energy
V is not at most quadratic polynomial in Q’s, cf. the text following Eq. (3.3.32). In the case of
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quadratic H := A from (3.3.32), the Hamiltonian evolutions given by the Hamiltonians (3.3.31)
lead to the results identical with those of QM (hence satisfying also (3.3.30) with xj(t) ≡ 〈Xj〉t).

Let us express h̺H corresponding to H from (3.3.29) according to (3.3.27). Let ̺ := ̺0 (cf.
the text on page 115 following (3.3.26)) with Tr(̺Xj) = 0, ∀j = 1, 2, . . . 2n, with the notation of
Subsection 3.3-b. We write (q, p) instead of F(ν) with components ∓λxj , cf. (3.3.21):

h̺H(q, p) ≡ 1

2

n∑

j=1

1

mj
p2
j + V̺(q1, q2, . . . qn), (3.3.31)

with

V̺(q) := Tr
(
̺V (Q+ q)

)
+
∑

j

1

2mj
Tr
(
̺P 2

j

)
.

The last sum in this expression is a constant term on the orbit O̺(G), hence the flow generated
by h̺H on O̺(G) is independent of this constant. This flow (the restricted “linear” flow of H)
is projected by the momentum mapping F onto the flow on the coadjoint orbit of GWH with
s0 := s0(F(̺)) = − 1

~
generated by the Hamiltonian h̺H(q, p) via the standard symplectic form

dp ∧ dq.

3.3.11 Example. Let us take, e.g. ̺ := Pz with 0 6= z ∈ L2(Rn) : 〈z|Xj|z〉 = 0, ∀j. Let z̃(q) :=
z(−q). Then

V̺(q) = const. + Vz(q), with Vz(q) := |z̃|2 ∗ V (q),

the symbol a ∗ b(q) :=
∫
a(q − q′)b(q′)dnq′ denoting convolution of two complex–valued functions

a, b on Rn. Let, e.g., n = 3, and V (q) := α
|q| be the Coulomb potential. Let the above z ∈ L2(R3)

be rotationally (i.e. O(3)) symmetric normalized function with support “concentrated” near q = 0.
Then q 7→ Vz(q) is again, for large values of |q|, approximately (resp. exactly, for compact support
of z) of the Coulomb form. ♥

We see that the ̺GWH–restrictions of the flow ϕ̃H are identical to the flows of classical Hamil-
tonian mechanics on R2n with the Hamiltonian function h̺H from (3.3.31) differing from the usually
considered “classical limit” of the quantum flow ϕ̃H by the “̺–smearing” of the potential V only.

A specific interesting choice of V in (3.3.29) is a quadratic function, describing, e.g. harmonic
oscillators. This case can be generalized to any quadratic operator X := A:

A :=
1

2

2n∑

j,k=1

ajkXjXk, (3.3.32)

with real constants ajk ≡ akj , and with Xj , j = 1, 2, . . .2n defined in Notation 3.3.7. This case
is specific in that the operator A is essentially selfadjoint on a common domain of all Xj ’s, and
it generates, together with the Xj ’s, a unitary representation of a 2n + 2–dimensional Lie group
containing GWH as a subgroup. This follows from the following considerations.

It is clear that the operators {A;Xj , j = 0, 1, . . .2n} form a basis of a Lie algebra of (un-
bounded) operators in H=L2(Rn). It is also easily seen that an arbitrary number of quadratic
symmetric operators of the form (3.3.32) together with all Xj’s can be included into a finite dimen-
sional Lie algebra X(g) of operators (with respect to the operator commutation i [A,B]) containing
operators at most quadratic in Xj ’s. Less trivial is the assertion, that these Lie algebras of op-
erators are composed of essentially selfadjoint operators on the domain Dω(GWH) of essential
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selfadjointness of all Xj ’s, and that they are integrable into continuous unitary representations of
some Lie groups. The maximal Lie algebra obtained in this way is (isomorphic to) the algebra
called st(n,R) (see also [149, §15.3, and §18.4]). Let us formulate and prove the mentioned facts
for the algebra st(n,R):

3.3.12 Proposition. Let X(st(n,R)) denote the above mentioned “maximal” Lie algebra of “at
most quadratic” symmetric operators acting on the Hilbert space H of representation Wλ(GWH).
Let S̃t(n,R) be the corresponding connected, simply connected Lie group with the Lie algebra
st(n,R). Then the representation Wλ(GWH) has a unique extension to the continuous unitary
representation W̃λ(S̃t(n,R)) in H such that all the closures of the operators from X(st(n,R)) are
exactly all of its selfadjoint generators. ♣

Proof. The analytic domain Dω(GWH) is a common invariant domain for all operators from
X(st(n,R)). According to Nelson’s theorem (cf. [13, Theorem 11.5.2]) it suffices to prove es-
sential selfadjointness of the operator ∆, what is sum of squares of a basis of X(st(n,R)). We
choose here the basis consisting of the generators Xj of Wλ(GWH), and of all their symmetrized
products 1

2 (XjXk +XkXj). Then

∆ :=

2n∑

j=1

X2
j +

1

4

2n∑

j,k=1

(XjXk +XkXj)
2

=
3

2
nI +

n∑

j=1

(P 2
j +Q2

j)(I +

n∑

k=1

(P 2
k +Q2

k)),

where we used notation from 3.3.7, and the CCR (3.3.17). From the known properties of the
Hamiltonians P 2

j + Q2
j of independent linear oscillators, we conclude (with a help of, e.g. [219,

Theorem VIII.33] on operators on tensor products of Hilbert spaces) that ∆ is essentially selfad-
joint. The Nelson’s theorem states now integrability of X(st(n,R)) onto a unitary representation.
Selfadjointness and uniqueness now easily follow.

Hence, also any Lie subalgebra ofX(st(n,R)) integrates onto a continuous group representation.
Let us denote by AGWH the simply connected Lie group represented by this unitary representation
with the basis of generators {A; Xj, j = 0, 1, 2, . . .2n}, with A from (3.3.32). The 2n + 2–
dimensional group AGWH contains GWH as its normal subgroup.

In the “quadratic case” (3.3.32) the expression (3.3.31) has the form

h̺A(x) ≡ 1

2

2n∑

j,k=1

ajkxjxk + const., (3.3.33)

with the const. depending on the choice of orbit only (we always assume ̺ := ̺0, according to the
definition of ̺0 in the notes on page 115). This is valid regardless the orbit O̺(AGWH ) is 2n–,
or 2n + 1–dimensional. Hence for the (at most) quadratic Hamiltonian A, the projected quantal
evolutions ϕ̃At (ν) to the orbits and the “corresponding” classical evolution “coincide” in the sense
that the 2n coordinates Tr(ϕ̃At (ν)Xj), j = 1, . . . 2n (of the possible total 2n+ 1) satisfy classical
equations with the Hamiltonian h̺A from (3.3.33) corresponding to the canonical symplectic form
dp ∧ dq.
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3.3.13 Remark. Let us stay on P (H), and let ̺0 = Pz . Let A be quadratic as in (3.3.32).
Then a general assertion tells us that the dimension of the AGWH–orbit through Pz is 2n iff it
contains an eigenstate of A, [27]. In that case, each point W (x)PzW (−x) of the orbit is (i.e.
represents) an eigenstate of some selfadjoint operator of the form

∑

j cjXj + A. Other orbits
are 2n + 1–dimensional. This assertion is a consequence of the fact that the dimension of any
connected finite dimensional manifold is constant in all of its points and equals to the dimension
of the tangent spaces which are in turn generated by vector fields corresponding to the flows
ϕ̃Xt (X = A,X1, . . . , X2n). These 2n + 1 vectors in any point of the orbit are mutually linearly
independent except in a stationary point Pz where ϕ̃Xt (Pz) ≡ Pz , for some X :=

∑

j cjXj +A, i.e.
z ∈ H (z 6= 0) is an eigenvector of X (the linear independence of the 2n vectors determined by the
Xj’s is a consequence of CCR). ♥

3.3-d Time dependent Hartree–Fock theory

We shall consider here the “approximation to QM” which is very well known in nonrelativistic
quantummechanical many–particle theory as the Hartree–Fock theory. It consists, expressed briefly
in our terminology, in the restriction of a given (linear) QM problem to a manifold (a G-orbit) of
quantum states Ψ, and, in its stationary setting, in looking for the points Ψ0 of the manifold that
minimize the expectation value 〈Ψ|H |Ψ〉 of a given Hamiltonian H . In the Hartree–Fock theory
of systems consisting of N interacting fermions in an external potential the manifold consists of
all “Slater determinants” for the considered N fermions. The point Ψ0 then satisfies the Hartree–
Fock equation (3.3.51), what is a condition for the zero value of the derivative qPΨ(DPΨhH) of
the corresponding restricted generator. It is assumed that in many interesting cases stationary
points Ψ0 (resp., more correctly: PΨ0) of the orbit approximate the ground state (states) of the
unrestricted system. This theory is expressible in terms of “one–particle states”, due to a natural
bijection (see e.g., also [222]) between the set of all Slater determinants and an orbit in the one–
particle state space S∗(L(H)) of unitary group U := 〈 all unitary operators on the one–particle
Hilbert space H〉.

Let us consider a system of N identical fermions described in the Hilbert space HN := ⊗NH,
where H := H1 is “the one–particle Hilbert space”. The vectors in HN are expressed by linear
combinations of “product–vectors” Φ := φ1⊗φ2⊗ · · ·⊗φN , φk ∈ H, and the scalar product linear
in the second factor is determined by

〈Φ′|Φ〉 :=
N∏

k=1

(φ′k, φk).

Let ψj ∈ H, j ∈ N be an orthonormal basis in H. Then an orthonormal basis in HN consists of
vectors labelled by ordered N–tuples (j) := (j1; j2; . . . jN ) ∈ NN :

Ψ(j) ≡ |(j1; j2; . . . jN )〉 := ψj1 ⊗ ψj2 ⊗ · · · ⊗ ψjN , ∀j1, j2, . . . jN ∈ N. (3.3.34)

Let Σ(N) be the permutation group (=“symmetric group”) of N elements, and, for any σ ∈ Σ(N),
let its action on ordered N–tuples of integers be denoted by

σ(1; 2; . . .N) ≡ (σ(1);σ(2); . . . σ(N)).

Then a unitary representation σ 7→ pσ of Σ(N) in HN is determined by

pσΨ(j) ≡ Ψσ(j) := |(jσ(1); jσ(2); . . . jσ(N))〉.
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Let the Fermionic subspace HFN of HN consists of all vectors Ψ ∈ HN satisfying

pσΨ = εσΨ, εσεσ′ ≡ εσ·σ′ ∈ {−1; 1}, ∀σ, σ′ ∈ Σ(N),

with εσ := −1 for σ corresponding to a mere interchange of two elements. The orthogonal projec-
tion PFN onto HFN is the maximal of all projections P satisfying: pσP ≡ εσP . It can be expressed:

PFN =
1

N !

∑

σ

εσpσ.

An orthonormal basis in HFN is given by “Slater determinants” Ψ{j} labelled by the ordered N–
tuples (j) := (j1; j2; . . . jN ) with j1 < j2 < · · · < jN , and defined by

Ψ{j} :=
1√
N !

∑

σ

εσΨσ(j). (3.3.35)

Let U be the unitary group of L(H), and let its unitary representation in HN be given by its action
on the product vectors

u 7→ u⊗N , u⊗NΦ ≡ u⊗N (φ1 ⊗ φ2 ⊗ · · · ⊗ φN ) (3.3.36)

:= uφ1 ⊗ uφ2 ⊗ · · · ⊗ uφN , ∀u ∈ U. (3.3.37)

One orbit of this representation in HFN consists of all the Slater determinants, and its canonical
projection to the projective Hilbert space P (HN ) is homeomorphic, cf. also (3.3.40), to the co-
adjoint orbit of U in T1+(H) =: S∗ (cf. page 42) consisting of all the “N–dimensional” density
matrices u̺{j}u

−1 with maximally degenerate spectrum, cf. also [222]. These density matrices are
obtained as “partial traces” from Slater determinants by restriction to “one particle observables”,
i.e. for all a ∈ L(H) one has

Tr(̺{j} ·a) := 〈Ψ{j}|a⊗ I
⊗(N−1)
H |Ψ{j}〉, (3.3.38)

and the resulting density matrix has an explicit expression of the form

̺{j} =
1

N

N∑

k=1

|ψjk〉〈ψjk | =:
1

N
E{j}, (3.3.39)

where the projector E{j} onto the subspace of H spanned by the N orthonormal vectors {ψk :
k ∈ (j) = (j1; j2; . . . jN )} was introduced. Conversely, as can be proved by elementary techniques,
any N–dimensional subspace of H determines a Slater determinant (uniquely up to a numerical
factor), namely the space spanned by N one–particle orthonormal vectors ψj determines the Slater
determinant constructed by the same vectors, cf.(3.3.35), (3.3.34), and different orthonormal bases
of that subspace give (up to a phase factor) the same Slater determinant. Hence the mapping

G : ̺ := ̺{j}(∈ Ad∗(U)̺{j′}) 7→ G(̺) := PΨ{j}
, (Ψ{j} ∈ {u⊗NΨ{j′} : u ∈ U}) (3.3.40)

is a bijection (here Ψ{j′} is an arbitrary Slater determinant).
Reduced one particle density matrices corresponding to arbitrary states Φ ∈ HFN cannot be

expressed in such a simple way.
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Let H := HN be a selfadjoint Hamiltonian on HN , and let us assume that it is permutation
symmetric, i.e. that

pσHN ≡ HNpσ, ∀σ ∈ Σ(N).

The corresponding generator, as a function on (a dense subset of) P (HN ), is hNH(PΦ) := Tr(PΦ·HN ).
Its restriction to the U–orbit of Slater determinants is

h̃H
Sl

(PΨ{j}
) := 〈Ψ{j}|HN |Ψ{j}〉 =

∑

σ

εσ〈pσΨ(j)|HN |Ψ(j)〉 = N !〈Ψ(j)|PFNHN |Ψ(j)〉. (3.3.41)

With a help of the bijection G from (3.3.40), we can write the restricted function h̃H
Sl

as a
function on the orbit Ad∗(U)̺{j} ⊂ S∗, i.e. as a generator on one–particle states. We shall write

the corresponding “one–particle energy” as hSlH := N−1h̃H
Sl

:

N ·hSlH (̺{j}) := 〈Ψ{j}|HN |Ψ{j}〉 = Tr
(
G(̺{j})HN

)
. (3.3.42)

This relation can be made more explicit for specific choices of HN .
Let us take for HN a nonrelativistic spin–independent Hamiltonian of N point particles with

symmetric pair potential interaction, i.e.

HN :=

N∑

j=1

h0j +
1

2

∑

j 6=k
vjk, (3.3.43)

where the indices j, k = 1, . . .N specify “one–, resp. two–particle factors” H in the tensor product
HN on which the corresponding operators act; the h0j ’s are copies of the same one particle Hamil-
tonian h0 (kinetic energy plus external fields) “acting at the j–th factor” in the tensor product
HN , and vjk ≡ vkj are also copies of a two–particle operator v ∈ L(H ⊗H) “acting on the j–th
and k–th factor” in HN . Let us introduce the linear exchange operator p↔ on the two–particle
spaces (commuting with v) by

p↔(φ ⊗ ψ) := ψ ⊗ φ, ∀φ, ψ ∈ H.

We can calculate now (3.3.41) with H := HN from (3.3.43):

N ·hSlH (̺{j}) := 〈Ψ{j}|HN |Ψ{j}〉 = N !〈Ψ(j)|PFNHN |Ψ(j)〉

≡
∑

σ

εσ〈ψσ(j1) ⊗ · · · ⊗ ψσ(jN )|





N∑

k=1

h0k +
1

2

∑

k 6=l
vkl



 |ψj1 ⊗ · · · ⊗ ψjN 〉

=

N∑

k=1

(ψjk , h0ψjk) +
1

2

∑

k 6=l
(ψjk ⊗ ψjl − ψjl ⊗ ψjk |vkl|ψjk ⊗ ψjl)

= N ·Tr(̺{j}h0) +
1

2

∑

k 6=l
(ψjk ⊗ ψjl |v·(IH ⊗ IH − p↔)|ψjk ⊗ ψjl)

= N ·Tr(̺{j}h0) +
N2

2
Tr(̺{j} ⊗ ̺{j} ·v·(IH ⊗ IH − p↔)). (3.3.44)
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This function hSlH can be used as a generator of the (quantum nonlinear) motion on the U–orbit of
N–dimensional projections (which, divided byN , are density matrices of the domain of G, (3.3.40))
in the one–particle state space S∗. The resulting dynamical equation describes the time depen-
dent Hartree–Fock theory, cf. [222, 223, 155], and the equations describing its stationary points
are just the Hartree–Fock equations, cf. [127, 176, 12]. Let us show how it looks in our formal-
ism.

We shall need an expression for the derivative D̺h
Sl
H to be able to write a dynamical equation

for ̺, e.g. the “Schrödinger equation” (2.1.23), resp. (2.1.26).86 The differential will be calculated
according to (2.1.11), and with a help of (2.1.14). We shall need, however, derivatives along the
curves t 7→ exp(−itb)̺ exp(itb), corresponding to tangent vectors i[̺, b], cf. Notes 2.1.4:

D̺h
Sl
H (i[̺, b]) = i T r(h0[̺, b]) + i

N

2
Tr
(
[̺, b]⊗ ̺·(I⊗2

H − p↔)v + ̺⊗ [̺, b]·(I⊗2
H − p↔)v

)
. (3.3.45)

This equation can be rewritten by inserting the unit operators IH expressed with a help of
convenient complete systems {ϕk} ⊂ H of orthonormal vectors into several places in between of
the multiplied operators in the above formula. E.g., from the trace in L(H)⊗L(H) of the product
(A⊗ ̺)·B (B ∈ L(H)⊗ L(H), ∀A ∈ L(H)) one can find an operator D ∈ L(H) defined by

Tr(A·D) := Tr(A⊗ ̺·B)

as follows:

Tr(A·D) :=
∑

j,k

∑

l,m

(ϕj ⊗ ϕk|A⊗ ̺|ϕl ⊗ ϕm)(ϕl ⊗ ϕm|B|ϕj ⊗ ϕk)

=
∑

j,l

(ϕj |A|ϕl)
∑

k,m

(ϕk|̺|ϕm)(ϕl ⊗ ϕm|B|ϕj ⊗ ϕk)
︸ ︷︷ ︸

(ϕl|D|ϕj)

. (3.3.46)

Since

(ϕm ⊗ ϕl|(I⊗2
H − p↔)v|ϕk ⊗ ϕj) = (ϕm ⊗ ϕl|v|ϕk ⊗ ϕj)− (ϕm ⊗ ϕl|v|ϕj ⊗ ϕk),

we can write for the operator representation of D̺h
Sl
H ∈ T ∗

̺Ts ∼ L(H)s:

(ϕ|D̺h
Sl
H |ψ) = (ϕ|h0|ψ) +

N

2

∑

k,m

(ϕk|̺|ϕm)
[
(ϕ⊗ ϕm|v|ψ ⊗ ϕk)−

(ϕ⊗ ϕm|v|ϕk ⊗ ψ) + (ϕm ⊗ ϕ|v|ϕk ⊗ ψ)− (ϕm ⊗ ϕ|v|ψ ⊗ ϕk)
]
.

(3.3.47)

Let us consider now that, on the chosen orbit O̺(U), one has

̺t ≡ ̺t{j} := uH(t, ̺)̺{j}uH(t, ̺)∗ := N−1
N∑

k=1

|ψtk〉〈ψtk|.

86Our considerations will be a little “heuristic” from mathematical point of view in this Subsection: we shall not
consider here the domain questions, hence we shall not be able to write equations as (2.2.10) with precisely defined
generalized differentials.
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Let us denote by Et
{j} := N̺t{j} theN–dimensional projection corresponding to the Slater vector–

determinant Ψt
{j}, according to the mapping G from (3.3.40). For each such ̺ = ̺t{j} occurring

in (3.3.47), let us choose in the rôle of the complete orthonormal system {ϕk} such a complete
orthonormal system {ψtj : j = 1, 2, . . .} that contains the ̺t{j}–defining one–particle vectors {ψtj :

j = 1, . . . , N} numbered as the initial segment. Then we have for the obtained orthonormal bases
{{ψtj : j ∈ N} : t ∈ R}:

(ϕk|̺t|ϕm) ≡ (ψtk|̺t|ψtm) =

{
1
N δk,m for k,m ≤ N,
0 for max(k;m) > N ;

these should be inserted into the formulas like (3.3.47). Matrix elements of the Schrödinger equa-
tion (2.1.23) for arbitrary ϕ, ψ ∈ H are then of the form

i
d

dt
(ϕ|uH(t, ̺)|ψ) = (ϕ|D̺th

Sl
H ·uH(t, ̺)|ψ) = (ϕ|h0 ·uH(t, ̺)|ψ)+

1

2

N∑

k=1

∑

j

[
(ϕ⊗ ψtk|v|ψtj ⊗ ψtk)− (ϕ⊗ ψtk|v|ψtk ⊗ ψtj)+

(ψtk ⊗ ϕ|v|ψtk ⊗ ψtj)− (ψtk ⊗ ϕ|v|ψtj ⊗ ψtk)
]
(ψtj |uH(t, ̺)|ψ).

(3.3.48)

Let us rewrite this equation in “configuration representation”, if H := L2(Rn), and operators A
are (formally) expressed by their “kernels”:

A(x, y) :=
∑

j,k

ψj(x)(ψj |A|ψk)ψk(y).

Let us, moreover, consider that v12 = v21, hence for the multiplication operator v (in this repre-
sentation) one has: v(x, y) ≡ v(y, x). The projections Et{j} have now the kernels

Et{j}(x, y) :=

N∑

j=1

ψtj(x)ψ
t
j(y), ‖ψtj‖ ≡ 1.

We obtain then, with ψ̺t := uH(t, ̺)ψ, the usual time–dependent Hartree–Fock equation:

i
d

dt
ψ̺t (x) =

[

h0 +

∫

dy Et{j}(y, y)v(y, x)

]

ψ̺t (x)−
∫

dy v(x, y)Et{j}(x, y)ψ
̺
t (y). (3.3.49)

We can insert into (3.3.49) ψ̺t := ψtj , j = 1, 2, . . .N , to obtain coupled nonlinear equations for
ψtj ’s. Evolution of the whole density matrices on O̺(U) is expressed by

i
d

dt
̺t = [D̺th

Sl
H , ̺t]. (3.3.50)

Its stationary solutions ̺t ≡ ̺ = N−1E{j} commute with D̺h
Sl
H , hence the selfadjoint operator

D̺h
Sl
H leaves the subspace E{j}H of the Hilbert space H invariant: D̺h

Sl
HE{j}H ⊂ E{j}H. This

means that its restriction to the subspace E{j}H can be diagonalized, and the basis {ψj : j ∈ N} can
be chosen (in the point ̺: the bases are point–dependent, according to their definition) such that the
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vectors ψ1, ψ2, . . . , ψN are eigenvectors of D̺h
Sl
H . Hence we have from (3.3.49) the corresponding

eigenvalue equation, what is the (time independent) Hartree–Fock equation, cf. [176, §10]:
[

h0 +

∫

dyE{j}(y, y)v(y, x)

]

ψk(x)−
∫

dyE{j}(x, y)v(x, y)ψk(y) = ǫkψk(x). (3.3.51)

We have shown how the time dependent, as well as the stationary Hartree–Fock theory is
described in the framework of our formalism.

3.3-e Nonlinear Schrödinger equation and mixed states

Let us give here another example of description of “a system” in the framework of NLQM. We
shall show here that a traditional “nonlinear Schrödinger equation” [47, 11] can be included in the
scheme of EQM. We shall partly proceed, in the following example (taken from [34]), in a heuristic
way, by “plausible” formal manipulations; the necessary mathematical comments will be omitted
here. This example will be also used to show, in a nontrivial concrete case, that the barycentre of
a genuine mixture µ ∈ M(S∗) evolves under nonlinear evolution differently from the evolution of
the elementary mixture ̺ being its initial barycentre, (2.1.32): Tr(̺a) :=

∫

S∗
Tr(νa)µ(dν), ∀a ∈

L(H)s.
Let us first recall that, for a given generator Q ∈ C∞(S∗,R), the Schrödinger equation (resp.

the Liouville–von Neumann equation) for the flow ϕQ corresponding to the Poisson structure on
S∗ (cf. Subsection 2.1-c) can be written on S∗ in the form (cf. (2.1.23) and (2.2.9))

i
d

dt
̺(t) = [D̺(t)Q, ̺(t)], (3.3.52)

where
̺(t) ≡ ϕQt (̺) := uQ(t, ̺)̺uQ(t, ̺)∗, ̺(0) := ̺, (3.3.53)

and uQ(t, ̺) satisfies the equation (one can use alternatively, in the rôle of the “Hamiltonian
operator” in the following equation, an operator of the form D̺(t)Q+ f0(̺(t)), with f0(̺) ∈ {̺}′,
cf. Remark 2.1.18)

i
d

dt
uQ(t, ̺) = D̺(t)Q·uQ(t, ̺), uQ(0, ̺) ≡ 0. (3.3.54)

The equation (3.3.52) can be rewritten for wave functions ψ ∈ H, ψ(t) := uQ(t, Pψ)ψ ∈ H (we set
Dψ := DPψ ):

i
d

dt
ψ(t) = Dψ(t)Q·ψ(t). (3.3.55)

Let us take now H=L2(Rn) with 〈ψ|ϕ〉 :=
∫
ψ(x)ϕ(x) dnx. Let us write density matrices ̺ “in

the x–representation” with a help of their operator kernels ̺(x, y):

[̺ψ](x) ≡
∫

̺(x, y)ψ(y) dny, ψ ∈ H. (3.3.56)

Projection operators Pψ have their kernels Pψ(x, y) ≡ ‖ψ‖−2ψ(x)ψ(y). Let the Hamiltonian func-
tion Q will be taken as the (unbounded) functional

Q(Pψ) := Tr(Pψ ·H0) +
ε

α+ 1

∫

Pψ(x, x)α+1dnx, (3.3.57)
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with H0 some selfadjoint (linear) operator on L2(Rn), and α > 0. Let t 7→ Pψ(t), ψ(0) := ψ be any

differentiable curve through Pψ ∈ P (H), and let Ṗψ ∈ TPψP (H) be its tangent vector expressed by
an operator according to equations (2.1.14). Then the (unbounded, nonlinear) Hamiltonian DψQ
can be expressed by:

Tr(DψQ·Ṗψ) :=
d

dt

∣
∣
∣
∣
t=0

Q(Pψ(t)), (3.3.58)

what leads to the corresponding form of “nonlinear Schrödinger wave–equation” for ψt := ψ(t):

i

[
d

dt
ψt

]

(x) = [H0ψt](x) + ε|ψt(x)|2αψt(x), ‖ψt‖ ≡ 1. (3.3.59)

One possible extension of this nonlinear dynamics from P (H) to the whole space S∗ is obtained
by “the substitution ̺ 7→ Pψ”, i.e. by the choice of the Hamiltonian

Q(̺) := Tr(̺·H0) +
ε

α+ 1

∫

̺(x, x)α+1dnx, (3.3.60)

and the corresponding dynamics is then described by (3.3.52) with87

D̺Q(ν) ≡ Tr(D̺Q·ν) ≡ Tr(ν ·H0) + ε

∫

̺(x, x)αν(x, x) dnx. (3.3.61)

We shall compare the evolutions of the mixed states described by the same initial barycentre
≡ density matrix ̺

̺ :=
∑

j

λjPψj ,
∑

j

λj = 1, λj ≥ 0. (3.3.62)

for the two distinguished interpretations. The evolution of the elementary mixture ̺ is described
by (3.3.52), while the evolution of the “corresponding” genuine mixture µ,

µ :=
∑

j

λjδψj , (3.3.63)

(where δψ ≡ δPψ is the Dirac measure concentrated on Pψ ∈ P (H) ⊂ S∗) is described by

(t;µ) 7→ µt ≡ µ ◦ ϕQ−t. (3.3.64)

This corresponds to such an evolution of the measure µ representing a state, when each of the
vectors ψj entering into (3.3.63) evolves according to the equation (3.3.55).

Let us illustrate, by explicit calculation, the difference between time evolutions of the same
initial density matrix considered in its two different interpretations.

Let us take the system with its above determined “extended” dynamics, and let us fix a non-
trivial (i.e. λj < 1, ∀j) mixture ̺ of several vector states Pψj , as in (3.3.62). Let us calculate the
difference between the derivatives with respect to the time in t = 0 of the two evolutions: (i) of the

barycentre of the time evolved genuine mixture
∑

j λjϕ
Q
t (Pψj ), and (ii) of the elementary mixture

87 The notation D̺Q represents here the linear functional according to the standard definition of the Fréchet
derivative, as well as its operator representative, cf. (2.1.14), and Definitions 2.2.13.
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evolution ϕQt (̺). We shall calculate the right hand side of (3.3.52) for the two cases and take their
difference. Let us write the kernel “in x–representation” of ̺ as the convex combination of the
vector–state kernels:

̺(x, y) ≡
∑

j

λj‖ψj‖−2ψj(x)ψj(y). (3.3.65)

The (symbolic) “kernel” of the Hamiltonian D̺Q can be written:

D̺Q(x, y) = H0(x, y) + εδ(x− y)̺(x, x)α.

Here, δ(·) is the Dirac distribution on Rn. We have to express the difference ∆
{̺}
t (x, y) between

the kernels (in x–representation) of the operators

∑

j

λj [Dψj(t)Q,Pψj(t)], and [D̺(t)Q, ̺(t)],

what expresses the difference between time derivatives of “the same density matrix” ̺ =
∑
λjPψj

in the two interpretations. The linear operator H0 does not contribute into this difference. The
kernels of commutators entering into the calculation are (for all ν ∈ S∗) of the form

[DνQ, ν](x, y) = [H0, ν](x, y) + εν(x, y)(ν(x, x)α − ν(y, y)α).

We can (and we shall) take all ‖ψj‖ ≡ 1. Let us denote

χ
{̺}
j (x) := |ψj(x)|2α −

(
∑

k

λk|ψk(x)|2
)α

.

Then the wanted difference at t = 0 is

∆{̺}(x, y) := ∆
{̺}
0 (x, y) = ε

∑

j

λjψj(x)ψj(y)(χ
{̺}
j (x) − χ{̺}

j (y)). (3.3.66)

By proving that the operator ∆{̺} is not identical zero for all {̺}, we can prove nontrivial difference
of the two time evolutions explicitly. This can be proved easily for λ1 := 1−λ2, and for ψ1, ψ2 chosen
to be specific three–valued (i.e. with two mutually distinct nonzero values) functions concentrated
on disjoint compact subsets of R

n: Each ψj , (j = 1, 2) has its nonzero constant values on domains
with different nonzero Lebesgue (dnx) measure.

Analogical examples could be constructed for, e.g. unbounded functions Q on dense domains
of S∗ expressed by the formula

Q(̺) := Tr(̺·H0) + ε

∫

Rn

K(̺(x, x))dnx, (3.3.67)

where K ∈ C∞(R,R) can be chosen (in this abstract approach) rather arbitrarily. Such possibilities
were mentioned (in a framework of Schrödinger equations (3.3.55) for wave functions) also in [11];
they include, e.g. the equations proposed in [18], and also WKB–equations.

Differentiation of (3.3.67) gives a formula for the corresponding “Hamiltonian” D̺Q (cf. Foot-
note 87):

D̺Q(ν) ≡ Tr(D̺Q·ν) = Tr(H0 ·ν) + ε

∫

K′(̺(x, x))·ν(x, x)dnx,
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or in terms of formal “operator kernels” (with K′(s) := dK(s)
ds , s ∈ R):

D̺Q(x, y) = H0(x, y) + ε·δ(x− y)·K′(̺(x, x)),

We did not consider any domain questions here: that would need more time and space. It
seems, however, that the above formally given operators D̺Q could be correctly defined on (a
dense subset of) H, at least as symmetric operators.

3.3.14 Remark (Koopmanism). We have restricted, in the above considerations, our attention
to the “Schrödinger picture”, hence the algebra of observables A was not investigated: It could
be chosen A = L(H), as in linear QM. Its completion to an algebra of operator–valued functions
could give a “linear extension” of the system. Let us note, however, that such extensions might
be considered as a version of “noncommutative Koopmanism”, cf. a Koopman formalism in CM
(i.e. the “commutative” one), e.g. in [219, Chap.X.14], resp. [92, 153]. This can be expressed
schematically as follows.

In Hamiltonian classical mechanics, the system is described by a 2n–dimensional symplectic
manifold (M ; Ω), where the symplectic form Ω provides for ascription to Hamiltonian functions
(i.e. generators) h ∈ C∞(M,R) the symplectic flows ϕht on M . Since the n–th exterior power of
Ω, i.e. the Liouville volume ∧nΩ (corresponding to a measure µΩ on M) is conserved by ϕh, it
is possible to introduce the Hilbert space L2(M,µΩ), where the flow ϕh (let us assume, that it is
complete) is described by the continuous unitary group Uh(t) defined by:

ft(m) := [Uh(t)f ](m) := f(ϕht (m)), for all f in classes f ∈ L2(M,µΩ).

The selfadjoint (cf. [1, Proposition 2.6.14]) generator Lh of Uh(t) ≡ exp(−itLh) is called the
Liouville operator of the CM system. It is in fact the differential operator given by the Poisson
bracket (up to domain questions concerning possible choice of f):

Lhf ≡ i·{h, f}, f ∈ D(Lh) ⊂ L2(M,µΩ).

In this way, the nonlinear finite–dimensional Hamilton’s equations are transformed formally into
a linear Schrödinger–like “Liouville equation”

i· d
dt
f = Lhf

on infinite–dimensional Hilbert space. This Hilbert space description of CM is called the Koopman
formalism. Let us note that here, in the “commutative case” of CM, the transformation Uh(t)f
of elements f ∈ L2(M,µΩ) of this “extended phase space” is uniquely given by the transformation
ϕht of the phase space M , i.e. of the space of arguments of scalar–valued functions (the real values
of f(m) should stay real also for ft(m), due to their physical interpretation).

The situation in EQM can be considered in analogy with the preceding Koopman transition
in CM, cf. also [35]: The (nonlinear) transformations ϕ̃Qt of S∗ are extended to one–parameter
∗-automorphism group τQ of a C∗-algebra Cbs (cf. Definition 2.3.13 and Theorem 2.3.16), or some
of its subalgebras, what is a standard picture of linear quantum theories. The difference from
the “commutative case” is, that Cbs is generated by functions on the “quantum phase space” S∗
with values in noncommutative C∗-algebra L(H). Hence, to obtain the automorphism group τQ

corresponding to nontrivial ϕ̃Qt , we have to introduce in a consistent way also transformations of
values of these functions. These are, however, nonunique, and the nonuniqueness is pointed out,
e.g., in Remark 2.1.18. ♥
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3.4 “Macroscopic” Reinterpretation of EQM

It might be interesting from technical, as well as from physically intuitive point of view to show a
simple way how our nonlinear quantum–mechanical dynamical systems considered in this paper (in
the framework of EQM) can be considered as subsystems of infinite physical systems described in
a framework of traditional (linear) quantum theory. A Hilbert space description of such a “large”
system would necessitate, however, also usage of a nonseparable Hilbert space, e.g. the space of
universal representation of a certain algebra A having uncountably many mutually inequivalent
faithful representations (each one corresponding to a specific value of macroscopic variables), cf.,
e.g. [228, 197, 239]. It is not very comfortable to have all these representations simultaneously as
subrepresentations in one nonseparable Hilbert space. A way to describe this situation in a more
transparent way can be found in the framework of formalisms used in quantum field theory (QFT),
or in theories of systems “with infinite number of degrees of freedom”, cf. [119, 120, 92, 42, 43, 121].
The main mathematical tool of these theories are C∗-algebras and their automorphism groups, cf.
also [229, 197]. These theories are usually used to describe “thermodynamic systems” consid-
ered as infinitely large in the sense of intuitive notion of spatial extension, and also containing an
infinite number of particles. Such an infinite approximation to finite, but large systems is concep-
tually acceptable and technically useful: It allows clear mathematical description of macroscopic
subsystems of physical systems consisting of very large number of microscopic constituents – so
large that any detailed practical (e.g. numerical) description and measurement of their states,
taken even in any nontrivial a priori restricted precision for individual subsystems, is hopeless;
their macroscopic subsystems consist, on the other side, of manageable sets of classically described
parameters. Mathematically clear description of states and dynamics of such sets of classical pa-
rameters of quantal systems is up to now possible, however, only in the framework of “infinitely
extended” systems. Its possibilities include, e.g., a description of phase transitions, cf. [43, 239].

We shall sketch briefly in this section a possibility, how to introduce a C∗-algebra C describing
a “large” QM–system, “containing” in a certain sense the traditional observable algebra L(H)
of a finite quantum system, as well as a commutative subalgebra of continuous complex–valued
functions C(M). This subalgebra C(M) is interpreted as the C∗-algebra of a classical subsystem
in such a way that C is determined by these two subalgebras, together with an infinite index set Π
containing labels of the “elementary” (mutually equal) finite subsystems. This algebra C can be
chosen so that it “contains” the C∗-algebra CG (cf. Definition 2.3.3) describing any of the infinite
number of equal “microscopic” subsystems composing the large system, as well as its extension by
a classical system (= a “mean–field”); the later can describe collective influence of all the other
subsystems onto the specified one, [131, 31, 33, 264, 265, 266]. In such systems, the dynamics can
be determined by a sequence of local Hamiltonians. If a Lie group G is given so that it determines
(via its unitary continuous representation) selfadjoint generators entering into the expressions of
the local Hamiltonians of the (arbitrarily large but) finite subsystems, the spectrum space M of
the classical subalgebra is the range EF=F(D(F)) of F in the dual g∗ of the Lie algebra of G,
cf. Definition 2.2.17; we can even have EF = S∗, for G := U := U(H). This approach can be
considered either as a “phenomenological” introduction of a formal classical system to “complete”
a given nonlinear quantum system to a linear one, or as a dynamical theory of a large system with
a long range interaction. The dynamics is then a ∗-automorphism subgroup of the ∗-automorphism
group of C.

Since the C∗-algebra CG is “essentially” (i.e. up to its completions in weaker–than–norm topolo-
gies) the tensor product L(H)⊗CGcl , it corresponds (in the sense of usual QM constructions – again
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“essentially”) to a compound system consisting of a “standard (with finite number of degrees of
freedom) QM–system” described by the algebra of observables L(H), and of a “classical subsys-
tem” described by the commutative C∗-algebra CGcl which is isomorphic to the space of all complex
valued continuous functions on the quantum phase space of elementary mixtures S∗, C(S∗,C).
Hence, the “nonlinear” EQM can be embedded as a subsystem theory to a linear quantum the-
ory, cf. also Theorem 2.3.16. This linear theory can be considered in turn as a subtheory of a
(nonrelativistic) quantum field theory (QFT), i.e. a theory of an infinite number of “standard”
QM systems, [119, 92, 120, 42, 31]; this can be done not only kinematically, i.e. by construction
of the sets of observables, but also by postulating a “microscopic” evolution in local subalgebras
(given by local – linear – Hamiltonians of mean–field type, [131], depending on size of the local
subsystems) and taking the thermodynamic limit, [31, 32]. As a result of such a limiting pro-
cedure, it is obtained, besides the quasilocal algebra A of observables of arbitrarily large, but
finite subsystems, also the algebra of classical quantities CGcl (belonging to the “algebra of
observables at infinity”, [224, 132, 42, 239]), without which the time evolution cannot be defined
as a (semi–) group of transformations of an algebra of observables, [186, 31]. A “simplest” and a
“most natural” quasilocal algebra of an infinite system in nonrelativistic QFT is A := ⊗p∈ΠL(Hp),
as it is introduced below. If the “standard” QM system under consideration (the extension of
which is the “considered” system described by EQM) is described in finite–dimensional Hilbert
space, then we have, as the algebra of observables of the corresponding infinite system, directly the
tensor product C∗-algebra C = A ⊗ CGcl .

[
In the case of infinitedimensional Hilbert spaces H, the

algebra C contains A ⊗ CGcl as a (possibly proper) subalgebra, [27], (the fact, that C 6= A ⊗ CGcl in
this case is a consequence of weak, but not norm, continuity of corresponding unitary groups, resp.
of unboundedness of generators, cf. also [42, 229] for some mathematical refinements).

]
In these

cases of infinite systems, the elements of the classical subalgebra CGcl are naturally interpreted as
(global) intensive quantities of the infinite system; hence, they correspond to macroscopic
variables of this large quantal system, cf. also Remark 2.2.19.

Let us introduce an example of such macroscopic algebraic elements. The description is realized
on, e.g., infinite tensor product HΠ := ⊗p∈ΠHp (with Π := an infinite index set labelling the
“constituent microsystems”), [191], of equal copies of the Hilbert space H ≡ Hp, and the quasilocal
algebra A is generated (via algebraic operations and norm limits) by the subalgebras (isomorphic
to)

AΛ := ⊗p∈ΛL(Hp), Λ ⊂ Π, |Λ| <∞, (3.4.1a)

where |Λ| := the number of elements in Λ ⊂ Π, with the natural inclusions

Λ ⊂ Λ′ ⇒ AΛ ⊂ AΛ′ , (3.4.1b)

acting on HΠ ≡ HΛ ⊗HΠ\Λ (the tensor product of Hilbert spaces is, for finite number of factors,
associative, [191]) in the obvious way: Let us define an “identification” of the Hilbert spaces
Hp, p ∈ Π with H by defining unitary mappings up, p ∈ Π of Hp onto H. AΛ is generated by
elements ap, where upapu

−1
p ∈ L(H), with ap’s “acting on the p-th factor” Hp, ∀p ∈ Λ, i.e. for a

vector Φ ∈ HΠ, one has

Φ := ⊗p∈Πφp, aqΦ := (aqφq)⊗
(
⊗p∈Π\{q}φp

)
. (3.4.1c)

Now we choose any X ≡ upXpu
−1
p ∈ L(H)s,

88 corresponding to “an observable of individual

88We can choose also unbounded X’s here, but in that case nontrivial domain questions should be considered, [27].
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subsystems”, and define

XΛ :=
1

|Λ|
∑

p∈Λ

Xp ∈ AΛ. (3.4.1d)

Let a Lie group G be unitarily and continuously represented in H by U(G), and let Up(G) :=
u−1
p U(G)up be the corresponding action on each Hp. Let the X = X∗ above be an arbitrary

generator of U(G). The set of “intensive observables” in CGcl is generated by limits XΠ in some
topology89 of XΛ, for Λ ր Π, for all selfadjoint generators X := Xξ, ξ ∈ g of U(G). These
limits do not belong to A; their introduction to the algebra of observables is, however, necessary
for the “standard–type” description of dynamics with long–range interactions, [186], e.g. for MF–
type evolutions, [31]. The quasilocal algebra A is canonically included into its second topological
dual A∗∗ which is in turn a W ∗-algebra in a canonical way [228, 197]; the limits XΠ are then
associated, [228, Definition 2.7.13], with a certain W ∗-subalgebras of A∗∗. On the algebra of
functions CGcl , Poisson brackets can be naturally defined. Then the mentioned mean–field type
dynamics defined with a help of local Hamiltonians on AΛ’s does not leave, in the thermodynamic
limit, the C∗-algebra A invariant (invariant with respect to such evolutions is, however, the
“classical subalgebra” CGcl).90 The dynamics of the classical algebra CGcl is Hamiltonian (with respect
to the mentioned Poisson structure), and the dynamics of any local subsystem (described by L(Hp))
“essentially coincides” with some of the nonlinear dynamics described by Theorem 2.3.16, and by
Definitions 2.3.13: The considered dynamics of the infinite system is constructed as follows: Let
us consider a function Q ∈ C∞(g∗,R) as a Hamiltonian for the dynamics (with respect to the

natural Poisson structure on g∗) described by the Poisson diffeomorphisms ϕQt : g∗ → g∗. The
local Hamiltonians of the infinite quantum system are (consider, in the following formulas, Q as a
polynomial in Fj := F (ξj), F ∈ g∗, for simplicity, otherwise cf. [87])

HΛ := |Λ|·Q(Xξ1Λ, . . . , XξnΛ), (3.4.2a)

with {ξj , j = 1, . . . , n} a basis in g, and the “ordering” of operators is such, that all HΛ’s are
selfadjoint.91 Then the limiting dynamics

τQt (x) = (?)− lim
ΛրΠ

exp(−itHΛ)x exp(itHΛ), x ∈ A (3.4.2b)

can be defined, but only (for nonlinear Q) as a dynamics of the “extended” algebra containing
also the classical (macroscopic) quantities, cf. [31, 33, 87]. If, in an initial state ω = ω0 ∈ S(A),

the values s − limΛրΠ πω(XξΛ) exist, then in its time evolved states ωt := ω ◦ τQt (if canonically
extended to the states on A∗∗) we have

ωt(XξΠ) ≡ Ad∗(gQ(t, F0))F0(ξ), F0(ξ) := ω0(XξΠ), ∀ξ ∈ g, (3.4.2c)

89The topology, in which this limit exists is rather special: It cannot be norm–topology of A for X such, that
their spectrum contains at least two points, [31]. The set {XΛ : Λ ⊂ Π, |Λ| < ∞} considered as a net in the von
Neumann algebra A∗∗ (:= the second topological dual of A) has more than one cluster points, [31]. Hence, the
topology on A∗∗ has to be chosen weaker than its w∗–topology, [31].

90The rôle of the group G is here in choice of the topology mentioned in the preceding footnote, as well as in
determination of dynamics: It is very useful especially in the presence of unbounded generators (i.e. local Hamilto-
nians).

91The ordering and symmetry of the operators is not here very important, since in the limit Λ ր Π the elements
XξjΠ commute with all observables: They belong to (a subspace of) the centre of A∗∗.
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where the cocycle gQ(t, F ) is as in Proposition 2.3.10.
The subdynamics of the system “living” on any one of Hilbert spaces Hp, p ∈ Π, say on H

(if the index p is skipped), is given then by a unitary cocycle {U(gQ(t, F )) : t ∈ R, F ∈ g∗}92, cf.
Proposition 2.3.10:

ψ(t) ≡ U(gQ(t, F ))ψ(0), ψ(0) ∈ H, (3.4.3a)

if the initial condition ψ(0) is chosen such, that for the initial value of “the macroscopic field
F = F0”, F0(ξ) := ω0(XξΠ) at t = 0, it is fulfilled

F (ξ) := 〈F ; ξ〉 ≡ (ψ(0), Xξψ(0)), ∀ξ ∈ g. (3.4.3b)

We can see that for
Ft := Ad∗(gQ(t, F0))F0 ≡ ϕQt (F0), t ∈ R, (3.4.3c)

the following relation is valid:

Ft(ξ) ≡ (ψ(t), Xξψ(t)), for F0(ξ) ≡ (ψ(0), Xξψ(0)). (3.4.3d)

After insertion of (3.4.3d) for Ft into the time dependent Schrödinger equation for ψ(t) obtained
from (3.4.3a) by differentiation, we obtain a nonlinear Schrödinger equation of EQM, describing
now the evolution of a “small” subsystem of an infinite (linear) system of traditional QT, cf. (3.5.1).
Hence, the subdynamics of an infinite quantum system with an automorphic (hence “linear”) time
evolution appears as nonlinear evolution in a NLQM.

We shall return to the relations (3.4.3) in Section 3.5, where we shall rewrite nonlinear QM–
equations as a couple of equations: one nonlinear classical Hamilton’s equation, and a linear
time–dependent Schrödinger one.

3.5 Solution of Some Nonlinear Schrödinger Equations

Let dimG = n < ∞, for a Lie group G. Let an arbitrary U(G)–system be given, with {ξj : j =
1, 2, . . . , n} a basis of g := Lie(G), and Fj := F (ξj), j = 1, 2, . . . , n, ∀F ∈ g∗. Let Q ∈ C∞(EF,R)
be chosen. The selfadjoint generators of unitary one–parameter subgroups U(exp(tξj)) in the
Hilbert space H are Xj ≡ X(ξj). Let us consider the function Q as a function of n real variables
{Fj}, i.e. Q(F ) ≡ Q(F1, F2, . . . , Fn) is expressed by vector coordinates of the linear space g∗. Let

there exists complete classical flow ϕQt on EF, and let F (t) ≡ ϕQt (F (0)), with F (0) := F(Px0) ≡
F(x0), where x0 ∈ Dω(G).

We intend to look for continuously differentiable curves t 7→ xt ∈ Dω(G) ⊂ H, xt=0 := x0

satisfying the following nonlinear Schrödinger equation:

i
d

dt
|xt〉 =

n∑

j=1

∂

∂Fj
Q(〈xt|X1|xt〉, 〈xt|X2|xt〉, . . . , 〈xt|Xn|xt〉)·Xj|xt〉, (3.5.1)

where the quantities 〈xt|Xj |xt〉 are inserted for the components Fj of F ∈ g∗ into

∂Q(F )

∂Fj
, F ∈ g∗.

92These cocycles are nonunique, cf. Remark 2.1.18.
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It depends on the choice of the group G, and of its representation U(G), and also on the choice of
realization of the Hilbert space what a specific form this abstract differential equation will attain:
It can be partial differential equation, and possibly also an integro–differential equation, and for
nonlinear (in variables Fj) function Q it is always nonlinear. We shall show, however, that in all
of these cases the equation (3.5.1) can be equivalently rewritten (for solutions lying in Dω(G)) in
a more transparent form of two connected problems:

(i) The problem of finding solutions of CM–problem for Hamilton’s equations on the (general-
ized) classical phase space g∗ with its canonical Poisson structure, and with the Hamiltonian Q,

leading to the Poisson flow ϕQt on g∗.
(ii) Then, after insertion into the expression of dFQ in the equation (3.5.1) for the argument F

the appropriate solution (specified by the initial conditions) F (t) := ϕQt (F (0)), solving the obtained
time dependent linear Schrödinger equation (resp. equivalently: solving (2.3.6) to find the cocycle
gQ(t, F )).

Let us formulate and prove this result:

3.5.1 Theorem. Let the conditions imposed above on the objects entering into the equation (3.5.1)
are fulfilled. Then, for any x0 ∈ Dω(G), there is a solution {xt : t ∈ R} of (3.5.1) lying in Dω(G).
It can be obtained as a solution of the time dependent linear equation

i
d|xt〉
dt

=

n∑

j=1

∂Q(F (t))

∂Fj
Xj|xt〉, (3.5.2)

where F (t) is the solution of the classical Hamilton’s equations corresponding to the symplectic flow
ϕQ on that Ad∗(G)–orbit which contains the initial classical state F (0) := F(Px0). If gQ(t, F (0))
is the solution of the equations (2.3.6), then a solution |xt〉 can be expressed by the relation:

|xt〉 ≡ U
(
gQ(t, F (0))

)
|x0〉. (3.5.3)

Each (global) solution of (3.5.1) satisfies also (3.5.2), with Ft := F (t), 〈xt|X(ξ)|xt〉 ≡ Ft(ξ)

satisfying the classical equations: Ft ≡ ϕQt ((F (0)). ♣

Proof. Dω(G) is U(G)–invariant, x0 ∈ Dω(G), hence also U
(
gQ(t, F (0))

)
∈ Dω(G) for all t ∈ R.

The function |xt〉 from (3.5.3) leads to the identity

〈xt|X(ξ)|xt〉 ≡ ϕQt Fξ(Px0), (3.5.4)

what is a consequence of (2.3.8), (2.3.7), and Definitions 2.2.17. Hence we have Fj(t) ≡ 〈xt|Xj |xt〉.
Differentiation of (3.5.3) with a help of (2.3.5), (2.3.6), and of the group–representation property
of U gives:

d

dt
U
(
gQ(t, F (0))

)
|x0〉 =

d

ds

∣
∣
∣
∣
s=0

U
(
gQ(s, F (t))

)
U
(
gQ(t, F (0))

)
|x0〉

= −iX(dF (t)Q)U
(
gQ(t, F (0))

)
|x0〉,

(3.5.5)

what is the relation (3.5.2) with |xt〉 from (3.5.3). Insertion of (3.5.4) into (3.5.2) gives (3.5.1),
what proves that the function |xt〉 from (3.5.3) solves the equation (3.5.1).
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Let |xt〉 be some global solution of (3.5.2) with ‖x0‖ = 1, and fulfilling Fj(0) ≡ 〈x0|Xj |x0〉. Then
it satisfies (3.5.4), what follows from the differentiation of 〈xt|Xj |xt〉 with a help of (3.5.2), (2.2.14),
and (2.2.17). Consequently, this |xt〉 satisfies also (3.5.1).

Conversely, let |xt〉 be some global solution of (3.5.1). Again by differentiation of Fj(t) :=
〈xt|Xj |xt〉, one obtains, as above, the identity (cf. also Notation 3.2.2)

d

dt
Fk(t) ≡

n∑

j=1

∂Q(F (t))

∂Fj
{Fj , Fk}(F(xt)),

with F (t) ≡ F(xt). This means that each global solution of (3.5.1) fulfills also the equations (3.5.2)
and (3.5.4).

We can see that all the norm–differentiable solutions of (3.5.1) conserve their norms: 〈xt|xt〉 ≡
〈x0|x0〉, since the generator on the right side of (3.5.2) is selfadjoint for all t ∈ R (because it belongs
to the generators of U(G)). It follows also that, for ‖x0‖ = 1, one has Fj(t) := Tr(PxtXj) ≡
〈xt|Xj |xt〉.

3.6 On an Alternative Formulation of NLQM

It might be fair and also useful to look onto another, a rather popular formulation of general
NLQM (on the set of pure states P (H)) published by Weinberg in [274]. His proposal contained
some ambiguities, and also it had some physically unacceptable consequences discussed already in
literature, cf. e.g. [107, 273].93 Its mathematical framework can be, however, consistently presented
if it is restricted to P (H). In that case, it is in fact equivalent to our formulation of NLQM on
P (H).

Weinberg mostly worked with finite dimensional Hilbert spaces, and he used formalism depend-
ing on components in a chosen basis of Hilbert space. We shall try to reformulate the Weinberg’s
theory [274] in a coordinatefree way, but simultaneously preserving, as far as possible, the main
ideas94 of the original formulation.

Let the nonlinear observables (and generators) be differentiable functions a, b, . . . , of two vari-
ables x ∈ H, and y∗ ∈ H∗ from the Hilbert space H and its dual (here y∗ corresponds to y ∈ H via
the Riesz lemma, y∗(x) ≡ (y, x)): (x; y∗) 7→ a(x, y∗) ∈ C. It is assumed that the functions a, . . . ,
are homogeneous of the first degree in each of the variables, i.e.

a(λx, y∗) ≡ a(x, λy∗) ≡ λa(x, y∗), ∀λ ∈ C \ {0}. (3.6.1)

Another requirement is the “reality condition”: a(x, x∗) ∈ R, ∀x ∈ H. A specific “observable” is
n(x, y∗) := y∗(x) ≡ (y, x); the observables a, b, . . . , corresponding to traditional “observables” of
QM determined by selfadjoint operators A,B, . . . , are of the form a(x, y∗) ≡ (y,Ax), . . . , where
λ(y∗) ≡ (λy)∗ (since the bijective mapping x 7→ x∗ of H onto H∗ according to the Riesz lemma

93In the presented formulation of EQM, some of these “unacceptable consequences” remain valid, as it was
discussed, e.g. , in Subsection 2.1-e. We have overcome here, as the present author believes, at least the difficulties
connected with the inappropriate work with mixed states and subsystems (resp. composed systems; these we do not
try to introduce here as a general concept) in the Weinberg’s papers. We also proposed a consistent interpretation
scheme, in which possible ambiguities are well understood.

94We mean here mainly the formalism determining – mathematical ideas, as they were understood by the present
author.
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is antilinear). In Ref. [274], only values a(x, x∗), . . . , of observables a, b, . . . , in “diagonal” points
(x;x∗) ∈ H × H∗ corresponding to a specific vector state x ∈ H are used, except of the instants
when a, b. . . . , are differentiated according to only one of the variables x , y∗ (in points with y = x).
The Fréchet differentials are

Dxa :=
∂a(x, y∗)

∂x

∣
∣
∣
∣
y=x

∈ H∗,

D∗
xa :=

∂a(y, x∗)
∂x∗

∣
∣
∣
∣
y=x

∈ L(H∗,C) = H.
(3.6.2)

Then we can write the nonlinear Schrödinger equation, [274, (b):Eq.(2.12)], with a generator h ≡
h(x, y∗) in the form:

i
∂x(t)

∂t
= D∗

x(t)h. (3.6.3)

As concerns the interpretation, let us only mention that the expectation value of an observable a
in the state described by a vector x 6= 0 is expressed by the number

a(x) :=
a(x, x∗)
n(x, x∗)

. (3.6.4)

This is in accordance with our interpretation from (2.3.4), and (2.3.9): The function a in (3.6.4)
depends on elements x ∈ P (H) only; it can be identified with one of our observables and/or
generators restricted to P (H). In the case of finite–dimensional H, any a in (3.6.4) can be written
as a function ã(f1, f2, . . . , fn) of a finite number of quantities fj(x) given by an equation:

fj(x) := fj(x, x
∗), with fj(x, y

∗) :=
(y,Xjx)

(y, x)
, (3.6.5)

with Xj ∈ L(H)s. In the finite dimensional case, we can insert into the nonlinear Schrödinger
equation (3.6.3) the function

h(x, y∗) := n(x, y∗)Q(f(x, y∗)), f := (f1; f2; . . . ; fn),

where we write Q instead of h̃ from the text above (3.6.5). Let also F(x) :=f(x, x∗), with compo-
nents Fj(x). An easy computation then gives:

D∗
x(t)h ≡

n∑

j=1

∂Q
(
F(x(t))

)

∂Fj
Xj |x(t)〉

+



Q
(
F(x(t))

)
−

n∑

j=1

∂Q
(
F(x(t))

)

∂Fj
Fj(x(t))



 |x(t)〉,
(3.6.6)

what expresses the right hand side of the nonlinear Schrödinger equation written in the form (3.6.3)
in accordance with Ref. [274]. The notation in (3.6.6) literally corresponds to that introduced in
Section 2.3, because the selfadjoint operators {Xj : j = 1, . . . , n} in finite dimensional Hilbert
space H generate a Lie algebra of operators dU(g) of a (finite–dimensional) simply connected
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Lie group G with representation U(G) in H generated by (integration of) dU(g) ∋ Xj, and F is
then the corresponding momentum mapping, cf. also [32, Sec.IV]. Direct inspection shows that if
t 7→ x(t) := Px(t) corresponds to a solution of (3.6.3), then the function t 7→ F(x(t)) is solution of
Hamilton’s equations on g∗ with Poisson brackets

{Fj , Fk}(F(x)) := i T r(Px[Xj, Xk]),

with the Hamiltonian function F 7→ Q(F), in correspondence with the canonical Poisson structures
on P (H) and on g∗ := Lie(G)∗. Let us denote

α(x(t)) := Q
(
F(x(t))

)
−

n∑

j=1

∂Q
(
F(x(t))

)

∂Fj
Fj(x(t)).

Since this is a real numerical function of time (for a given solution x(t), t ∈ R), any solution
|x(t)〉 of (3.6.3) can be transformed into a solution |xt〉 of the corresponding equation of the
form (3.5.1) by a gauge–transformation, namely by multiplication of the vectors |x(t)〉 by a phase
factor exp(i β(t, x0)):

|xt〉 ≡ exp(i β(t, x0))|x(t)〉,
where the phase β(t, x0) is a solution of the equation

dβ

dt
= α(x(t)), (3.6.7)

corresponding to the initial condition x(0) := x0. The two solutions, |xt〉 of (3.5.1), and |x(t)〉
of (3.6.3), corresponding to the same initial condition x(0) = x0 are mutually physically indis-
tinguishable. A comparison of the “Weinberg type” nonlinear Schrödinger equations with that of
geometric formulation of QM (essentially identical with the ours one) was presented in [11].
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A Selected Topics of Differential Geometry

We shall give in this appendix a brief review of some basic definitions, illustrative examples, and
some facts (theorems) concerning the elements of differential geometry and some of related topics.

A.1 Introduction to topology

The general concept of topology is basic for mathematical description of continuity, stability,
connectedness, compactness, etc. This concept is useful for clear understanding of several issues
of this paper.

Let, for a given set X the collection of all its subsets (i.e. the power set of X ) be denoted by
P(X ).

A.1.1 Definitions (Topology).

(i) A topology on the set X is a collection T ⊂ P(X ) of subsets U ,V , · · · ⊂ X satisfying:

t1. Union of an arbitrary set of members of T also belongs to T .

t2. Intersection of an arbitrary finite set of members of T is a member of T .

t3. The empty set ∅, as well as the whole X , are members of T .

The elements U ∈ T of the given topology T are the open sets (in this specific topology!). The
complements X \U are called the closed sets. Topologies {Tγ} are naturally ordered by inclusion:
T1 ≺ T2 iff T1 ⊂ T2, and, in this case, T2 is stronger (≡ finer) than T1 (also: T1 is weaker
(≡ coarser) than T2). The set of all possible topologies on X is a directed set; it is, moreover,
a complete lattice (i.e. each subset has supremum and infimum). The strongest of all topologies is
the discrete topology for which each subset of X is both open and closed (=: clopen sets). The
weakest topology is the trivial one: only open (and closed) subsets of X are the empty set ∅, and
the whole space X . For any subset M⊂ X , for a given topology, there is a unique minimal (with
respect to the set inclusion) closed subset M of X containing M, called the closure of M: M;
as well as there is a unique maximal open subset of X contained in M, called the interior of M,
denoted by M◦. If the closure of M is the whole space X , then M is dense in X . Given an
arbitrary subsystem S ⊂ P(X ), there is a minimal topology on X containing S; it is the topology
generated by S. The couple (X ;T ) is a topological space, or also the topological space
X . If cardinality of a dense subset of X is at most countable, then the topological space X is
separable. Any subset M of X , such that x ∈ M◦, is a neighbourhood of x ∈ X .

(ii) Any subset Y ⊂ X of the topological space (X ;T ) is endowed with the relative (or induced)
topology TY := {Y ∩V : V ∈ T }. With this topology, the subset Y is a topological subspace of
X .

(iii) A topological space is disconnected iff it is union of two nonempty disjoint open (equivalently:
closed) subsets. In the opposite case it is connected. The union of all connected topological
subspaces each of which contains the point ̺ is the connected component of the point ̺ ∈ X .

(iv) A topological space (X ;T ) is compact iff for any collection {Vj : j ∈ J} ⊂ T (with J an
arbitrary index set) covering X : ∪j∈JVj = X , there exists a finite subcovering, i.e. there is a
finite subset K ⊂ J such, that ∪j∈KVj = X . A subset Y ⊂ X of any topological space (X ;T ) is
compact, if it is compact in the relative topology.
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(v) Topologies used usually in analysis are Hausdorff, i.e. for any two distinct points ̺, σ of the
considered topological space there are disjoint open sets V̺,Vσ each containing one of the chosen
points. This is one of the types of possible topologies which separate points of topological spaces,
cf., e.g. [149]. In Hausdorff spaces, each one–point set is closed, and any compact subset is also
closed. A Hausdorff space X is locally compact iff each point x ∈ X has a compact neighbourhood.

(vi) Let a topological space X be decomposed into a collection of its (mutually disjoint nonempty)
subsets: X = ∪jNj : j ∈ J , the decomposition being denoted by N . Let us form the factor–space
X/N (resp. also the quotient–space) the points of which are the subsets Nj (it is essentially
equivalent to the index set J – as a set). Let pN be the natural projection of X onto X/N ,
x ∈ Nj ⇔ pN (x) = Nj. The natural topology on X/N , the factor–topology (resp. quotient–
topology), is the strongest topology for which pN is continuous, cf. the Definitions A.1.2.

(vii) Let X , Y be topological spaces, X × Y be their Cartesian product, i.e. the set of ordered couples
(x; y), x ∈ X , y ∈ Y. The product topology is generated on this space by Cartesian products of
all the couples of their open subsets U × V ,U ∈ TX ,V ∈ TY . This concept is uniquely extended to
products of any finite numbers of topological spaces (by associativity of the Cartesian product). ♦

The perhaps most important “topological” concept is that of continuity.

A.1.2 Definitions (Continuity).

(i) Let f be a mapping (i.e. a function) from a topological space (X , TX ), into (Y, TY), f : X 7→ Y.
Then f is continuous iff f−1(U) ∈ TX , ∀U ∈ TY .

(ii) The mapping f : X → Y is continuous in the point x ∈ X iff for any open neighbourhood U of
f(x) ∈ Y, f(x) ∈ U , there is an open neighbourhood V of x, V ∋ x such, that its image under f is
contained in U : f(V) ⊂ U .

(iii) Any continuous bijection f of a topological space X onto another topological space Y such, that
its inverse f−1 is also continuous is a homeomorphism of the spaces X and Y. Spaces mutually
homeomorphic are indistinguishable from the topological point of view - they are topologically
isomorphic.

(iv) Any given set of functions {fj : X → Yj , j ∈ J}, where Yj are arbitrary topological spaces,
determines a unique topology on X such, that it is the weakest topology for which all the functions
{fj, j ∈ J} are continuous. This topology on X is the topology determined by the functions
{fj, j ∈ J}. ♦
A.1.3 Examples (Various topologies). We shall introduce here some examples of topologies.

(i) The topology on a metric space (X ,d) generated by the open balls Bε,x := {y ∈ X : d(x, y) <
ε} (x ∈ X , ε > 0) is the metric topology. For X := R, the metric topology given by the distance
function d(x, y) ≡ |x− y| is the “usual topology”. The metric topology is always Hausdorff. The
“usual” topology on Rn is the product topology of n copies of the spaces R with their “usual
topologies”. The complex line C is considered as topologically equivalent (i.e. homeomorphic) to
R2.

(ii) Very different kind of topology on R is the following one: Let the open sets on R be {x ∈ R :
x < a}, ∀a ∈ R. The obtained topology is not Hausdorff. Observe that there are no nonempty
mutually disjoint open subsets now. This implies that the only continuous real-valued functions
(where the image-space R is endowed with the “usual topology”) on R endowed with this topology
are constants.
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(iii) Consider the identity mapping idR : x 7→ x, ∀x ∈ R; it is discontinuous if the image-topology is
finer than the “domain-topology”. E.g., the identity mapping on an arbitrary set X from discrete
to arbitrary topology is continuous, and the inverse mapping is also continuous only in the case, if
both copies of the mapped set are endowed by the same (now discrete) topology.

(iv) Let B(I) be any set of real–valued functions (i.e. the image–space R is endowed with the
“usual” topology) on the unit interval I := {r ∈ R : 0 ≤ r ≤ 1}. It generates the weakest
topology on I such, that all functions f ∈ B(I) are continuous. Consider, e.g. the cases, where
B(I) contains also some characteristic functions of subintervals of I: such a topology makes the
interval I disconnected. ♥

We are often working with linear spaces endowed with some topologies. Finite–dimensional
spaces R3N of particle configurations, as well as infinite–dimensional spaces of functions with values
in linear spaces (with pointwise additions), are linear spaces in a natural way . To be useful in
dealing with linear mappings, topologies introduced on such spaces should be in a “correspondence”
with the existing linear structures on them.

A.1.4 Definitions (Topological linear spaces).

(i) Let L be a linear space over K ∈ {R; C}, where K is considered with its canonical (:=“usual”)
topology. Let a topology T on L be given. Let us consider the multiplication of elements x ∈ L
by scalars λ ∈ K as mapping from the topological product–space K × L into L : (λ; x ) 7→ λx ∈
L, and the addition: (x ; y)(∈ L × L) 7→ x + y(∈ L), also with the product–topology of L × L.
Then the topological space (L; T ) is a topological linear space (=t.l.s.) iff the addition and
multiplication by scalars are (everywhere) continuous functions. This allows us to define any
topology of a topological linear space on L by giving just all the open sets containing an arbitrarily
chosen point (e.g. x= 0).

(ii) Most often used in applications are such t.l.s. which are Hausdorff, and their topology is
determined by seminorms: T.l.s. L is locally convex space (= l.c.s.) iff its topology is
determined by a set {pj : j ∈ J} of mappings (=seminorms) pj : L → R+, x 7→ pj(x ) ≥ 0 such
that

pj(λx ) ≡ |λ|pj(x ), pj(x + y) ≤ pj(x ) + pj(y), ∀x , y ∈ L, ∀j ∈ J.
It is supposed (to be the topology Hausdorff) that the set of seminorms is “sufficient”, resp. that it
separates points:

∀x ∈ L, (x 6= 0)∃j ∈ J : pj(x ) > 0.

The topology is the weakest one for which all the seminorms are continuous. On finite–dimensional
linear spaces there is just one such a l.c. (locally convex)–topology.

(iii) If the topology of l.c.s. L is determined by just one seminorm pα, it is necessarily a norm
(i.e. pα(x ) = 0⇒ x = 0). A norm topology is naturally metric topology with the distance function
d(x, y) := pα(x − y). If the space is complete as the metric space, L is called a Banach space,
simply B–space. The norm of x ∈ L, pα(x ) will be usually denoted by ‖x‖α, where the index α
can distinguish different norms on L.
(iv) Let L be a B–space, its norm being denoted ‖ · ‖. A linear mapping ̺ : x(∈ L) 7→ ̺(x) ≡
〈̺;x〉 ∈ K is a linear functional on L. On general (infinite–dimensional) B–spaces, there are
also discontinuous linear functionals. The set of all continuous linear functionals on L is
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denoted by L∗, and it is called the topological dual (space) of L. In L∗, there is a canonical
norm–topology determined by that of L:

‖̺‖ ≡ sup

{ |̺(x )|
‖x‖ : 0 6= x ∈ L

}

, ̺ ∈ L∗.

With this norm, L∗ is a B–space. Its dual space L∗∗ contains, as a canonically isometrically
embedded subspace, the original B–space L: x ∈ L is interpreted as the mapping ̺ 7→ ̺(x ) ≡ 〈̺;x〉,
i.e. an element of L∗∗.
(v) Let M be a linear set of linear functionals on a linear space L. Assume, that M separates
points of L, i.e. ̺(x ) = 0, ∀̺ ∈M⇒ x = 0. The topology on L determined by all ̺ ∈ M is called
the M–weak topology on L, or the σ(L,M)–topology. If we consider L as linear functionals
on M, and if L separates points of M, then we have also the σ(M,L)–topology on M. If L is a
B–space, the σ(L,L∗)–topology is the weak topology on L. The σ(L∗,L)–topology on the dual
space L∗ is called the w∗–topology on L∗.The closed unit ball B1 := {̺ ∈ L∗ : ‖̺‖ ≤ 1} of the
dual to a B–space L is compact in the w∗–topology (=Banach-Alaoglu theorem). ♦

A.2 Elements of differentiation on Banach spaces

The differential calculus of mappings f : T → R between two Banach spaces T, and R is largely
similar to calculus in finite dimensional spaces. A formal difference appears because of coordinate
free notation, what is useful also in the case, when the B-spaces T, R are finite-dimensional. We
shall need mainly the case of an infinite dimensional T (e.g. T = Ts) and of the one dimensional
R = R. Let us define the Fréchet differential Dνf at the point ν ∈ T of an R-valued function
f : T→ R:

A.2.1 Definitions.

(i) Let T, R be Banach spaces with (arbitrary) norms ‖·‖ (equally denoted for both spaces) leading to
their Banach-space topologies. Let U ⊂ T be an open subset containing ν. The Fréchet differential,
resp. the Fréchet derivative, of f at the point ν ∈ T is the unique (if it exists) continuous linear
mapping Dνf : T→ R, η 7→ Dνf(η) (∀η ∈ T) satisfying

lim
η→0
‖η‖−1 ‖f(ν + η)− f(ν)−Dνf(η)‖ = 0. (A.2.1a)

If the derivative Dνf exists, the function f is differentiable at the point ν. If the derivative
Df : ν 7→ Dνf ∈ L(T,R) exists in U , f is differentiable on U ; if, in that case, U = T, then f
is called Fréchet differentiable function, or just: f is F–differentiable.

(ii) Let, by the above notation, the derivative of t 7→ f(ν + tη):

Dt=0f(ν + ·η)(1) ≡ df(ν + tη)

dt

∣
∣
∣
∣
t=0

=: Df(ν, η), ∀η ∈ T, (A.2.1b)

exists for all ν ∈ U . Then f is G–differentiable, Df(ν, ·) is Gateaux derivative of f at ν ∈ U ,
and its value Df(ν, η) is the derivative of f at ν in the direction η.

F–differentiability implies G–differentiability, and then it is Df(ν, η) ≡ Dνf(η). Conversely, if
f is G–differentiable in U = U◦ ⊂ T, if the G–derivative η 7→ Df(ν, η) is bounded linear95 for all

95Let us stress, that the linearity of G–derivative is a nontrivial requirement in general B–spaces.
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ν ∈ U , and if the function ν (∈ U) 7→ Df(ν, ·) (∈ L(T,R)) is continuous, then Df(ν, η) ≡ Dνf(η),
cf. [235, Lemmas 1.13–1.15]. ♦

In formulation of this definition, we have included also important assertions on uniqueness, and
on the relation of the two concepts, [58].

It is seen that the derivative f 7→ D·f is a linear operation (functions f with values in a linear
space R form naturally a linear space).

A.2.2 Notes.

(i) In finite–dimensional case, i.e. for dimT < ∞, and also dimR < ∞, Dνf (expressed in some
bases of T, and of R) is just the Jacobi matrix of f at ν. For R := R, the function ν 7→ Dνf
is the ordinary first differential of f (understood as a linear functional on T: the “differentials
of coordinates dνj , j = 1, 2, . . .dim T” are coordinates of vectors in T); in the case T := R,
Dνf(1) ∈ R is just the derivative of the (R – valued) function f according to the parameter ν ∈ R

(here 1 ∈ R = T is the “number 1” considered as a vector from T).

(ii) If T is a function space, the derivative Dνf is the functional derivative, cf. [86, 61]. If f
is expressed in a form of integral over the space M of arguments of the functions η ∈ T, η : x(∈
M) 7→ η(x)(∈ R), then Dνf is usually expressed as an integral kernel:

Dνf(x) ≡
δf(ν)

δν(x)
, ν ∈ T,

and Dνf(η) is the integral containing in its integrand the function η (and its derivatives with
respect to its arguments, denoted together by a vector–symbol η̃) linearly, e.g.

Dνf(η) =

∫

M

Dνf(x) ·η̃(x)µ(dx).

To be more specific, f can be here, e.g., an “action integral” of the classical field theory, [193,
161], f(ν) :=

∫

M L(x, ν̃(x))d4x, the functions ν : x 7→ ν(x) ∈ RK are finite collections (K <
∞) of classical fields on the Minkowski space M , and the function L is a Lagrangian density,
i.e. it is a numerical differentiable function of a finite number of rK + 4 real variables, x and
ν̃(x) ∈ RrK , attaining values x ∈ M , resp. equal to values of components of ν(x), and of (a
finite number of) their derivatives taken simultaneously in the same point x ∈ M (locality):
ν̃ := {ν, ∂α0

0 ∂α1
1 . . . ∂α3

3 ν : 1 ≤ ∑αj ≤ r}. Then the derivative of f : Dνf(η), is expressed by
an integral over M of the integrand DνL(x) · η̃(x), what can be considered as an application of
the chain rule for composed mappings, (A.2.2): ν 7→ L(·, ν̃(·)) ∈ C(M,R) might be considered as
a mapping between the Banach spaces T := Cr(M,RK) ∋ ν, and B := C(M,R) (endowed with
some “appropriate” norms, if, e.g., the domain of integration in M is bounded), with its derivative
DνL(·) (= a “multiplication operator” ∈ L(T,B)) : η 7→ DνL(·) ·η̃(·), and the integral is the next
(linear) mapping in the chain.

(iii) The derivative (A.2.1a) of f : T → R in any point ν belongs to L(T,R) = T∗
R
. Hence, for

T := L(H)
∗
s ⊃ S the derivative would be in the double dual L(H)

∗∗
s , what is strictly larger than

L(H)s = T∗
s, whereas the space Ts is the (R-linear envelope of the) normal state space, i.e. the

“density matrices space”, which is, in turn, the space of all symmetric linear functionals, i.e. the
state space of the C∗-algebra C of compact operators on H.
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(iv) It might be useful to stress here a (rather trivial) fact, that the derivative of a linear function
f ∈ L(T,R) equals, in any point ν ∈ T, to the element f ≡ Dνf ∈ L(T,R) itself. ♥

An important formula can be proved for differentiation of composed mappings [58, Ch.1.§2.2].
Let T, R, L be three B-spaces, and let f : T→ R, g : R→ L be differentiable mappings. Then the
composed mapping h := g ◦ f : T→ L is differentiable, and

Dνh ≡ Df(ν)g ◦Dνf. (A.2.2a)

Since Dνf is a linear mapping from T into R, and Df(ν)g is a linear mapping from R into L, we
have for all η ∈ T:

Dνh(η) = Df(ν)g
(
Dνf(η)

)
≡
(
Df(ν)g ◦Dνf

)
(η). (A.2.2b)

Specifications of these concepts lead to infinite dimensional analogs of partial derivatives, cf.
[58, Chap.1,§5.2].

A.2.3 Definitions.

(i) The second derivative D2
νf(·, ·) of the differentiable function f : T→ R, i.e. the first deriva-

tive of the function D·f : T→ L(T,R), η 7→ Dηf , at a point ν ∈ T belongs to a subspace L(2)
s (T,R)

of the space L(T,L(T,R)), what is canonically isomorphic to the space L(T×T,R) of bilinear con-

tinuous functionals on T. The subspace L(2)
s (T,R) := Ls(T × T,R) is the space of symmetric

bilinear functionals: D2
νf(̺, ω) ≡ D2

νf(ω, ̺).

(ii) Similarly as above, the n−th derivative D
(n)
ν f(·, ·, . . . , ·

︸ ︷︷ ︸

n−times

) is a symmetric continuous n−linear

functional on T, an element of the canonically defined Banach space L(n)
s (T,R) := Ls(×nT,R).

(iii) The space of k−times continuously differentiable functions f on the B-space T with values
in R will be denoted by Ck(T,R). The space of all infinitely differentiable functions on T will be
denoted by C∞(T,R) (≡ F(T), if R := R). ♦

Also the notion of the Taylor expansion can be introduced similarly as in finite–dimensional
case, [58, 235, 61]. It is clear from the point (iv) in Notes A.2.2 that the second derivative of any
linear function (with respect to to the same argument) equals to zero.

To deal with differential equations, resp. dynamical systems in different conditions, it is useful
to generalize the differential calculus to more general spaces M replacing the linear space T. Such
convenient spaces M are for us topological spaces endowed with the structures called “manifold
structures”, and these M ’s are called “manifolds”.

A.3 Basic structures on manifolds

We shall start with the concept of differentiable manifold as a basis of further geometrical con-
structions, cf. [220, 40]. Intuitively, a manifold is a set “piecewise similar” to a t.l.s.

A.3.1 Definitions.

(i) A chart on a topological space M is a triple c := (U ;ϕ;L), where U◦ = U ⊂ M , ϕ is a
homeomorphism of U onto an open subset of a Banach space L. We shall often take L := Rn

for some natural number n < ∞; in this case, the existence of such a chart means possibility of
introducing n continuous (local) coordinates on the open subset U of M . U is the domain of c,
resp. (also) of ϕ: We shall call the “chart c” alternatively also “the chart ϕ”.
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(ii) A topological (Banach) manifold M (simply: a manifold) is a Hausdorff topological space
M every point of which has an open neighbourhood homeomorphic to some open subset of a Banach
space L. This means that M can be covered by domains of charts defined on it.

(iii) A Cm-atlas on a manifold M is a collection of charts {cj := (Uj;ϕj ;Lj) : j ∈ J} such, that
the open subsets {Uj : j ∈ J} (J is an index set) cover M :

⋃

j∈J Uj = M , satisfying simultaneously

the condition that for the set of homeomorphisms ϕj the mappings ϕj ◦ϕ−1
k : ϕk(Uj∩Uk)→ ϕj(Uj∩

Uk) are, for all j, k ∈ J, Cm−diffeomorphisms, i.e. the mappings together with their inverses
are m-times continuously differentiable in all local coordinates. Two Cm-atlases are equivalent
if their union is again a Cm-atlas. All the equivalent atlases compose the maximal atlas. If
all the B-spaces L of the charts of the atlases are finite dimensional R-spaces, and an atlas is
{cj := (Uj ;ϕj ; R

n(j)) : j ∈ J}, the numbers n(j) occurring in the specifications of charts are local
dimensions of M . For a connectedM it follows that n(j) ≡ n in which case n is the dimension of
M , n = dim(M). In the case of a manifold M with the image-spaces L being infinite–dimensional
B-spaces, M is a manifold of infinite dimension. The manifold M endowed with a Cm-atlas
(equivalently: with an equivalence class of Cm-atlases) is called a Cm-manifold: The atlas(-es)
defines a structure of (Cm−)differentiable manifold on M . Equivalent atlases determine
equivalent manifold structures on M . ♦

It is a theorem, [136], that on any finite dimensionalCm-manifold withm ≥ 1 there is also a C∞-
atlas in the equivalence class defining the manifold structure. Hence, on differentiable manifolds
of finite dimension we can always introduce local coordinates the transformations of which on the
intersections of their domains are all infinitely differentiable. In the following, any manifold will
be a C∞-manifold. Let us note also that on a given (topological) manifold it might be possible
to introduce many nonequivalent differentiable structures; e.g., on the sphere Sn, for n ≤ 6, it
can be introduced exactly one differentiable structure, but for n ≥ 7 there are several dozens of
nonequivalent differentiable structures, cf. [149].

Let us introduce now some examples.

A.3.2 Examples.

(i) Let M = Rn considered with the (unique) locally convex topology of Rn. Let an atlas consisting
of a unique chart with domain M and ϕ being the identity map be given. This atlas defines a
C∞-manifold structure on M .

(ii) Let M := Sn ⊂ Rn+1 be the n-dimensional unit sphere. We can construct charts of an atlas
on M by stereographic projections onto hyperplains R

n ⊂ R
n+1 orthogonal to coordinate axes:

If M is described by the equation
∑n+1
k=1 x

2
k = 1, then, for the j-th projection ϕj , the point with

coordinates {xk : k = 1, . . . n + 1} is mapped into the point {yl := 2xl/(1 − xj), l 6= j}, for all
the points in {x ∈ Sn : xj 6= 1} =: Uj composing the domain of ϕj . As a simplest case of these

manifolds, the circle S1 needs at least two charts to compose an atlas.

(iii) The torus T n = (S1)n is an example for multiply–connected (cf. below) manifold. Its charts
are constructed, e.g., as Cartesian products of the charts of circles.

(iv) Let a set N be homeomorphic to the subset of R
2 consisting of several mutually different

straight lines intersecting in some points, with the induced topology. Then N cannot be endowed
with a structure of manifold, since any point of intersection has not a neighbourhood homeomorphic
to R (or to Rn, for any n ≥ 0). ♥
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The real line R will be always (if not mentioned contrary) considered with its usual topology
generated by open intervals. Similarly, the complex plane C is considered with the usual product
topology of R2. The manifold structures of these spaces are given as in Example A.3.2(i). We shall
define now important subsets of a manifold, that are endowed with canonically induced manifold
structures.

A.3.3 Definition.

(i) A subset N ⊂M is a submanifold of M , dim(M) = n, if every point x ∈ N is in the domain
U of such a chart (U ;ϕ), that for all x ∈ U ∩ N one has ϕ(x) = {x1, x2, . . . xk, a1, a2, . . . an−k},
where {a1, . . . an−k} is a constant in Rn−k. The obvious manifold structure on N determined
by these charts is the induced manifold structure from the manifold M . Dimension of the
manifold N is dimN = k. ♦

The usual model of a submanifold N in M := Rn is realized as the a “surface” in Rn, i.e. as the
inverse image f−1({a}) =: N of a point a ∈ R

n−k by a differentiable function f : R
n → R

n−k (i.e.
n− k real differentiable functions of n real variables) with its Jacobi matrix of constant maximal
rank on N ; this means, that N (with dim(N) = k) consists of roots x ∈ Rn of the equation

f(x)− a = 0 (∈ R
n−k). (A.3.1)

Hypersurfaces of the dimension n− 1 are determined by real-valued functions f on M with non-
vanishing differential df at points x satisfying (A.3.1) .

Let M,N be two manifolds, and let a function f : M → N, x 7→ f(x) be given.

A.3.4 Definition. A function (resp. mapping) f : M → N, x 7→ f(x) is differentiable in x ∈M
iff there are charts (U ;ϕ), (V ;ψ) on M,N , respectively, with x ∈ U, f(x) ∈ V such that the function
ψ◦f◦ϕ−1 : ϕ(U)→ ψ(V ) is differentiable in ϕ(x). That f is differentiable means differentiability
in each point x ∈ M . If f : M → N is a bijection and both f and f−1 are differentiable, then f is
a diffeomorphism of the manifolds M and N .

Let I ⊂ R be an open interval containing 0. A differentiable function c : I →M is a differen-
tiable curve on M . ♦

These concepts do not depend on a specific choice of charts in an equivalence class of atlases.
We shall mean in the following by “differentiability” the infinite differentiability, if not stated
otherwise. Differentiable mappings f : M → R compose the space F(M) of infinite differentiable
real-valued functions on M . The real linear space F(M) is also an associative algebra with
respect to pointwise multiplication: (fh)(x) ≡ f(x)h(x).

These concepts allow us to introduce an intrinsic definition of tangent space to M at a point
x ∈ M . This has an advantage with respect to intuitive notions of tangent spaces as a certain
“plains” in some higher dimensional linear space containing our manifoldM as a submanifold: Such
intuitive notions needn’t be invariant with respect to diffeomorphisms, since after a diffeomorphic
deformation of M the “tangent plain” might become “tangent” in more than one points of M ,
or even intersect M if this is not embedded in an “appropriate way”. Our definition is, however,
physically intuitive, since it directly defines tangent vectors as invariantly specified “instantaneous
velocities” of motions along curves lying on the manifold.
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A.3.5 Definition. Let cj , j ∈ J be differentiable curves on a manifold M through a point x ∈M :
cj(0) = x, ∀j ∈ J . Let (U ;ϕ; E) be a chart on M at x ∈ U . Then the derivatives

vϕj :=
dϕ(cj(t))

dt

∣
∣
∣
∣
t=0

:= Dt=0(ϕ ◦ cj)(1) ∈ E

exist. If they are equal for different j ∈ J , as vectors vϕj in the B-space E, this mutual equality is
independent of a chosen chart ϕ. We shall call cj and ck, with vϕj = vϕk , equivalent curves at
x ∈ M . Hence, the differentiable curves at x ∈M are distributed into equivalence classes [c]x
of curves c at x ∈M . ♦

Let ϕ be a chart on M as above in Definition A.3.5, and let E be considered as a manifold with
the atlas consisting of single chart given by the identity mapping idE on E . Then the equivalence
classes [d]η of all curves dj : Ij → E , dj(0) ≡ η ∈ E through η are in canonical bijection with vectors
in E given by [d]η ↔ D0dj(1) ∈ E , dj ∈ [d]η. Any curve dj through η := ϕ(x) ∈ E gives a curve
t 7→ cj(t) := ϕ−1(dj(t)) through x ∈ M . This helps us to see that there is a bijection between
the above defined equivalence classes [c]x of curves on M , and vectors in E . Now it is possible
to introduce linear operations into the set {[c]x : c is a differentiable curve on M through x} of
equivalence classes of the curves, by extending the above bijection to a linear mapping. It is
important that the linear structure on the set of classes [c]x does not depend on a chosen chart.
This leads us to important

A.3.6 Definitions.

(i) Let M be a differentiable manifold, x ∈ M . The above introduced linear space of equivalence
classes [c]x of differentiable curves through x is called the tangent space to M at x, and will
be denoted by TxM ≡ Tx(M). An element vcx := [c]x ∈ TxM is a tangent vector at x to M . If
U ⊂ M is an open subset (considered as a submanifold of M) containing x, we shall identify the
tangent spaces TxU ≡ TxM , since TxM is determined by “the local structure” of M .

(ii) Let f : M → N be a differentiable mapping (cf. Definition A.3.4) of manifolds. Let c′ ∈ [c]x ∈
TxM . Then the equivalence class of the curves t 7→ f(c′(t)) ∈ N through f(x) is independent of
a representative c′ ∈ [c]x, hence the mapping f induces a well defined mapping Txf of classes [c]x
into classes [f ◦ c]f(x) ∈ Tf(x)N :

Txf ≡ Tx(f) : TxM → TxN, vcx := [c]x 7→ Txf(vcx) := [f ◦ c]f(x). (A.3.2)

The mapping Txf is called the tangent of f at x.

(iii) Let a manifold M with an atlas {(Uj;ϕj ; Ej) : j ∈ J} be given. Let TM be the manifold
determined as the set

{[c]x ∈ TxM : x ∈M}
of all tangent vectors in all points of the manifold M , endowed by the atlas consisting of charts

(
∪{TxM : x ∈ Uj}; Φj ; Ej × Ej

)
,

where the mapping Φj is defined:

Φj([c]x) :=
(
ϕj(x);Txϕj([c]x)

)
∈ ϕ(Uj)× Ej ⊂ Ej × Ej .
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In the last relation, the image of the tangent of ϕj on the vector [c]x at x ∈ Uj ⊂M equals to the
derivative of the curve t 7→ ϕj ◦ c(t) ∈ Ej in point t = 0 taken at “the vector” 1 ∈ T0R ∼= R, cf.
Definition A.2.1, and Tϕj(x)Ej is identified with Ej. Moreover, let the projection πM be defined
on the manifold TM by

πM : TM →M ; [c]x 7→ x. (A.3.3)

The differentiable manifold TM endowed with the projection (A.3.3) is the tangent bundle of
M . The projection πM is the tangent bundle projection of M .

(iv) The tangent bundle is an example of a vector bundle (P, πM , E) , i.e. of a manifold P
with a differentiable mapping πM : P → M onto another manifold M with a given open covering
UM := {Uj : j ∈ J} by domains Uj of its charts, and a topological vector (let it be Banach) space
E (considered with its natural manifold structure) such that π−1

M ({x}) =: Ex ⊂ P is homeomorphic
to E, the homeomorphism being the restriction of a diffeomorphism of π−1

M (Uj) onto Uj × E, and
the homeomorphisms corresponding to j 6= k and to points x ∈ Uj ∩ Uk induce a group of linear
transformations on E in a natural way, [61, 152, 1, 40], called the structural group of the bundle.
Such homeomorphisms Ex ↔ E allow us to introduce a natural linear structure on all Ex, x ∈M ,
by transferring it from that on E.

(v) Let T ∗
x (M) := (TxM)∗ be the topological dual of TxM . This space is called the cotangent

space to M at x. Let us take p copies of Tx(M), and q copies of T ∗
x (M), and let us form the

tensor product spaces

T pqxM := ⊗pj=1Tx(M)
⊗

⊗qk=1T
∗
x (M), x ∈M. (A.3.4)

Let us denote T pqM ≡ T pq (M) the set theoretic union of these linear sets. With a use of the manifold
structure on M , they can be “sewed together”, i.e. there can be introduced a manifold structure on
the set T pq (M) in an obvious analogy with that of TM . The resulting manifold will be denoted by

the same symbol T pq (M); it will be called the (vector) bundle of tensors of type
(
p

q

)
, or of the

tensors contravariant of order p, and covariant of order q. The manifold T 0
1 (M) =: T ∗(M)

is the cotangent bundle of the manifold M , and T 1
0 (M) = TM .

(vi) Let a bundle (P, πM , E) be given, and let v : M → P, x 7→ v(x) be a differentiable mapping
such, that

πM (v(x)) ≡ x. (A.3.5)

Such mappings are called sections of the (vector) bundle. A section of the tangent bundle
TM := (TM, πM , E) is a vector field on M . Sections of the tensor bundle T pq (M) are tensor

fields of type
(
p

q

)
. The tensor fields of the type

(
p
q

)
form an infinite dimensional vector space

T pq (M). The space of vector fields is T 1
0 (M), the space T 0

0 (M) is identified with F(M). The direct
sum T (M) := ⊕p≥0,q≥0T pq (M) is the algebra of tensor fields on M , the algebraic operation
being the pointwise tensor product.

(vii) Let f : M → N be as in (ii). The tangent mapping of f is the mapping Tf : TM → TN
defined by (cf. eq. (A.3.2))

Tf : vx (∈ TxM) 7→ Txf(vx) ≡ Txf · vx (∈ Tf(x)N). (A.3.6)

The tangent mapping is also denoted by f∗ := Tf . If f is a diffeomorphism, then we denote
by f∗ also the unique natural extension of this mapping to the whole algebra of tensor fields,



A SELECTED TOPICS OF DIFFERENTIAL GEOMETRY 145

f∗ : T (M) → T (N), determined by its “commuting with contraction”, and conserving the type
(
p
q

)
, [152, Chap.I, Propositions 2.12 and 3.2]. ♦

Any vector field v on M uniquely determines a differentiation £v (i.e. a linear mapping sat-
isfying the Leibniz rule for its action on products) of the associative algebra F(M). Let v(x)
corresponds to the class [cv]x of curves through x ∈ M , and let cv be in this class. Then £v is
defined by the formula

£vf(x) := vx(f) :=
d

dt

∣
∣
∣
∣
t=0

f(cv(t)). (A.3.7)

Let us stress that this definition depends on vectors vx ∈ TxM only, independently of their possible
inclusions as values of some vector fields: The mapping v(∈ TxM) 7→ £v is well defined for any
fixed x ∈M . On finite dimensional manifolds, any differentiation on the algebra F(M) is given by
a vector field v according to (A.3.7); cf. [61] for comments on infinite dimensional cases (cf. also
Lemma 2.1.11). Hence, each vector field v determines a differential operator £v, and the mapping
vx(∈ TxM) 7→ £v is a linear injection into the set of differential operators on the “algebra of
germs of functions F(M) in the point x ∈ M”; this injection is also onto (i.e. surjective) for
dimM <∞. We shall often identify £v with v ∈ TM . The derivation £v can be naturally (under
the requirement of “commutativity with contractions”, [152, 1], and of satisfaction of the Leibniz
rule) uniquely extended to a derivation on all spaces T pq (M). It acts on the vector fields as

£vw = [£v,£w] := £v£w −£w£v ≡ £[v,w], (A.3.8)

and, for given vector fields v and w, it represents a vector field, [40], denoted by [v,w].

A.3.7 Definition. The above determined mapping £v : T (M) → T (M) (leaving each T pq (M)
invariant) is the Lie derivative of tensor fields with respect to v ∈ T 1

0 (M). The result of
its action on a vector field w : £v(w) = [v,w] is the commutator (or Lie bracket) of the
vector fields v and w. This Lie bracket satisfies the Jacobi identity;

[£u, [£v,£w]] + [£w, [£u,£v]] + [£v, [£w,£u]] ≡ 0,

what is a consequence of the definition. ♦
Let us note that the mapping

dxf : TxM → R,v 7→ dxf(v) := £v(f) ≡ v(f), ∀v ∈ TxM, (A.3.9)

is a bounded linear functional on TxM (this is a consequence of definition of Fre’chet differentiability
of f ∈ F(M); dxf equals to Txf , if Tf(x)R ≡ R is the canonical identification): dxf ∈ T ∗

xM . Each
element of T ∗

xM has the form dxf of differential of the function f for some f ∈ F(M). Hence,
each tensor in T pqx(M) can be expressed as a linear combination of tensor products of the form
⊗pj=1vj

⊗⊗qk=1dxfk,vj ∈ TxM, fk ∈ F(M).

Any vector field v ∈ T 1
0 (M) =: X (M) determines a differential equation on the manifold

M , written symbolically for an initial condition x(0) = x:

ẋ(t) = v(x(t)), x(0) := x ∈M. (A.3.10)

Its solutions are integral curves of the vector field v, i.e. curves t(∈ Ix = I◦x ⊂ R) 7→ x(t)
through x such that for any t0 ∈ Ix, the curve {t 7→ x(t + t0)} ∈ “the class of curves determined
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by v(x(t0))”. The open interval Ix can be (and is supposed to be) chosen maximal. Let us define
the set Dv := {(t;x) : t ∈ Ix, x ∈ M}, called the domain of the (local) flow of v ∈ X (M).
There is defined on it the mapping

ϕv
· : (t, x)(∈ Dv) 7→ ϕv

t (x) := x(t), x(0) = x, (A.3.11)

where x(t) is the solution of (A.3.10); the mapping ϕv
· is called the (local) flow of v. The

locality means, that there might be for some x ∈ M : Ix 6= R. If for all the intervals one has:
Ix ≡ R, ∀x ∈ M , the vector field v as well as its flow are called complete. On an arbitrary
compact manifold M , any vector field is complete. Any (local) flow satisfies on its domain the
group property:

ϕv
t1+t2 = ϕv

t1 ◦ ϕv
t2 . (A.3.12)

Vector fields are typically used to determine flows on manifolds as solutions of the corresponding
differential equations. There are, on the other hand, other kinds of (covariant) tensor fields typically
used for integration on manifolds. We shall not review here the integration theory on (finite
dimensional) manifolds leading to the general Stokes’ theorem generalizing the particular Gauss’,
Green’s, and Stokes’ theorems connecting some integrals on manifolds N with boundary96 ∂N with
corresponding integrals on the boundary ∂N . The formal expression of the general Stokes’ theorem
is the following Stokes’ formula: ∫

N

dω =

∫

∂N

ω. (A.3.13)

If N ⊂M, dimN = n, and M is a manifold (dimM > dimN := the dimension of the submanifold
N◦), inducing on N its structure of a submanifold with boundary, the objects entering into the
Stokes’ formula are tensor fields ω ∈ T 0

n−1(M), dω ∈ T 0
n of special kind called differential forms.

Another usage of differential forms is in formulation of some partial differential equations on
manifolds with a help of exterior differential systems, [61]. We need such tensor fields, in the present
work, in connection with Hamilton’s formulation of mechanics on “nondegenerate” phase spaces
(i.e. on symplectic manifolds), and also in some modified situations (e.g. on Poisson manifolds).

Let us consider the elements of T 0
px(M) as p–linear forms on Tx(M), e.g. dxf1 ⊗ dxf2 ⊗ · · · ⊗

dxfp ∈ T 0
px(M) is determined by specification of the mapping

(v1;v2; . . . ;vp)
(
∈ ×pTx(M)

)
7→

p
∏

j=1

vj(fj); (A.3.14)

the space of bounded p–linear forms Lp(TxM,R) can be identified with T 0
px(M) by the linear

extension of this correspondence. Let us introduce the alternation mapping A of this space into
itself. Let for σ ∈ Σ(p) := the permutation group of p elements, and let ǫσ = ±1 be the “parity”
of σ, i.e. the nontrivial one–dimensional representation of Σ(p). Let now A be the linear mapping
determined by

At(v1,v2, . . . ,vp) :=
1

p!

∑

σ∈Σ(p)

ǫσt(vσ(1),vσ(2), . . . ,vσ(p)), ∀t ∈ Lp(TxM,R). (A.3.15)

96A manifold with boundary has, besides the usual manifold charts, also charts ϕα whose ranges are intersec-
tions of open subsets of linear spaces Ej with their closed “halfspaces”, [40, §11.1]. The boundary of the manifold
consists of its points lying in inverse images of the boundaries of the halfspaces with respect to the chart-mappings
ϕα, cf. also [1, p. 137].
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One can see that this mapping is idempotent: A ◦ A = A. Let us define now the subspace Λpx(M)
of T 0

px(M) by

Λpx(M) := AT 0
px(M). (A.3.16)

Let us denote Λp(M) the space of tensor fields ω : x 7→ ωx on M with values ωx ∈ Λpx(M), for
any integer 0 ≤ p < dimM + 1 ≤ ∞. Such ω are called p–forms on M . We identify 0–forms
with differentiable functions, i.e. Λ0(M) := F(M). A useful associative algebraic structure on the
space Λ(M) := ⊕dimM

p=0 Λp(M) can be introduced: The wedge–product ∧ : Λp(M)×Λq(M)→
Λp+q(M), (ω1;ω2) 7→ ω1 ∧ ω2, where Λp(M) := {0}, if p > dimM . For arbitrary fj ∈ F(M) we
define the wedge–product of their differentials (for the consistency of various definitions of ∧ cf.
[7]):

df1 ∧ df2 ∧ · · · ∧ dfp := p!·A(df1 ⊗ df2 ⊗ · · · ⊗ dfp), p = 2, 3, . . . ,dimM, (A.3.17)

where the alternation mapping A acts pointwise on M . More general formula for an arbitrary
wedge–product of a p1–form ω1, and a p2–form ω2 reads:

ω1 ∧ ω2 =
(p1 + p2)!

p1!p2!
A(ω1 ⊗ ω2). (A.3.18a)

Then we have
ω1 ∧ ω2 = (−1)p1p2ω2 ∧ ω1, (A.3.18b)

f ∧ ω = ω ∧ f ≡ f · ω, ∀f ∈ Λ0(M), ω ∈ Λp(M) (p = 0, . . . ,dimM). (A.3.18c)

A.3.8 Definition. The linear space Λ(M) := ⊕dimM
p=0 Λp(M) endowed with the above introduced

wedge–product ∧ is called the algebra of exterior differential forms on M . Its elements lying
in the subspace Λp(M) are called p–forms on M ; specifically, the elements of Λ1(M) = X ∗(M)
are one–forms, and the elements of Λ0(M) = F(M) are zero–forms. ♦

Let us introduce now some operations on the algebra Λ(M), i.e. some linear mappings of Λ(M)
into itself. Let us first note that the Lie derivative £v, as it was extended to the whole tensor
algebra T (M), leaves its linear subspace Λ(M) invariant, and the Leibniz rule with respect to the
wedge–product is fulfilled:

£v(ω1 ∧ ω2) = (£vω1) ∧ ω2 + ω1 ∧ (£vω2). (A.3.19)

Another important linear mapping d : Λ(M)→ Λ(M) called the exterior differential is uniquely
determined by the below listed properties, [1, Theorem 2.4.5]:

A.3.9 Theorem. The following properties determine a unique linear mapping d on Λ(M) (called
the exterior differential on M):

(i) dΛp(M) ⊂ Λp+1(M);

(ii) d(ω1 ∧ ω2) = (dω1) ∧ ω2 + (−1)p1ω1 ∧ (dω2), ∀ωj ∈ Λpj (M);

(iii) d ◦ d ≡ 0;

(iv) For any f ∈ F(M), df ∈ Λ1(M) = X ∗(M): df(v) ≡ v(f) := £v(f), ∀v ∈ X (M). This
means, that the exterior differential of a function f coincides with the differential df introduced
above, in (A.3.9). ♣
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Explicit expression of the differential dω of an ω ∈ Λp(M) given by

ω :=
∑

j1<j2<···<jp
hj1j2...jpdfj1 ∧ dfj2 ∧ · · · ∧ dfjp , (A.3.20a)

with hj1j2...jp , fj ∈ F(M), is easily obtained by linearity and by the (modified) “Leibniz rule”, as
well as by the property d ◦ d ≡ 0:

dω =
∑

j1<j2<···<jp
dhj1j2...jp ∧ dfj1 ∧ dfj2 ∧ · · · ∧ dfjp . (A.3.20b)

A.3.10 Definition. Let a vector field v on M be given, v ∈ X (M). Then the linear mapping
iv : Λ(M)→ Λ(M),Λp(M)→ Λp−1(M), determined by

(ivω)(v1,v2, . . . ,vp−1) := ω(v,v1,v2, . . . ,vp−1), ivf := 0 (∀f ∈ Λ0(M))

is the inner product of v and ω. ♦

One of the main statements of this section will be a list of mutual relations between introduced
operations on exterior differential forms. Before quoting it, let us introduce still one transformation
which allows us to “transfer” differential forms (and other tensor fields) from a manifold to another
one.

A.3.11 Definition. Let β : N → M be a differentiable mapping of a (differentiable) manifold
N into a manifold M , and let Tβ : TN → TM be its tangent mapping. For any p–form on
M : ω ∈ Λp(M), let us define a p–form β∗ω ∈ Λp(N) on the manifold N by the formula:

(β∗ω)y(w1, . . . ,wp) ≡ ωβ(y)(Tyβ ·w1, . . . , Tyβ ·wp), ∀y ∈ N,wj ∈ TyN.

The mapping β∗ : Λ(M)→ Λ(N) is called the pull–back by β. Let us note, that in the particular
case p = 0 we have for f ∈ F(M): β∗f(y) ≡ f ◦ β(y). ♦

We can now present a basic tool of the “machinery” for such a differential computation on
manifolds which does not need introducing any coordinates on them; we shall collect also some
earlier recognized relations, cf. [40, 152, 1, 61].

A.3.12 Theorem. For above defined operations on (infinitely) differentiable manifolds represented
by the symbols β∗,£·, d, i·, as well as by the commutator (if it is defined) of any operations τj:

[τ1, τ2] := τ1 ◦ τ2 − τ2 ◦ τ1,

with v, w any differentiable vector fields on a manifold, the following identities are valid:

(i) [£v,£w] = £[v,w];

(ii) [£v, d] = 0;

(iii) [£v, iw] = i[v,w];

(iv) [β∗, d] = 0,
where, for β ∈ C∞(N,M), d acts interchangeably on Λ(M), and on Λ(N);

(v) d ◦ d = 0;
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(vi) d ◦ iv + iv ◦ d = £v;

(vii) iv ◦ iw + iw ◦ iv = 0;

If β : N →M is a diffeomorphism, and, for any v ∈ X (M), we define β∗v ∈ X (N) by the identity

(dg)y(β
∗v) :=

(
(β−1)∗dg

)

β(y)
(v), ∀g ∈ F(N), ∀y ∈ N,

then the following two items, (viii), and (ix), also express identities:

(viii) β∗ ◦£v = £β∗v ◦ β∗;

(ix) β∗iv = iβ∗vβ
∗.

Moreover, the following elementary properties are identically valid (with f ∈ Λ0(M) = F(M),
and f·means poinwise multiplication, e.g. f ·α ≡ f ∧ α, α ∈ Λ(M)):

(x) £v+w = £v + £w;

(xi) £f ·v = df ∧ iv + f ·£v;

(xii) iv+w = iv + iw;

(xiii) if ·v = f ·iv.

Let us give also the following useful formula for coordinate–free calculation of the exterior differ-
ential:

(xiv)

dω(v0,v1, . . . ,vp) =

p
∑

j=0

(−1)j£vj

(
ω(v0,v1, . . . , v̂j , . . . ,vp)

)

+
∑

0≤j<k≤p
(−1)j+kω([vj ,vk],v0, . . . , v̂j , . . . , v̂k, . . .vp),

(A.3.21)

for all ω ∈ Λp(M), where v̂j means skipping of the vector field vj in the arguments, so that it is
replaced by vj−1, and other arguments are also shifted by keeping their original order unchanged.
♣

We shall introduce here also the following standard terminology:

A.3.13 Definition. Let ω ∈ Λp(M) be such a p–form, that its differential vanishes: dω = 0,
hence it equals to the zero element of Λp+1(M). In this situation, ω is a closed p–form.
Clearly, if ω = dα for some p − 1–form α, then dω = 0; for such a closed form we say, that ω
is an exact p–form. Let us assume now, that dimM < ∞. Since exact p–forms form a linear
subspace in the subspace of all closed p–forms, one can form the factorspace of the later p–forms
according to its subspace consisting of the former ones. The resulting linear space is denoted by
Hp(Λ(M)) ≡ Hp(M), and it is called the p–th cohomology group of M , where the group
operation is the vector addition, cf. [149, 61]. ♦

The mentioned cohomology groups are important algebraic–topological characterizations of
manifolds, but we leave it here without giving any further comments and results, cf. [247, 220, 149,
81, 61].
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If there is given a bilinear continuous form Ψ on a vector space E , it determines a linear mapping
Ψ♭ from E into its topological dual E∗ by

Ψ♭ : E → E∗, x 7→ Ψ♭
x, with 〈Ψ♭

x; y〉 := Ψ(x, y), ∀x, y ∈ E . (A.3.22)

The mapping Ψ♭ is injective iff
x 6= 0⇒ Ψ♭

x 6= 0. (A.3.23)

In the case of finite dimensional E , this condition means that Ψ♭ is a linear isomorphism (hence
also bicontinuous in the natural l.c. topologies). Otherwise, Ψ♭ needn’t be even a bijection: it
might injectively map the space E onto a proper subspace of E∗. It is useful to distinguish several
cases, [1, 179, 61]:
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A.3.14 Definition (Nondegenerate 2-tensors).

(i) Let the above introduced mapping Ψ♭ fulfills the condition (A.3.23). Then we say that the
bilinear form Ψ is weakly nondegenerate. If Ψ♭ is bijective (hence, E is mapped also onto E∗),
then Ψ is called strongly nondegenerate.

(ii) Let now Ψ ∈ T 0
2 (M) be a two-covariant tensor field on a manifold M , Ψ : x(∈ M) 7→

Ψx(∈ T 0
2xM). Let us assume, that Ψ is either symmetric (i.e. Ψx(v,w) ≡ Ψx(w,v), ∀x ∈

M,v,w ∈ X (M)), or antisymmetric (i.e. Ψx(v,w) ≡ −Ψx(w,v), ∀x ∈M,v,w ∈ X (M)). Then
Ψ is weakly (resp. strongly) nondegenerate, if all Ψx, ∀x ∈ M , are weakly (resp. strongly)
nondegenerate.

(iii) Let Γ ∈ T 0
2 (M) be symmetric. If it is weakly (strongly) nondegenerate, then it is called

weak (strong) pseudo–Riemannian metric on M . If Γ is, moreover, positive definite (i.e.
Γx(v,v) > 0, ∀v 6= 0,v ∈ TxM, ∀x ∈ M), then it is called a weak (resp. strong) Riemannian
metric.

(iii) Let Ω ∈ Λ2(M), and assume, moreover, that it is closed: dΩ ≡ 0. If the two–form Ω is weakly
(strongly) nondegenerate, it is called weak (strong) symplectic form on M . ♦

The Riemannian metrics are the basic objects of Riemannian geometry, [130, 61, 1], providing
a mathematical formalism for the relativistic theory of gravitation (i.e. “general relativity”),
[89, 196, 227], and it is useful also for a description of classical “continuous media” (i.e. the phase
spaces are infinite–dimensional), e.g. [7, Appendix 2], [179, 111]. The symplectic forms are basic
for (finite–, or infinite–dimensional) classical Hamiltonian mechanics (CM), cf., e.g. [1, 59, 179]. In
our extension of quantum mechanics (EQM), symplectic forms on manifolds of density matrices
generate dynamics and symmetries with a help of scalar–valued functions (“Hamiltonians”), and
simultaneously canonically defined Riemannian metrics on that manifolds of density matrices are
tools for determination of specifically quantum probability interpretation of the theory.

A.4 Elementary concepts of Lie groups

We shall restrict our present brief exposition mainly to finite dimensional Lie groups; for infinite
dimensional Lie groups see, e.g. [39, 156]. Let us start, however, with some basic definitions and
relations, [208, 19, 268], concerning general groups.

A.4.1 Definitions (Abstract and topological groups).

(i) A group G is a set with a distinguished element e ∈ G called the unit element of G, and
with two mappings: (a) a bijection of G onto itself, g(∈ G) 7→ g−1(≡the inverse of g); and (b)
the group multiplication (equiv.: product),

(g1; g2) (∈ G×G) 7→ g1 ·g2 ≡ g1g2 (∈ G),

which is associative and such, that

e·g = g, g−1 ·g = e, ∀g ∈ G.

Then it is also ge ≡ g, gg−1 ≡ e. If g ·h = h · g (∀g, h ∈ G), then G is abelian (equiv.:
commutative) group.
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(ii) A subset H ⊂ G such, that it is invariant with respect to taking inverse and also with respect
to group multiplication of its elements: h1 ·h2 ∈ H, ∀hj ∈ H, j = 1, 2, is called a subgroup of
G. Any subgroup H of G is a group with the induced operations from G.

(iii) If the group G is a topological space, and the inverse operation and group multiplication are in
this topology continuous (by which G×G is endowed by the product topology), then G is topological
group. If H is a subgroup of G and a closed subspace, it is a topological subgroup of G.

(iv) Let G be a (topological) group, and H its (topological) subgroup. If gHg−1 := {ghg−1 : h ∈
H} = H, ∀g ∈ G, then H is normal (equiv.: invariant) subgroup of G. Since any subgroup
contains the unit element e of G, the subsets g ·H ⊂ G, g ∈ G (called left cosets of G) cover
whole G, and any two of them are either equal, or disjoint: They define an equivalence relation on
G. The factor spaces G/H corresponding to this decomposition of G to left cosets are important
in the theory of actions of G on some arbitrary spaces. Similarly, another equivalence relation on
G determined by the right cosets {Hg : g ∈ G} of G; for normal subgroups H (and only for
them) these two decompositions of G coincide. If H is a normal subgroup, the space G/H is again
a (topological) group with the group multiplication

(g−1 ·H)·(g′·H) := (g−1 ·g′)·H, ∀g, g′ ∈ G.

In this case, the factor space G/H is called the factor group of G by H.

(v) Let G,G′ be two (topological) groups and φ : G→ G′ be such a (continuous) mapping, that

φ(g1 ·g2) ≡ (φg1)·(φg2), φe := e′;

the mapping φ is a group homomorphism of G into G′, with e′ = the identity of G′. If φ is
bijective (i.e. injective and onto) (resp. homeomorphism), it is called isomorphism of (topological)
groups G, and G′. An isomorphism of G onto itself is an automorphism of G. The set of all
automorphisms of G forms, with respect to the group multiplication given by the compositions of
mappings, a group Aut(G), called the automorphisms group of G. Let any fixed g ∈ G be
given. Then the mapping

g′(∈ G) 7→ g ·g′·g−1,

defines an inner automorphism of G, and all of them form the group of inner automor-
phisms In(G). The group In(G) is a normal subgroup of Aut(G), and the factor group
Aut(G)/In(G) is called, [19], the group of external automorphisms of the group G. ♦

The groups defined above are certain abstract sets endowed with their “inner” operations. We
find usually in applications groups as some sets of transformations of some other sets of well defined
(i.e. formalized) elements, e.g. some reversible motions of physical systems. Having defined a group,
on the other hand, we could find some transformations of a set which act as a homomorphic image
of the given group; e.g. a group of some mechanical motions can act on electromagnetic field
in some electronic device. To enforce intuition about transformations of an arbitrary (in general
infinite) set, we can imagine them as some “permutations” of elements of that set: The “number of
elements” remains the same (transformation is invertible and onto), but at least some of elements
are “replaced to places occupied before by some other replaced elements”.

A.4.2 Definitions (Actions of groups).
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(i) The set of (all “permutations”, i.e. of) all transformations of a set X form a group G(X); it will
be called the transformations group of X. If the set X is endowed by a structure (e.g. topology,
algebra, metrics,. . . ), the subgroup of all transformations of X consisting of the transformations
preserving this structure (e.g. homeomorphisms, algebraic automorphisms, isometries,. . . ) will be
denoted by Aut(X) (with a corresponding specification), and called the automorphism group of
X. If there is no structure specified on X (i.e. the only structure is the set-structure), then we
shall use G(X) and Aut(X) interchangeably.

(ii) Let G be a group, and let X be a set. Let T : g 7→ Tg ∈ Aut(X), g ∈ G, be a homomorphism
of G into Aut(X). The mapping T is called an action (or realization) of G on X, and the
space (resp. set) X endowed with such an action is called a G –space. For any fixed x ∈ X, the
set of elements {y ∈ X : ∃g ∈ G, Tgx = y} is called the orbit of T (equiv.: of G) through
x ∈ X. The belonging to orbits is an equivalence relation. If the whole space X coincides with
an orbit, it is a homogeneous (equiv.: transitive) G –space. We shall usually use notation
g ·x := Tg(x) := Tgx, ∀x ∈ X, g ∈ G. Each orbit of any G–space is a transitive G–space. If G is
a topological group and X a topological space, the mapping g 7→ Tg is assumed to be continuous
in a certain topology on Aut(X); usually it is assumed continuity on the topological product space:
G × X → X, (g;x) 7→ Tgx is jointly continuous, cf. e.g. [208, §24]. If X is a linear space, and
TG ⊂ Aut(X) = L(X), then TG is a representation of G.

(iii) Let X be a transitive G–space, and let x ∈ X be fixed. Clearly, G·x = X. It is e·x = x, and
the set of all h ∈ G such, that h ·x = x forms a (closed) subgroup H ≡ Gx of G. The group Gx
is the stability subgroup (of G) at x. It is called also the stationary subgroup of x. Since
the left coset g ·H consists of all the elements transforming x into g ·x, the homogeneous space X
is isomorphic to the factor space G/H. ♦
A.4.3 Definition. Let G be any group. Take the space X := G, and define the left translation
g 7→ Lg as an action of G on itself by Lg(g

′) := g ·g′. Then G is a transitive G–space. Similarly,
another action of G on itself is defined by the right translations Rg, Rg(g

′) := g′ ·g, by taking
the group homomorphism G→ G(G) : g 7→ Rg−1 . These two actions mutually commute: LgRh ≡
RhLg. The mapping g 7→ A(g) := Lg ◦Rg−1 is also an action of G on itself, A(g) ∈ Aut(G). ♦

Let us turn our attention to Lie groups now.

A.4.4 Definition (Lie groups). Let G be a manifold with such a group structure, that the group
mapping (g1; g2) 7→ g1 ·g−1

2 is differentiable (equiv.: continuous, equiv.: smooth, if dimG <∞) as
a manifold–mapping of G×G→ G. The group G endowed with such a manifold structure is a Lie
group.
Equivalently: The Lie group is a topological group with a Cr–manifold structure consistent with
the group topology (for dimG <∞ one need not specify r). ♦
A.4.5 Note. Let us note, that the mentioned equivalence (i.e. sufficiency of mere topological
manifold structure, and continuity of the group operations for smoothness of these) is contents of
positive solution of the fifth Hilbert problem by Gleason [109], and Montgomery with Zippin [185],
for dimG <∞. A partial solution is given in the book [208], according to which the original papers
are cited here. ♥
A.4.6 Examples. The following groups are simple examples of Lie groups:

(i) Abelian connected Lie groups are R
k × T

n, where T is one dimensional torus (circle), and
multiplication is componentwise addition ( mod (2π) on the torus with a marked element).
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(ii) The group GL(n,R) of all real invertible n × n matrices with the matrix multiplication as
the group operation, and the topology given by continuity of all matrix elements. Also all closed
continuous subgroups of this group are Lie groups, e.g. O(n), O(p, q), Sp(2p,R). Such groups G of
matrices g ∈ GL(n,R) can be obtained by specification of a matrix A, and by requiring, [149, p.
78]: gTAg = A, ∀g ∈ G.

(iii) As an example of infinite-dimensional Lie group, [39, Chap.III.3.10, Proposition 37], let us
take an infinite dimensional Hilbert space H, and let U be the group of all unitary operators on
it. Then U is a Lie group, if taken in the norm–topology of L(H), as a submanifold of L(H), what
can be taken, in turn, as a manifold with the single chart with the identity mapping onto itself, as
a B-space L(H). ♥

Let us consider a Lie group G with unit element e, and let ξ, η ∈ TeG be arbitrary tangent
vectors at e to G. We shall construct, to each ξ, a vector field wξ on the manifold G by a help of
left translations, cf. Definition A.4.3, with a help of their tangent mappings, Definition A.3.6:

wξ(g) := TeLg(ξ), g ∈ G, wξ(e) := ξ, ∀ξ ∈ TeG. (A.4.1)

These vector fields are left invariant, i.e. for any g ∈ G:

Lg∗wξ = wξ, i.e. ThLg(wξ(h)) ≡ wξ(g ·h), ∀h ∈ G, (A.4.2)

what is an immediate consequence of the definition (A.4.1). The mapping ξ 7→ wξ(ξ ∈ TeG)
is linear. Conversely, all left–invariant vector fields on G are of this form. These vector fields
are complete. Let us form a commutator, cf. Definition A.3.7, of two left–invariant vector fields,
[wξ,wη] ∈ X (G). It can be shown, that the commutator is again left invariant, hence

[wξ,wη] =: w[ξ,η], [ξ, η] ≡ w[ξ,η](e). (A.4.3)

This shows, that the subspace of X (G) consisting of all left–invariant vector fields on G is also an
algebra with respect to commutations. The mapping wξ 7→ wξ(e) ≡ ξ is a linear isomorphism of
the space of left invariant vector fields onto TeG; they are isomorphic also as algebras with the
“commutation” [·, ·].
A.4.7 Definition. A linear space X is a Lie algebra, if it is endowed by a Lie bracket, i.e.
by a bilinear mapping [·, ·] : X × X → X, (ξ; η) 7→ [ξ, η] ∈ X, such that it is antisymmetric:
[ξ, η] ≡ −[η, ξ], and the Jacobi identity is fulfilled:

[ξ, [η, ζ]] + [ζ, [ξ, η]] + [η, [ζ, ξ]] = 0, ∀ξ, η, ζ ∈ X. (A.4.4)

The Lie bracket [ξ, η] is called also the commutator of the elements ξ and η. A mapping φ
between two Lie algebras is a Lie algebra morphism, if it is linear, and conserves the Lie
brackets: φ([ξ, η]) ≡ [φ(ξ), φ(η)]. If φ is a bijection, it is a Lie algebra isomorphism. ♦

We shall next consider the Lie algebras determined by given Lie groups.

A.4.8 Definitions.

(i) Since the commutator of vector fields satisfies the Jacobi identity, cf. Definition A.3.7, the
tangent space TeG is naturally endowed by the Lie algebra structure induced by that of vector fields
wξ. This linear space with the Lie algebra structure is the Lie algebra of the Lie group G;
it will be denoted alternatively by Lie(G) ≡ g. It is considered also as topological space with the
topology of TeG. It is also a B-space, in this natural way, cf. [39, Chap.III]. The topological
dual of g will be denoted g∗ = Lie(G)∗.
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(ii) Let the integral curve through e of the left–invariant field wξ be denoted by t(∈ R) 7→ exp(tξ)(∈
G). This curves form one–parameter subgroups R → G of G:

t1 + t2 7→ exp((t1 + t2)ξ) ≡ exp(t1ξ)·exp(t2ξ), tj ∈ R, ξ ∈ g.

The mapping ξ(∈ g) 7→ exp(ξ)(∈ G) is called the exponential mapping; it is a local homeomor-
phism of neighbourhoods of 0 ∈ g and e ∈ G, hence its (local) inverse provides a chart of G around
e. ♦

Let us define now a representation of any Lie group G on its Lie algebra g. The action A : g 7→
A(g) := Lg ◦ Rg−1 of G on itself is differentiable, it leaves the unit element e invariant, and its
tangent at e, TeA(g), is a linear automorphism of the Lie algebra (identified with TeG). It is an
element of the wanted representation.

A.4.9 Proposition. The linear automorphisms Ad(g) := TeA(g) : g → g, g ∈ G, form a repre-
sentation of G in linear endomorphisms of g:

Ad(g1 ·g2) ≡ Ad(g1) ◦Ad(g2),

(this is a consequence of the chain rule for the tangent mappings). They are also Lie algebra
automorphisms:

Ad(g)([ξ, η]) ≡ [Ad(g)ξ, Ad(g)η].

The tangent of Ad(·) in the unit element is a linear mapping denoted by ad, ad : ξ 7→ adξ of g into
L(g,g) such that the identity

TeAd(ξ)·η =: adξ(η) ≡ [ξ, η]

is satisfied. ♣

A.4.10 Definitions.

(i) The representation g 7→ Ad(g) is called the adjoint representation of G.

(ii) Let F, F ′ ∈ g∗ be elements of the dual space of the Lie algebra g; their values on the elements
ξ ∈ g are denoted by 〈F ; ξ〉 ≡ F (ξ), etc. Then the mappings F 7→ Ad∗(g)F, g ∈ G, of g∗ into itself
determined by

〈Ad∗(g)F ; ξ〉 := 〈F ;Ad(g−1)ξ〉, ξ ∈ g, g ∈ G,
form also a (linear) representation of G called the coadjoint representation of the Lie group G.
♦

Let the tangent spaces TF g∗, F ∈ g∗ are all identified with g∗ in the canonical way (as in any
linear space). Their duals T ∗

F g∗ are then canonically identified with the second dual g∗∗ of the Lie
algebra, and also g is canonically included into g∗∗ as a σ(g∗∗, g∗)–dense subset, but in the norm
topology it is identical with a norm-closed subspace of the (canonically defined) B-space g∗∗. Since
the commutator (ξ; η) 7→ [ξ, η] is continuous in norm (from the continuity of Fréchet derivatives),
it is also continuous in σ(g∗∗, g∗) topology, if g is considered as a σ(g∗∗, g∗)–dense subspace of g∗∗.
Hence, the double dual g∗∗ is canonically endowed with a Lie bracket – it is also a Lie algebra.
This is, clearly, trivial for dimG <∞, in what case g = g∗∗, by the canonical identification.
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A.4.11 Definition. Let F(g∗) be the space of infinitely differentiable functions on g∗. Then
differentials dF f ∈ T ∗

F g∗, f ∈ F(g∗), can be (canonically) considered as elements of the Lie algebra
g∗∗, according to the above written arguments. Let

[dF f, dFh] ∈ g∗∗(⊇ g), f, h ∈ F(g∗)

be the corresponding commutator. Let us define the bilinear mapping

{·, ·} : F(g∗)×F(g∗)→ F(g∗),with {f, h}(F ) ≡ −〈F ; [dF f, dFh]〉, ∀f, h ∈ F(g∗), (A.4.5)

where the evaluations at F ∈ g∗ of linear functionals γ ∈ g∗∗ are denoted by γ : F 7→ 〈F ; γ〉. The
mapping (A.4.5) is called the Poisson bracket, defining the canonical Poisson structure on
g∗. ♦
A.4.12 Lemma. Let G be a Lie group, and let the canonical Poisson structure {·,·} on Lie(G)∗

be given. Let us accept the above mentioned identifications of T ∗
FLie(G)∗ with the second dual of

Lie(G). Then, for any f ∈ F(Lie(G)∗), and for an arbitrary F ∈ Lie(G)∗, the restriction to
Lie(G) ⊂ Lie(G)∗∗ of the linear map

dFh(∈ Lie(G)∗∗) 7→ −〈F ; [dF f, dFh]〉, h ∈ F(Lie(G)∗), (A.4.6)

to the Lie algebra Lie(G), identified with the set of (differentials of) the functions

hξ(F ) ≡ 〈F ; ξ〉, ξ ∈ Lie(G),

is norm–continuous, cf. Definition A.4.8. Hence, as an element of Lie(G)∗, which in turn is
identified with TFLie(G)∗, the map (A.4.6) can be considered as a tangent vector to Lie(G)∗ at
the point F . With f fixed, these tangent vectors (for F ∈ Lie(G)∗) form a smooth vector field vf
on Lie(G)∗. ♣
Proof. The Poisson bracket {f, g}(F ) is a norm–continuous bilinear form of the variables dF f, dFh ∈
g∗∗, hence (with the above mentioned identification) the linear functionals: ξ 7→ 〈F ; [dF f, ξ]〉, are
norm continuous on g, representing some vectors vf (F ) ∈ TFg∗. Let η̃ ∈ g∗∗ be an arbitrary
element. Then the (bounded linear) function hη̃ : F (∈ g∗) 7→ 〈F ; η̃〉 is smooth, hη̃ ∈ F(g∗),
and its differential dFhη̃ (in any point F ) is identified with η̃ itself. Hence, the mapping f(∈
F(g∗)) 7→ dF f ∈ g∗∗ is onto. Since the functions f, h are smooth (in the sense of the underlying
norm–topology), all the functions F 7→ dFh(vf (F )), h ∈ F(g∗) are also smooth. This, due the
Leibniz property of derivatives, implies smoothness of vf .

Now we can define some of the key structures for the present paper.

A.4.13 Definitions.

(i) Let f ∈ F(g∗) be given. The vector field vf on g∗ determined (according to Lemma A.4.12) by
the canonical Poisson structure:

dFh(vf (F )) ≡ {f, h}(F ), ∀h ∈ F(g∗)

is called the Hamiltonian vector field corresponding to the Hamiltonian function f . Let us
denote by ϕf the local flow of vf , called the Hamiltonian flow of f . Let ϕξ be the Hamiltonian
flow of the linear function hξ. Then we have

ϕξt (F ) ≡ Ad∗(exp(tξ))F.
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The stability subgroup GF of the coadjoint action at F ∈ g∗ is a Lie subgroup of G generated
by those ξ ∈ g, for which

〈F ; [ξ, η]〉 = 0, ∀η ∈ g,

cf. Lemma 2.2.20. The Lie algebra generated by these elements is stability Lie algebra of F
with respect to the Ad∗(G)–representation.

(ii) The sets Ad∗(G)F := {Ad∗(g)(F ) : g ∈ G} are coadjoint orbits OF (G) of G. They are
identical with the symplectic leaves (cf. Section 1.4, Definition 1.4.1) of this Poisson structure.

They are conserved by all the Hamiltonian flows: ϕft F ∈ Ad∗(G)F := OF (G), ∀t ∈ R. In this
sense, all the vectors vf (F

′), F ′ ∈ OF (G), f ∈ F(g∗), are tangent vectors to the leaf OF (G).
(These “tangent vectors” needn’t form a closed tangent space to a coadjoint orbit Ad∗(G)F for a
general F ∈ g∗, cf. Proposition 2.1.5. For dimG <∞, all the Ad∗(G)F are smooth submanifolds
on g∗, hence the (“tangent vectors”) ≡ (tangent vectors) now.)

(iii) Let us define, on each OF (G), a two form F 7→ ΩF by defining it for all the tangent vectors
to OF (G) by

ΩF (vf (F ),vh(F )) := {f, h}(F ), ∀f, h ∈ F(g∗).

This is a well defined (i.e. it depends only on the vectors vf (F ), . . . , and not on the various
functions f, . . . giving the same vectors), closed (from the Jacobi identity for the commutator in
g), weakly nondegenerate two–form on OF (G)called the canonical symplectic form on the
coadjoint orbit OF (G). Endowed with this form, OF (G) is a (weakly) symplectic manifold,
called the symplectic leaf of g∗. ♦

It is clear, that the Hamiltonian flows ϕf of the canonical Poisson structure on g∗ are identical
on each orbit OF (G) with the symplectic flows corresponding to the Hamiltonian functions which
are equal on OF (G) to the restrictions of f ’s to that orbit.

B On Bounded Operators and C∗-algebras

Conventional nonrelativistic QM is (or can be) formulated with a help of the algebra L(H) of all
bounded operators on a separable Hilbert space H, [75, 231, 195, 190, 202, 182]. This is essen-
tially true also for the conventional (but mathematically largely heuristic) quantum field theory
(QFT), [237, 143]. That such a formulation is not satisfactory for systems with infinite number
of degrees of freedom became clear at least since the Haag’s paper on nonexistence of the “in-
teraction representation” in cases of nontrivially interacting fields, [122]. The problems of
description of “infinite systems” (i.e. quantum fields, as well as infinite–particle “thermodynamic”
systems) were connected with the mathematical phenomenon of appearance of “inequivalent rep-
resentations”, either of CCR, or CAR, or in some other way defined sets of observables. This
phenomenon was formalized in the framework of QFT by Araki, Haag and Kastler (and others, cf.
also Footnote 22 on page 11) in terms of C∗-algebras. It offered possibilities to describe in mathe-
matically well defined terms also such physical phenomena as phase transitions, [92, 42, 239, 229],
or, more generally, collective phenomena in “large systems”, including “macroscopic (classical)
variables” of large quantal systems.

We shall give here a brief description of several basic concepts of the theory of C∗-algebras
important for understanding of description of “the quantum world”, including our nonlinear ex-
tensions of QM: These last mentioned applications to finite systems with nonlinear “quantum rules
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of behaviour”, can also be included into the (linear) C∗-algebraic formalism; in that connection,
C∗-algebras composed of operator–valued functions on a Hamiltonian (better: Poisson) phase space
consisting of, e.g., density matrices of the traditional QM, were introduced, cf. Definition 2.3.3;
these density matrices are here, perhaps rather paradoxically, in a rôle of (in the presented pro-
posal of interpretation of EQM) classical macroscopic parameters — they can be considered in
this place as classical fields describing a “macroscopic background” of the considered microsystem,
cf.3.4.

B.1 Bounded operators on Hilbert space

A linear operator A on an infinite–dimensional Hilbert space is a linear mapping A : D(A)→H
of a linear subset D(A) ⊂ H called the domain of A, into H. If possible, we shall assume that
D(A) is dense in H. For bounded operators A it is always either D(A) = H, or the domain is a
closed subspace of H. We shall assume that, for bounded A’s, if not explicitly stated a contrary,
the domain is D(A) = H.

Bounded linear operators A : H → H on a complex Hilbert space H form a specific Banach
algebra with involution, i.e. they are endowed with a natural norm ‖A‖ := sup{‖Aψ‖ : ψ ∈
H, ‖ψ‖ ≤ 1} (with the Hilbert–space scalar product (ϕ, ψ) = (ψ, ϕ), and ‖ψ‖ :=

√

(ψ, ψ)); their
product AB := A ◦ B, and the (adjoint–linear, i.e. antilinear, involution, i.e. the) ∗–operation
〈∗〉 : A 7→ A∗, (A∗ψ, ϕ) ≡ (ψ,Aϕ), satisfying also (besides the associative linear algebra and the
Banach space properties):

(A∗)∗ ≡ A, (AB)∗ = B∗A∗,

‖AB‖ ≤ ‖A‖·‖B‖, ‖A∗‖ ≡ ‖A‖, ‖A∗A‖ ≡ ‖A‖2,
(B.1.1)

and the B-space of all such operators is denoted by L(H). The elements A = A∗ are selfadjoint.
The operator IH ≡ I ≡ I, for which IA = AI = A (∀A ∈ L(H)), is the identity (or unit
element) of L(H). If, for a given A, there is an A′ ∈ L(H) such, that A′A = AA′ = IH,
it is called the inverse of A, denoted A′ =: A−1, and A is called an invertible operator;
clearly, (A′)−1 = A. The subset of all invertible elements of L(H) will be denoted GL(H). The
operators U ∈ GL(H) : U∗ = U−1 are called unitary, and compose a subset of L(H) – the
infinite–dimensional Lie group, [39, Chap.III] denoted by U (:= the unitary group of H). For
any given A ∈ L(H), the set of complex numbers ρ(A) := {λ ∈ C : (λI − A) ∈ GL(H)} is called
the resolvent set of A; it is an open subset of C. Its complement σ(A) ≡ sp(A) is called the
spectrum of A: σ(A) := C \ ρ(A). The spectrum contains also all the eigenvalues of A, i.e.
the numbers λj ∈ C, for which there are some (nonzero) vectors ϕj ∈ H such that

Aϕj = λjϕj , j ∈ J (:= an index set). (B.1.2)

Dimension of the subspace of H spanned by all the vectors ϕj ∈ H satisfying (B.1.2) for the same
complex value of λj is called the degeneracy (i.e. multiplicity) of λj , it will be denoted
deg(λj). Let A = A∗. Then σ(A) ⊂ R. The set of eigenvalues is denoted by σpp(A). The closure of

the set of all the eigenvalues of A: σpp(A) =: σp(A) ⊂ σ(A) is called the pure–point spectrum.
If the vectors ϕj , j ∈ J , (B.1.2), form a basis in H, the spectrum of the operator A reduces

to the pure–point spectrum: σ(A) = σp(A). Otherwise, A has also some continuous spectrum.
As subsets of σ(A), these two parts of spectra needn’t be disjoint. The spectrum of any bounded
operator A is compact, enclosed in the closed disc centered in 0 ∈ C of radius ‖A‖.
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The selfadjoint operators form the subspace (a real B-space) L(H)s; they have spectra lying on
the real line: σ(A) ⊂ R. The selfadjoint operators A with positive (i.e. nonnegative) spectra are
called positive operators, what is denoted by A ≥ 0, or also A > 0.

The (positive) operators P ∈ L(H) such, that P = P 2 = P ∗ are called (orthogonal) pro-
jections, or projectors. There is a natural bijection between projectors and closed subspaces:
HP := PH(⊂ H)↔ P . The projection onto the one–dimensional subspace spanned by a nonzero
vector ψ ∈ H is denoted by Pψ . Projectors P1, P2 are mutually orthogonal iff P1P2 = 0. The
projector onto the subspace ofH spanned by all eigenvectors of a selfadjoint operator A correspond-
ing to the same eigenvalue λ is its eigenprojector EA({λ}). The dimension of the eigenspace
Hλ:= EA({λ})H is deg(λ).

Important objects for analysis of structure and of representations of a Banach algebra A are its
left (resp. right, resp. two–sided) ideals, i.e. such linear subsets J ⊂ A, {0} 6= J 6= A, that
multiplication of their elements by an arbitrary element B of A from left (resp. right, resp. any)
side gives again elements from J , i.e. ∀B ∈ A : B ·J ⊂ J , resp. J ·B ⊂ J , resp. B ·J ∪ J ·B ⊂ J .
Two–sided ideals are called just ideals. It follows that an (also one–sided) ideal J ⊂ A is also a
subalgebra of A. For A := L(H), and H separable, there is only norm–closed ideal C in L(H), [188,
§22] consisting of all compact operators, i.e. such linear operators on H, that map any norm–
bounded subset of H into a norm–compact subset of H. There are other important ideals in L(H),
which are subsets of C, e.g. the set of all Hilbert–Schmidt operators: H, and its subset T of all
trace–class operators in L(H); these ideals are characterized below. All these sets are (as are
all twosided ideals) symmetric, i.e. they are invariant with respect to the involution 〈∗〉. Hence,
they are generated by their selfadjoint elements: each their element A can be decomposed into the
complex–linear combination of its two selfadjoint elements:

A =
A+A∗

2
+ i

A−A∗

2i
.

The ideal T contains exactly those selfadjoint A which have pure point spectra, and the set of all
their eigenvalues is absolutely summable (by respecting the degeneracy):

A∗ = A ∈ T⇔ A has pure point spectrum and
∑

λ∈σpp(A)

deg(λ)|λ| =: ‖A‖1 <∞.

Then we can define the finite number (for A = A∗)

Tr(A) :=
∑

λ∈σpp(A)

deg(λ)λ,

called the trace of A. Its value does not depend on unitary transformations: Tr(A) = Tr(UAU∗),
(∀U ∈ U). The trace A 7→ Tr(A) can be uniquely extended to the whole complex space T by
linearity. Then it is defined for all products (since T is an ideal) BA : B ∈ L(H), A ∈ T, and we
have

Tr(AB) ≡ Tr(BA), ∀B ∈ L(H), A ∈ T.

It is also valid:

‖AB‖1 ≤ ‖A‖1‖B‖, ‖BA‖1 ≤ ‖A‖1‖B‖, ∀A ∈ T, B ∈ L(H). (B.1.3)
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The Hilbert–Schmidt ideal H is defined:

A ∈ H⇔ A ∈ L(H) & A∗A ∈ T.

Then also AB ∈ T for all A,B ∈ H; the algebra H of operators in H can be made a Hilbert space
in a canonical way, by defining the scalar product by

(A,B)2 := Tr(A∗B), ∀A,B ∈ H.

The set H is closed with respect to the Hilbert–Schmidt norm ‖A‖2 :=
√

Tr(A∗A). Also T

is closed with respect to the trace norm ‖A‖1 := Tr|A|, where the operator |A|, the absolute
value of A can be defined by a “functional calculus” as |A| :=

√
A∗A. The elements of the subset

T+1 ⊂ T of positive trace–class operators with unit norm:

̺ ∈ T+1 ⇔ ̺ ∈ T & ̺ > 0 & ‖̺‖1 = 1, (B.1.4)

are called in physics the density matrices.
The bilinear form

〈B;A〉 := Tr(BA), A ∈ T, B ∈ L(H),

provides a duality between the B-spaces T, and L(H), and similarly between the B-space of
compact operators C, and T, in the sense that the operators B from the second of a couple of
spaces represent (all) continuous linear functionals lB on the first of spaces, by the evaluations

A 7→ lB(A) := Tr(BA) ≡ 〈B;A〉.

In this sense, the following assertions are valid for the topological duals:

C∗ = T, T∗ = L(H) = C∗∗. (B.1.5)

Since the mathematical objects A,B, · · · ∈ L(H) are not only elements of a Banach algebra,
but they also realize linear transformations of H, they are endowed by other natural l.c. topologies.
Let us introduce the weak operator topology Tw by the set of seminorms {pwψ : ψ ∈ H}:

pwψ : A 7→ pwψ (A) := |(ψ,Aψ)|, ψ ∈ H, A ∈ L(H). (B.1.6)

The strong operator topology Ts on L(H) is determined by the seminorms {psψ : ψ ∈ H}:

psψ : A 7→ psψ(A) := ‖Aψ‖, ψ ∈ H, A ∈ L(H). (B.1.7)

There are important also other topologies on L(H), namely the σ–strong (equiv.: ultra-
strong) topology Tus, the σ–weak (equiv.: ultraweak) topology Tuw, and also the strong∗

topology Ts∗, and the σ–strong∗ (equiv.: ultrastrong∗) topology Tus∗, [188, 92, 42, 255].
These topologies, including also the norm topology Tn, are ordered in the following hierarchy
(with respect to the ordering ≺ introduced in Definitions A.1.1):

Tw ≺ Ts ≺ Ts∗
f f f

Tuw ≺ Tus ≺ Tus∗ ≺ Tn
(B.1.8)
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We did not consider now the topological dual of L(H) with respect to the norm–topology: L(H)
∗

contains also “nonnormal states” on L(H), cf. Definition B.3.1. In QM, mainly linear functionals
from T ⊂ L(H)∗ are used in the rôle of (normal) quantum states described by density matrices. The
space T can be considered as the dual of L(H), if the last space is endowed with the σ(L(H),T)–
topology, which is identical with the σ–weak topology Tuw determined by all density matrices ̺
by seminorms puw̺ : A(∈ L(H)) 7→ puw̺ (A) := |Tr(̺A)|. The “nonnormal” states from L(H)

∗ \ T

include, e.g. dispersionfree states for observables with purely continuous spectra, e.g.
the “eigenstates” for position coordinates, [27].

Theoretical physics is mainly interested in selfadjoint operators, resp. in unitary operators
(these all belong to the “equally nice” normal operators A characterized by AA∗ = A∗A). Nor-
mal operators can have their spectrum also in C \ R. Selfadjoint operators A (not only bounded)
are generators of one–parameter groups of unitaries: t 7→ exp(itA) ∈ U, and also are representa-
tives of “observables” in QM; the most clear understanding of their interpretation is expressed,
perhaps, via the spectral theorem. This theorem shows, that any selfadjoint operator can be,
roughly speaking, expressed as a real linear combination (resp. integral) of mutually orthogonal
“eigenprojections”, which are multiplied by the corresponding “eigenvalues”.

The key concept in this connection is a projection–valued measure (PM, or PVM). Let us intro-
duce simultaneously its generalizations, i.e. positive operator valued measures (POV, or POVM).
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B.1.1 Definitions (Projection measures, and POV measures).

(i) Let (X ; T ) be a topological space, and B(X) ⊂ P(X) be the set of all subsets obtained from
the open and closed subsets of X by countable unions and/or intersections. Elements Λ ∈ B(X)
are called Borel sets of X. The class of Borel sets is topology–dependent; if, on some set Y , the
topology is standard (e.g., on Rn), then the specification of B(Y ) is not usually given. A function
f from a topological space (X1; T1) into a topological space (X2; T2) is called a Borel function iff
for any V ∈ B(X2) the inverse image f−1[V ] ∈ B(X1); the set of all such uniformly bounded Borel
functions will be denoted by Bb(X1, X2).

(ii) Let a mapping E : B(X)→ L(H) be such that each E(Λ) is an orthogonal projection, and
(a) E(X) = I, E(∅) = 0;
(b) for any at most countable collection Λj , j ∈ J, |J | ≤ ℵ0 of mutually disjoint Borel sets

Λj ∈ B(X), Λj ∩ Λk = ∅ (∀j 6= k), one has

E(∪j∈JΛj) =
∑

j∈J
E(Λj),

where the sum converges in the strong operator topology of L(H).

The mapping E is a projection (valued) measure (PM, equiv. PVM) (on X with values in
L(H)).

(iii) Let S ⊂ L(H) be any set of bounded operators. The commutant S′ of S is the set S′ :=
{B ∈ L(H) : AB − BA = 0, ∀A ∈ S} ⊂ L(H). Clearly, S ⊂ S′′ := (S′)′, and S′′ is called the
bicommutant of S.

(iv) Let a mapping F : B(X)→ L(H) be such that each F (Λ) is a positive operator, and
(a) F (X) = I, F (∅) = 0;
(b) for any at most countable collection Λj , j ∈ J, |J | ≤ ℵ0 of mutually disjoint Borel sets

Λj ∈ B(X) one has

F (∪j∈JΛj) =
∑

j∈J
F (Λj),

where the sum converges in the strong operator topology of L(H).

The mapping F is a normalized positive operator valued (POV) measure (on X with values
in L(H)), called also an observable on X, resp. also a POVM,[71, Sec.3.1]. ♦

The POV measures are generalizations of PM; they are useful in description of “nonideal mea-
surements” in QM, cf. [71]. Let’s note, that now the operators F (Λ) for different Λ ∈ B(X) needn’t
mutually commute. There is an important construction giving also a criterion for distinction of
PM from POVM, cf. [71]:

B.1.2 Proposition. Let X be a compact Hausdorff space, and let F : B(X) → L(H) be a nor-
malized POV measure (i.e. an observable). Let C(X) be the space of complex–valued continuous
functions on X. Then the strongly convergent integral

F (f) :=

∫

X

f(x)F (dx), f ∈ C(X), (B.1.9a)

defines a bijection between observables F (·) and linear maps F : C(X) → L(H) such that f ≥
0 ⇒ F (f) ≥ 0, F (I) = IH. The POV measure F is PM iff the map F : C(X) → L(H) is a
∗–homomorphism of the algebra C(X) into the algebra L(H). ♣



B ON BOUNDED OPERATORS AND C∗-ALGEBRAS 163

B.1.3 Theorem (Spectral theorem). Let A ∈ L(H) be a normal operator. Then there is a
unique PM, EA, on the spectrum σ(A) such that:

(i) EA(Λ) ∈ {A}′′, ∀Λ ∈ B(σ(A));97

(ii) For any f ∈ Bb(σ(A),C), there is an operator EA(f) ≡ f(A) given by the strongly con-
vergent integral (being the strong-operator limit of any sequence of expressions EA(fn) for “simple

functions” fn(λ) :=
∑

j c
(n)
j χ

Λ
(n)
j

(λ) approximating f by pointwise limits)

EA(f) ≡ f(A) =

∫

σ(A)

f(λ)EA(dλ); (B.1.9b)

(iii) The mapping EA : Bb(σ(A),C) → L(H), f 7→ EA(f) = f(A), is a unique continuous
∗–homomorphism (called the functional calculus) of commutative algebras (in Bb(σ(A),C), the
multiplication and addition are defined pointwise, and involution is the complex conjugation) de-
termined by EA(idC) = A. Continuity is here understood so that ‖f(A)‖ ≤ ‖f‖, where the norm
of f is the supremum norm. ♣

Important features of the algebras of operators, also from a physical point of view, are their
representations as homomorphic images in some L(K), where K is a complex Hilbert space. There
are two kinds of nonzero representations of the algebra L(H), if H is separable [188]: There are
orthogonal multiples of the identical representation, and the representations setting the ideal C

into zero, in which case the (simple) factoralgebra L(H)/C (= the Calkin algebra) is isomorphically
represented. Representations of the first mentioned kind are “trivial”, and that of the second kind
are “physically irrelevant” (with respect to the standard nonrelativistic QM), since it might be
difficult to interpret states, in which all finite–dimensional projections in the “given algebra of
observables” L(H) are mapped to zero (probabilities of values of all quantities with pure point
spectra with finite degeneracies would be zero!); cf., however, Note B.4.1. More “colourful” picture
of “physically interesting” representations of algebras of observables arise for some closed symmetric
subalgebras of L(H), and, more generally, for general C∗-algebras (these might not be faithfully
represented on separable Hilbert spaces).

B.2 Elementary properties of C∗-algebras and W ∗-algebras

We shall reformulate now algebraic properties of L(H) to be able to obtain a more general frame-
work for quantum theories (QT). All (mathematical) fields of scalars will be the complex numbers
C, and in the natural restriction also the field of reals R.

B.2.1 Definitions (C∗-algebras and W ∗-algebras).

(i) A Banach algebra A is a B-space endowed with an associative and distributive multiplication
(i.e. the algebraic product, resp. the product, converting the linear space A into an algebra):
(x; y)(∈ A×A) 7→ x·y ≡ xy(∈ A), x·(y·z) = (x·y)·z, (x+λy)·z = x·z+λy·z, x·(y+λz) = x·y+λx·z;
the multiplication is connected with the norm in A by the requirement: ‖xy‖ ≤ ‖x‖‖y‖; ∀x, y, z ∈
A, λ ∈ C. If xy = yx, ∀x, y ∈ A, the algebra A is called abelian, resp. commutative.

(ii) If there is an element e ∈ A such that e·x = x·e = x, ∀x ∈ A, the Banach algebra A is a unital
algebra and the element e is the unit element (or unit) of A. If a unit exists in A, it is unique.

97{A}′′ is the bicommutant of the one–point set {A} ⊂ L(H).
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If there is, for an element x ∈ A, an element (denoted by) x−1 ∈ A such that x·x−1 = x−1 ·x = e,
the element x is invertible, and x−1 is the inverse of x. If x is invertible, the inverse element
x−1 for x is unique; then also x−1 is invertible, and (x−1)−1 = x. The set of all invertible elements
in A is its general linear group G(A), denoted also by A−1.

(iii) An algebra A is symmetric, if there is defined in it an (antilinear) involution, i.e. a
mapping 〈∗〉 : A → A, x 7→ x∗ : x∗∗ := (x∗)∗ ≡ x, (x + λy)∗ ≡ x∗ + λy∗; and, moreover, this
involution is connected with the product by: (xy)∗ ≡ y∗x∗. We shall call the linear combination,
product and involution the algebraic operations.

(iv) If, for a symmetric Banach algebra A, it is satisfied the C∗–property: ‖x∗ ·x‖ ≡ ‖x‖2, then
A is a C∗–algebra. If A has also the unit element, then it is a unital C∗–algebra. We shall
usually assume, that A is unital, and the converse will be pointed out. A Banach subspace B of a
C∗-algebra A, which is invariant with respect to all the algebraic operations applied to its elements
is a C∗–subalgebra of A. If B(6= A) is, moreover, invariant with respect to the multiplication
by all elements of A, it is a closed (two–sided) ideal; clearly, such a C∗-subalgebra B does not
contain the unit element of A. An element x of a C∗-algebra is: selfadjoint iff x∗ = x; normal
iff x∗x = xx∗; projection iff x = x∗ = x2; partial isometry iff xx∗ is a projection; unitary (in
a unital algebra) iff xx∗ = x∗x = e.

(v) If, for a C∗-algebra A, as a B-space, there is another B-space (denoted by) A∗ such that A is
(isomorphic to) its topological dual: (A∗)∗ = A, the C∗-algebra A is called a W ∗-algebra, and the
Banach space A∗ is its predual. Any C∗-algebra has at most one predual, up to isomorphisms.
The W ∗-algebras (originally: their specific operator realizations) are called also von Neumann
algebras. Any W ∗-algebra is a unital C∗-algebra. Any W ∗-algebra is generated by its projec-
tions (via σ(A,A∗)–closure of their linear combinations). [A general C∗-algebra needn’t have any
nontrivial projection.]

(vi) Let A be a C∗-algebra, and let A∗∗ := (A∗)∗ be its second topological dual. The C∗-algebra A is
canonically embedded into A∗∗ as a σ(A∗∗,A∗)–weakly dense linear subspace, cf. Definition A.1.4
and, in this topology, all the algebraic operations (i.e. the linear combination, addition, multiplica-
tion – with one of the multiplicands fixed, and the involution) are continuous. Hence, the algebraic
structure of A can be unambiguously extended to the whole A∗∗, endowing this by a (canonical)
C∗-algebraic structure. The obtained W ∗-algebra A∗∗ is denoted also A′′, and it is called the
universal enveloping W ∗–algebra of the C∗–algebra A.98

(vii) The centre Z(A) of a C∗-algebra A is the commutative C∗-subalgebra of A consisting of all
elements of A commuting with any element of A: Z(A) := {z ∈ A : z·x− x·z = 0, ∀x ∈ A}. A von
Neumann algebra B with trivial centre: Z(B) = {λ·e : λ ∈ C}, is called a factor. ♦

B.2.2 Note (Quotient C∗-algebra). The factor–space (resp. the quotient space) A/B of a C∗-
algebra A over its closed ideal B is canonically endowed with the structure of a C∗-algebra.
Let the canonical projection be β : A → A/B, x 7→ βx := {y ∈ A : y = x − z, z ∈ B}, and
βx ·βy := βxy, β

∗
x := βx∗ , ‖βx‖ := inf{‖x − z‖ : z ∈ B}. Then all the “C∗–properties” for

A/B := {βx : x ∈ A} are valid, cf. [78, 1.8.2]. ♥
Let us give a list of examples of C∗-algebras:

98The notation A′′ originated in the realization of this von Neumann algebra as the ultrastrong (hence weak)
closure of a specific faithful representation, [92, 197], called the universal representation πu(A) of A, hence as
the bicommutant πu(A)′′, cf. Example B.2.3(ii).
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B.2.3 Examples (Some C∗-algebras and W ∗-algebras).

(i) Since the dual of the trace class operator–space T is T∗ = L(H), the algebra of all bounded
operators on H is a von Neumann algebra.

(ii) L(H), and all its closed symmetric subalgebras are C∗-algebras. Any such C∗-subalgebra B,
that is also closed in operator weak (resp. ultraweak, resp. strong, resp. ultrastrong) topology
is also a W ∗-algebra; the closure of any C∗-subalgebra A of L(H) (if IH ∈ A) in any of these
mentioned topologies equals to its double commutant A′′, [188, 228, 255], what is a form of the well
known von Neumann bicommutant theorem. In separable Hilbert space, the only nontrivial
C∗-subalgebra of L(H) which is also an ideal of L(H) is the algebra of all compact operators C.

(iii) Let M be a compact Hausdorff space, and let C(M) be the set of all complex valued continuous
functions on M . Let pointwise linear combinations, multiplication, and conjugation be defined on
C(M) by:

f, h ∈ C(M), λ ∈ C : (f + λh)(m) := f(m) + λh(m),

(f ·h)(m) := f(m)h(m), f∗(m) := f(m), ∀m ∈M,

and let the norm be the supremum norm: ‖f‖ := sup{|f(m)| : m ∈M}. Then C(M), endowed with
these structures, is a commutative C∗-algebra. Each unital commutative C∗-algebra is isomorphic
to one of this form (the Geĺfand–Najmark theorem).

(iv) The factoralgebra L(H)/C of the algebra of all bounded operators by the C∗-subalgebra of its
compact operators C is a unital C∗-algebra, called (according to [197, 6.1.2]) the Calkin algebra.
It belongs to the class of antiliminary C∗–algebras, playing an important rôle in descriptions
of infinite quantum systems. ♥

An important characterization of elements of a C∗-algebra A is (as it was in L(H) for operators)
their spectrum. Since the definitions and properties are identical in this general case with those
in the case of bounded operators in L(H), we shall proceed briefly:

B.2.4 Definition (Spectrum). Let x ∈ A := a unital C∗-algebra. The set ρ(x) := {λ ∈ C :
(λe − x) ∈ A−1} ⊂ C is the resolvent set of x. Its complement σ(x) ≡ sp(x) := C \ ρ(x) is the
spectrum of x. The spectrum of any element is closed in C. The number ‖x‖σ := sup{|λ| : λ ∈
σ(x)} is called the spectral radius of x. Always is ‖x‖σ ≤ ‖x‖, and ‖x‖σ = ‖x‖ if x is normal.
♦

An important property of spectrum of any C∗-algebraic element x is its independence on a
choice of unital C∗-subalgebras B ⊂ A containing x, with respect to which is σ(x) calculated
(instead of A). Hence, the spectrum of x can be calculated with respect to the minimal C∗-
subalgebra Ax ⊂ A containing x, i.e. with respect to the subalgebra generated by the elements
x, x∗, e. For a normal element x, the C∗-algebra Ax is commutative, and it is isomorphic to
C(σ(x)). The algebraic elements in Ax corresponding (according to this isomorphism) to some
f ∈ C(σ(x)) are denoted by f(x). The association f

(
∈ C(σ(x))

)
7→ f(x) ∈ Ax ⊂ A is the inverse

of the Geĺfand transform. It is a ∗–isomorphism of C∗-algebras, cf. Definition B.2.5, hence for,
e.g., f(λ) ≡ λn one has f(x) = xn, n ∈ Z+, x

0 := e. This mapping of A × C(C) (restricted to
normal elements of A) into A is called continuous functional calculus on A. If A is a W ∗-
algebra, then also complex valued bounded Borel functions f ∈ Bb(C) have their homomorphic
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images f(x) in A, for normal elements x ∈ A. The ∗–homomorphism determined by an arbitrary
normal element x of a W ∗-algebra A:

f(∈ Bb(C)) 7→ f(x) ∈ A

is a unique continuous (i.e. ‖f(x)‖ ≤ ‖f‖ = ‖f‖∞) extension of the continuous functional calculus.
These extended mappings are called the Borel functional calculus on a W ∗-algebra.

For arbitrary elements (i.e. not necessarily normal) x of A, we have the analytic functional
calculus: If f is holomorphic (i.e. analytic) function on an open domain in C containing the
spectrum of x, and c is a “Jordan” curve (i.e. continuous, closed, nonselfintersecting, of finite
length, being a homeomorphic image of a circle S1) lying in this domain and “surrounding” the
spectrum σ(x), then we can define a Banach space valued integral

f(x) :=
1

2πi

∮

c

f(λ)dλ

λe− x ∈ A, (B.2.1)

what can be defined by a norm–convergent sequence of Riemann sums in A. Restrictions of above
mentioned “functional calculi” to analytic functions give the values expressed by (B.2.1).

If we define positive elements x of a C∗-algebra A as such selfadjoint elements of A that can
be expressed as x = y∗y for some y ∈ A, we can see that these, and only these elements correspond
to positive functions in the mentioned functional calculi. The positive elements form a cone A+

in A, i.e. any linear combination of elements in A+ with nonnegative coefficients also belongs to
A+. The isomorphism of commutative C∗-algebras with spaces of continuous functions mentioned
in Example B.2.3(iii) exactly corresponds to the mentioned functional calculi, but extended also
to such commutative C∗-algebras, that need–not be generated by a single normal element. The
compact M , corresponding to a unital commutative C∗-algebra A which is ∗–isomorphic to C(M),
is called the spectrum of the abelian C∗-algebra A. If a function fx ∈ C(M) represents
the element x via the Geĺfand transform, the spectrum σ(x) is identical with the range of fx:
σ(x) = {fx(m) : m ∈M}, cf. also Examples B.3.5.

Elements of algebras usually appear in physical theories represented in forms of linear operators
acting on Hilbert spaces. This is naturally connected, as we shall also see in the Subsection B.3,
with the physical interpretation of elements of Hilbert spaces as physical states in which the
“observables” represented by the elements of algebra are measured (resp. calculated). We shall
now turn to an introduction to the representation theory.

B.2.5 Definitions (Representations).

(i) A mapping π : A → B between two C∗-algebras A, and B, is a ∗–morphism, iff it satisfies
the properties:

(l) π is linear: π(x + λy) = π(x) + λπ(y),
(ll) π(x·y) = π(x)·π(y),
(lll) π(x∗) = π(x)∗,

for all x, y ∈ A, λ ∈ C. The set Ker(π) consisting of such elements x of A, that π(x) = 0, is
called the kernel of π. If Ker(π) = 0 for all nonzero morphisms π of A, then A is called a simple
C∗-algebra.

(ii) If Ker(π) = {0} then π is a bijection. If Ker(π) = {0}, and also π(A) = B, the morphism is
called a ∗–isomorphism (briefly: an isomorphism) of A onto B, and these two C∗-algebras are
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mutually isomorphic. Any morphism of C∗-algebras is continuous:

‖π(x)‖ ≤ ‖x‖,

and any isomorphism is isometric:

Ker(π) = 0⇒ ‖π(x)‖ ≡ ‖x‖.

Ker(π) is always a closed (twosided) ideal in the C∗-algebra A.

(iii) Let π be a ∗–morphism of a C∗-algebra A into L(H), for some Hilbert space H. It is called a
representation of A in H. It will be denoted also (π;H). If there is a nontrivial (i.e. 6= 0, and
6= IH) projection P in the commutant π(A)′ ∈ L(H), then the mapping

πP : A→ L(PH), x 7→ Pπ(x),

is a subrepresentation of π. We shall assume, that any considered representation is nonde-
generate, i.e. that it has no zero subrepresentations, i.e. that there is no nonzero projection
P ∈ L(H) such, that Pπ(A) = {0}. If a representation of a C∗-algebra have no nontrivial subrep-
resentations, it is called an irreducible representation.

(iv) Let us assume that, in the Hilbert space Hπ of a representation π(A), there is a vector, say
ψπ ∈ Hπ such, that the set

π(A)ψπ := {π(x)ψπ : x ∈ A}
is dense in the Hilbert space Hπ. Then the representation π is called a cyclic representation
of A, and the vector ψπ is a cyclic vector of the representation π. Each representation of
a C∗-algebra can be decomposed into an orthogonal sum of cyclic subrepresentations, i.e. there is
a system of mutually orthogonal projections Pj ∈ π(A)′, j ∈ J , such that

∑

j∈J Pj = IHπ
(strong

convergence), and each subrepresentation x 7→ Pjπ(x) ∈ L(PjH) is cyclic. In an irreducible
representation space Hπ, any nonzero vector ψ ∈ Hπ is cyclic, and π(A)ψ = Hπ.
(v) Let (π1;H1), (π2;H2) be two representations of a C∗-algebra A. If there is a linear (unitary)
isometry U : H1 → H2 such that π2(x) ≡ Uπ1(x)U

−1, the representations π1 and π2 are
unitarily (or spatially) equivalent. We shall denote this fact by π1 ≃ π2. ♦

As it was mentioned above, any ∗–representation of a C∗-algebra is continuous in the norm
topology. On each W ∗-algebra B, moreover, another natural topology, namely the σ(B,B∗)–
topology, or briefly the w∗–topology is given. The same is true for the W ∗-algebra L(Hπ) for any
representation π. Hence the question on the w∗–continuity of π arises. As we shall show, this
property is also relevant for any representation of a C∗-algebra A canonically extended to A′′, cf.
Proposition B.2.7.

B.2.6 Definition (W ∗–representations). If a representation π of a W ∗-algebra B in the Hilbert
space Hπ is σ(B,B∗)− σ(L(Hπ),T(Hπ)) continuous, it is called a W ∗–representation.

The image π(B) ⊂ L(Hπ) of any W ∗–representation such that π(e) = IHπ
(nondegeneracy) is

again a W ∗-subalgebra of L(Hπ). Let us mention also that an isomorphism of two W ∗-algebras is
always w∗–continuous, [228].
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B.2.7 Proposition. Let A be a C∗-algebra, and (π;Hπ) its arbitrary nondegenerate representa-
tion. Let us consider A ⊂ A′′, in the canonical way. Then there is unique extension of π to a
W ∗–representation (π′′;Hπ) of the univeral enveloping algebra A′′, [228, Proposition 2.21.13]. The
image of this extension equals to the bicommutant π(A)′′, if A is unital. ♣

It follows from this assertion that to any representation π of a C∗-algebra A there is a central
projection z(π) ∈ Z(A′′) such, that its orthogonal complement e′′ − z(π) (with e′′ the unit of
A′′) supports the kernel of π′′ : Ker(π′′) = (e′′ − z(π))A′′, called alternatively the central sup-
port, [228, 1.21.14], resp. central cover of π, [197, 3.8.1]. The representations π1, π2 with the
same central projection z(π1) = z(π2) are called (quasi–) equivalent, denoting this by π1 ∼ π2.
Unitary equivalence implies equivalence, but equivalent representations are just, roughly speaking,
decomposable into various multiples of the same unitary equivalent subrepresentations, [78, 5.3.1].
If the central supports are orthogonal: z(π1)·z(π2) = 0, the two representations are called disjoint,
we shall denote this by π1℧π2.

99

B.2.8 Interpretation (Macro–distinguishability). Disjoint representations are interpreted in
physics as macroscopically (or classically) distinguishable representations: Since the
“physically most relevant” seems the w∗–topology, it also seems natural to consider also (some of)
elements of the enveloping algebra A′′ of “the C∗-algebra of observables A” which do not belong
to A, as representing some observable quantities of the system. The macroscopic (resp. classical)
quantities of the considered quantum system are then found in the centre Z(A′′). Any two mutu-
ally orthogonal projections of the centre then can represent macroscopically distinguishable values
of some observable quantity. Hence, π1℧π2 can be interpreted as macroscopic distinguishability.
It would be, perhaps, more intuitive after a discussion of disjointness of states, [132, 28, 239], cf.
also Interpretation B.3.7. �

In general theory of C∗-algebras, and also in physical applications, cyclic representations arise
from given “states”.

B.3 States and representations

We shall introduce here the mathematical definition of states on a C∗-algebra, as well as some
connetions with representations, and we shall give some hints to their physical interpretations.

B.3.1 Definition (States).

(i) Let A be a C∗-algebra, and A∗ its topological dual. A continuous linear functional ̺ ∈ A∗ is
symmetric (or real) if ̺(x∗) ≡ ̺(x). It is, moreover, positive, if ̺(x∗x) ≥ 0, ∀x ∈ A. The set
A∗

+ consists of all positive elements of A∗. The elements of S(A) := A∗
+1 := {̺ ∈ A∗

+ : ‖̺‖ = 1}
are positive normalized functionals on A. They are called states on the C∗-algebra A. The
set S(A) ⊂ A∗ is convex, i.e. ̺j ∈ S(A) (j = 1, 2), 0 < λ < 1⇒ λ̺1 + (1− λ)̺2 ∈ S(A).

(ii) An element of ω ∈ S(A) is called a pure state on A, if it is not an internal point of any line
segment lying in S(A), i.e. if for some states ωj , j = 1, 2, one has ω = 1

2 (ω1 +ω2), then necessarily
ω1 = ω2 = ω. Such elements ω of a convex set S are called extremal points of S. The set of all
pure states on A will be denoted by ES(A). In the state space S = S(A), the nonextremal elements
are called mixed states, or mixtures.

99The standard symbol for disjoitness, [78, 42], was not found among the LATEX symbols.
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(iii) Let A be a W ∗-algebra. Then it is canonically A∗ ⊂ A∗. The subset S∗(A) := A∗ ∩ S(A) of
states consists of all normal states on A. ♦

The convex set S := S(A) is contained in the closed unit ball of A∗, what is compact in
the σ(A∗,A)–topology, according to the Banach–Alaoglu theorem [219]. S is also compact iff
A is unital. In other cases, it is usually considered [197] the quasi–state space Q defined by
Q := {̺ ∈ A∗

+ : ‖̺‖ ≤ 1}. The quasi–state space Q is the convex hull of the state space S
and the zero functional. It is always compact in the w∗–topology. We shall use the following
theorem, [188, 41]:

B.3.2 Theorem (Krein–Miĺman). Every compact convex set S in a Hausdorff l.c.s. is closure
of the set of all finite convex combinations of the extremal points of S. ♣

We see that there is enough pure states on any C∗-algebra so that finite convex combinations
of them can approximate any state in the w∗–topology.

B.3.3 Interpretation (States in physics). If the selfadjoint elements of a C∗-algebra A are
considered as observables of a physical system, then the states on A are interpreted as follows:
The state ω ∈ S(A) represents a physical situation (whatever it means, we do not go to analyze
its meaning here) of the described system and, for any given x = x∗ ∈ A, the real number ω(x)
equals to the expectation value (i.e. the arithmetical average – in “finite approximations”) of results
of repeated measurements of the observable x in the (repeatedly prepared) “situation” described
by ω .

Hence, the above mentioned possibility of approximation of any state by convex combinations
of pure ones means an approximation by convex combinations of (potential) measurement results;
this shows in what sense the w∗–topology on the state space A∗

s := (the set of symmetric elements
of A∗) is “more physical”, than the topology of norm, cf. [119]. �

The following proposition can be proved by the well known Geĺfand–Najmark–Segal (GNS)
construction of a canonical representation πω corresponding to any given state ω , with a use of
algebraic concepts, [188, 78, 228, 92, 42]:

B.3.4 Proposition. A cyclic representation (πω;Hω ;ψω) in Hω with the cyclic vector ψω ∈ Hω :
πω(A)ψω = Hω, ‖ψω‖ = 1, such that

ω(x) = (ψω, πω(x)ψω), ∀x ∈ A,

corresponds to any state ω ∈ S(A) on a C∗-algebra A. Such a representation is unique, up to
unitary equivalence. Any cyclic representation of A can be obtained in this way. The cyclic repre-
sentation πω is irreducible iff ω is a pure state. In that case, πω(A)ψω = Hω (without taking the
closure in Hω). ♣

The canonical representations satisfying the conditions of Proposition B.3.4 are also called the
GNS representations. Two states ω1, ω2 ∈ S(A) are mutually disjoint, cf. page 168, ω1℧ω2,
iff πω1℧πω2 ; such a two states can be considered as macroscopically different, [92, 132, 42, 239], and
any two macroscopically different states are mutually disjoint, cf. Interpretations B.2.8, and B.3.7.

B.3.5 Examples (Abelian C∗-algebras and W ∗-algebras).

(i) Any unital abelian C∗-algebra A is isomorphic to the space of all continuous complex valued
functions C(M) on a Hausdorff compact M . The set M can be constructed as the set of all
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irreducible representations πχ (which are all one–dimensional), and their kernels are maximal
ideals of A. The corresponding pure states χ ∈ S(A) are characters on A, i.e. they satisfy also:
χ(x·y) ≡ χ(x)χ(y). Since the three sets: the set of irreducible representations, the set of maximal
ideals, and the set of pure states are in bijective correspondence, they can be endowed, together
with the “spectrum space” M , with the induced topology from the w∗–topology of A∗. Let us
denote by χm the pure state on C(M) corresponding to the maximal ideal m ∈ M , i.e. to the
irreducible representation with the kernel m. Let f ∈ C(M) be any element of the commutative
C∗-algebra. Then

χm(f) = f(m), ∀m ∈M,

hence the pure states χm correspond to the Dirac measures δm on M . Arbitrary states ω are then
realized as probability “regular Borel measures” µω on M , symbolically

ω(f) =

∫

M

f(m)µω(dm).

The correspondence between states on C(M) and probability measures on M is a bijection, ac-
cording to Riesz-Markov theorem, [219, Theorems IV.14, and IV.18]. Hence, a decomposition of
an arbitrary state on an abelian C∗-algebra into a convex combination (here: integral) of pure
states, so called extremal decomposition, is unique.

(ii) Let us assume, that the abelian C∗-algebra C(M) is a W ∗-algebra. We know, that it is
generated by its projections. But a projection in C(M) is just a characteristic function χB of a
subset B ⊂M , which is also continuous: Hence the set B = χ−1

B ({1}) should be a clopen subset in
M . It can be shown, [102, 255], that the topology of M is now generated by its clopen sets. The
chracteristic functions of one–point sets corresponding to normal pure states χm can be considered
also as elements of the W ∗-algebra: δm,m′ =: fm(m′), fm ∈ C(M), because these m’s are just the
isolated points of M . ♥

Let ω ∈ S(A) be a mixed state on a unital C∗-algebra A. Then it can be decomposed
into a (generally “continuous”) convex combination of other states. Looking for such convex
decompositions of a given ω ∈ S(A), we are interested in such probability measures µω on the
compact S := S(A), that for all affine continuous functions f ∈ C(S) : f(λω1 + (1 − λ)ω1) ≡
λf(ω1) + (1− λ)f(ω2), we have

f(ω) =

∫

S
f(ν)µω(dν).

The state ω is a barycentre of the measure µω. Specific examples x̂ of the affine functions are
given by arbitrary elements x ∈ A : x̂(ω) := ω(x), ∀ω ∈ S. The measures µω can be “concentrated”
on various subsets of S. We have seen that if one assumes that µω is concentrated on pure states ES,
then µω is uniquely determined in the commutative case. For general C∗-algebras, this uniqueness
is absent (it is in a sense equivalent to commutativity of the C∗-algebra). Hence, we have to choose
some of the measures with the barycentre ω to obtain some (barycentric) decomposition. These
decompositions might be chosen in different ways. We cannot give here details; let us see at least
some of techniques for construction of such decompositions.

If ω =
∑

j λjωj is a (discrete, convex) decomposition of a state ω to states ωj , λj 6= 0, then
the states ωj are majorized by ω . Important might be the following lemma stating conditions
for f ∈ A∗

+ to be majorized by ω, i.e. stating conditions when there is a number λ for which
(λω − f) ∈ A∗

+.
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B.3.6 Lemma. Let, with the introduced notation, ω ∈ S, and (πω ;Hω;ψω) is the corresponding
cyclic representation. Then there is a bijection between the set of all f ∈ A∗

+ majorized by ω , and
the set of all positive elements: B ≥ 0, B ∈ πω(A)′, of the commutant of πω(A). The correspondence
f 7→ Bf ∈ πω(A)′ ∩ L(Hω)+ is by the relation

f(x) = (ψω , πω(x)·Bfψω), ∀x ∈ A,

determined uniquely. ♣

Most simple and useful decompositions are such that are derived from some abelian W ∗-
subalgebras B of the von Neumann algebra πω(A)′. Let us mention here just a very simple
example when the algebra B is generated by a (“discrete”) projection measure Ed defined on Z+:
Ed : j (∈ Z+) 7→ Ed(j) ∈ πω(A)′,

∑∞
j=0 Ed(j) = I. Then we define the states ωj ∈ S, for those

values of the indices j for which (ψω , Ed(j)ψω) =: λj 6= 0, by the relation

ωj(x) := λ−1
j (ψω , πω(x)Ed(j)ψω) (∀x ∈ A).

It is trivially clear that now we can write a (“orthogonal”) decomposition of the ω by:

ω(x) ≡
∑

j

λjωj(x).

If the W ∗-algebra B is contained in the centre Z(πω(A)′) := πω(A)′′ ∩ πω(A)′, the decomposition
is called a (sub–) central decomposition.

B.3.7 Interpretation. By the extended representation π′′
ω : A′′ → L(Hω), cf. Proposition B.2.7,

the centre Z(A′′) is mapped onto the centre Z(πω(A)′′). Hence, the subcentral decompositions
might be interpreted physically as decompositions according to values of macroscopic observables.
�

General theories of decompositions can be found in [228, 42, 197].

B.4 Symmetries and automorphisms

Symmetries appear in quantum theory (QT) either in a form of transformations of “states” (the
Schrödinger picture), or as transformations of “observables” (the Heisenberg picture). Although,
in the “standard” QM, these two forms of symmetry transformations are usually considered as
equivalent, for more general formulations of QT it needn’t be so. Some relations between these
two descriptions of symmetry operations in QT are described in [42, Chap. 3.2]. We shall restrict
here our attention mainly to the formulation in the “Heisenberg form”, what is the most usual
form of the description of time evolution in quantum theories of large systems.

Theory of symmetries, resp. automorphism groups of C∗-algebras is a rather extensive field,
cf. [225, 228, 42, 197, 229]. There are known many related and mutually connected fields like
the ergodic theory, decomposition theory, various kinds of “spectra” connected with analysis of
structure of algebras and of their automorphism groups αG etc. which we shall not consider in this
paper. We shall present here just some notes for a first orientation in approaches to formulations
and investigation of several problems concerning symmetries of physical systems described by C∗-
algebraic theories, and such which are connected with techniques used in this work.
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Let A be a C∗-algebra. The ∗-automorphisms of A (i.e. the ∗–isomorphisms of A onto itself)
form a group Aut(A) with respect to composition as the group multiplication. Each α ∈ Aut(A)
is a continuous linear transformation of the B–space A, hence Aut(A) ⊂ L(A) (=the space of
bounded linear mappings of A into itself), where L(A) is again, canonically, a B–space. With the
induced topology, Aut(A) is a topological group; it is also a closed subset of L(A), [228, Proposition
4.1.13]. There are also several other useful “natural” (weaker–than–norm) topologies introduced
on Aut(A), namely the strong topology given by the seminorms

px(α) := ‖α(x)‖, ∀α ∈ Aut(A), x ∈ A,

in which Aut(A) is also a topological group, [229], and also some of the σ(Aut(A), F∗)–weak
topologies, where F∗ is a “conveniently chosen” subset of linear functionals on the B–space L(A),
to make Aut(A) a Hausdorff space, cf. also Definition A.1.4(v). The subset F∗ is often given by
the requirement of continuity of the mappings

α(∈ Aut(A)) 7→ ω(α(x)), ∀x ∈ A, ω ∈ F ′,

where we have different useful possibilities, [42, Definition 2.5.17], for a choice of the set F ′ ⊂
A∗. If A is a W ∗-algebra, then its automorphisms are continuous mappings of A onto itself not
only in the norm–topology, but also in the σ(A,A∗)–topology determined by its normal states,
cf. Definition B.3.1. These states are “often” chosen in the rôle of the set F ′ above, in the case of
a W ∗-algebras A. The automorphism α of A is called inner if there is a unitary element uα ∈ A

such that α(x) ≡ uαxu∗α. For A := L(H) is each automorphism inner , [228, Corollary 2.9.32].
Any α ∈ Aut(A) determines a unique affine isometry α∗ : S(A)→ S(A) of the state space of A

by the transposing:
α∗(ω)(x) ≡ ω(α(x)), ω ∈ S(A), x ∈ A.

If A is a W ∗-algebra, the transposed map leaves its normal states invariant:

α∗ : S∗(A)→ S∗(A). (B.4.1)

This is the transition to the “Schrödinger picture”. The converse needn’t be so immediate:
If it is given an affine mapping α∗ : S(A)→ S(A), its transpose α∗∗ determines a linear map of

the double dual A∗∗ into itself, that leaves its (in a canonical way defined) subset A invariant only in
specific cases: some “sufficient continuity” conditions should be satisfied, cf. [42, Theorem 3.2.11];
only then one can consider the restriction α of α∗∗ to the subspace A of A∗∗ and ask, whether is
α ∈ Aut(A), hence, whether there exists the corresponding “Heisenberg picture”. In the case of a
W ∗-algebra A, if the condition (B.4.1) is fulfilled, there is a unique Jordan100 automorphism α of
A obtained by the above mentioned “transposing” of α∗ and by the subsequent restriction.

A physical meaning is usually given to an automorphism α according to its belonging to some
subgroup of Aut(A) which is a homomorphic image of a topological (usually Lie) group G: α ∈ αG,
where

αg1·g2 = αg1 ·αg2 , ∀gj ∈ G, j = 1, 2.

100Jordan automorphisms α of a C∗-algebra are a certain “combinations” of morphisms, cf. Definition B.2.5(i) (sat-
isfying: α(xy) ≡ α(x)α(y)), and antimorphisms (satisfying: α(xy) ≡ α(y)α(x), with other morphism properties
unchanged); hence, by definition, instead of satisfying the property (ll) : α(xy) ≡ α(x)α(y) of the Definition B.2.5
of ∗–isomorphisms, Jordan automorphisms satisfy the following property: α(xy + yx) ≡ α(x)α(y) + α(y)α(x).
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The homomorphisms g(∈ G) 7→ αg, i.e. representations of G represent groups of “physical
motions”, or transformations. If the group is G = R, we have a one parameter transformations
group αR; such groups describe also time evolutions of the physical systems with A as the “algebra
of observables”.

There are traditional reasons in QM (e.g. the spectra of generators of UπG represent measurable
values) for interest in such representations {π,Hπ} of the C∗-algebra A with a given symmetry
αG, in which the automorphisms αg, g ∈ G, are expressed by a unitary strongly continuous
representation UπG ∈ U(Hπ) of G “in the usual way”, i.e.

π
(
αg(x)

)
≡ Uπg π(x)Uπg−1 , ∀g ∈ G. (B.4.2)

Such representations π(A) are called covariant representations. A simple important case of a
covariant representation is obtained (we omit here specification of necessary continuity conditions
imposed to αG), if there is an α∗

G–invariant state ω given, [238, 225]; the corresponding cyclic
representation (πω;Hω;ψω) ensures existence of a unique (continuous) unitary representation UωG
satisfying (B.4.2) (with πω 7→ π, Uω 7→ Uπ), and such that the cyclic vector corresponding to the
state ω is UωG–invariant:

Uωg ψω = ψω , ∀g ∈ G.
In more general situations (e.g. of cyclic representations with noninvariant cyclic vectors), all
covariant representations of a dynamical system {A, αG} are in a bijective correspondence with
representations of another C∗-algebra A ⊗α G constructed from functions on the group G with
values in A with a help of the action of αG, and called the crossed product of the dynamical
system {A, αG}, cf. [197], or also [189].

Let us consider now G := R, i.e. one–parameter automorphism groups. For A = L(H), all
one parameter automorphism groups t 7→ αt are “covariant”, i.e. they are representable in the
form (B.4.2), i.e. αt(x) ≡ utxu

∗
t for a one–parameter group of unitary operators ut, t ∈ R. If

the group αR is “sufficiently continuous”, e.g. if the functions t 7→ Tr(̺αt(x)), ̺ ∈ Ts, x ∈ L(H)
are all continuous, then t 7→ ut is strongly continuous and, according to Stone’s theorem, cf.
Theorem C.3.2, there is a selfadjoint operator A on (a dense domain of) H such, that

ut ≡ exp(itA). (B.4.3)

The operator A is determined by the automorphism group αR up to an additive real constant. The
operator A is called a (selfadjoint) generator of uR. The generator of αR is obtained as a
linear operator δα(x) := i[A, x] on (a dense subset of) L(H)(∋ x). In a general case:

ω
(
δα(x)

)
:=

d

dt

∣
∣
∣
∣
t=0

ω
(
αt(x)

)
(B.4.4)

for all x ∈ D(δα) ⊂ A. The generator δα is called the derivation of αR. Some details of a
theory of (unbounded) derivations can be found in [42, 229].

If the group αR is not “sufficiently continuous”, the generator needn’t exist. Moreover, some
of the covariant representations π of the same {A, αR} might be continuous with well defined
selfadjoint generators Aπ, and in other “covariant” representations the unitary groups t 7→ Uπt
might be discontinuous (i.e. there is no “Hamiltonian” there). For different continuous covariant
representations π the “Hamiltonians Aπ” are generally mutually different (e.g., their spectra might
be mutually “very different”). In the examples of states describing thermodynamic equilibria for
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different temperatures the selfadjoint generators describing time evolution of local perturbations
are mutually different in known solvable examples, e.g. for simple versions of the BCS model of
superconductivity, cf. [120, 259, 32]. In this last mentioned example, the representations of the
(“quasilocal”) algebra of observables corresponding to different equilibrium states are all faithful,
they mutually differ, however, in representing “macroscopic quantities” of the described infinite
quantal system by different operators (resp. numbers). Also in more general cases, mutually disjoint
representations are distinguished by values of some “macroscopic quantities”.

Thermodynamic equilibrium states (also of infinite systems, corresponding to the “thermody-
namic limit”, [225]) can be defined for any “sufficiently continuous” one–parameter automorphism
group αR of a C∗-algebra. This fact is interesting as such, from the point of view of traditional
techniques for statistical–mechanical description of thermodynamic equilibria by Gibbs statisti-
cal ensembles, because for time evolutions (t;x) 7→ αt(x) of an infinite system there is no global
Hamiltonian operator H to be inserted into the expression of a “statistical sum”, e.g.101 into

Z(T,H) := Tr exp

(

− 1

kT
H

)

.

The definition of the thermodynamic equilibrium states ω = ωβ for a temperature T =: (kβ)−1 (k is
here the Boltzmann constant) of infinite (and other) systems is expressed by the KMS condition
for states ω , [118, 42, 197]:102

ω(αλ(y)x) ≡ ω(xαλ+iβ(y)), ∀λ ∈ C, x ∈ A, y ∈ Aa, (B.4.5)

where Aa ⊂ A is the set of analytic elements with respect to α (i.e. x ∈ Aa ⇔ λ 7→ αλ(x) is an
entire–analytic A–valued function, cf. [219, Chap.VI]). States ωβ satisfying the condition (B.4.5)
are the β–KMS states for α, with a given 0 < β < +∞.

It is an interesting result of the Tomita–Takesaki theory of modular Hilbert algebras, [254,
197, 42], that for a class of states ω of any C∗-algebra A one can find a canonical one–parameter
automorphism group (called the modular group for {A, ω}) of the weak closure πω(A)′′ of the
GNS–representation of A such, that the chosen state ω is a KMS–state of that automorphism
group at β = 1 (this finite nonzero value of β is chosen arbitrarily). The condition for the class
of states ω allowing this “creation of dynamics from states” is, that ω is faithful for πω(A)′′, i.e.
that for any positive (nonzero) operator B ≥ 0 in this W ∗-algebra, its diagonal matrix element
with the cyclic vector ψω is strictly positive: (ψω , Bψω) 6= 0 (hence, the W ∗-algebra πω(A)′′ does
not contain any “annihilation operators” with respect to the “vacuum vector” ψω).

Let us mention also the phenomenon of “spontaneous symmetry breaking” in a stationary
state ω with respect to “dynamical evolution group” τR ⊂ Aut(A). Assume that there is another
automorphism group αG commuting with the time evolution τ :

τt ◦ αg = αg ◦ τt, ∀t ∈ R, g ∈ G.

This situation “corresponds”, e.g. to commutativity of the Hamiltonian as the selfadjoint generator
of the unitary group implementing the time evolution τR with generators of the transformation
group αG for a Lie group G.

101Even in some “traditional” cases, when the Hamiltonian H is a well defined selfadjoint operator, the trace in the
following formula does not exist. Take, e.g. a hydrogen atom in a box (i.e. in a “baryonic box” inert to electrons).
102KMS is for Kubo, Martin, and Schwinger.
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The notion of states with “broken” symmetry comes from expectations that a certain states will
have larger symmetry than they really have, [69]. Let us assume that, e.g., in the usual formulation
of QM, the Hamiltonian H is invariant with respect to a unitary representation UG of a finite–
dimensional Lie group G in H: H ≡ UgHU∗

g . If there is an eigenvector ψε ∈ H of H : Hψε = εψε,
then also all the vectors {Ugψε : g ∈ G} are eigenvectors of H with the same eigenvalue ε . Then a
nondegenerate eigenvector ψε ∈ H is proportional to all the vectors UGψε ∈ {λψε : λ ∈ C}, hence
the state

x 7→ (ψε, xψε) ≡ (Ugψε, xUgψε), x ∈ L(H)

is also “G–invariant”. If the eigenvalue ε is of higher multiplicity, the G–invariance of ψε might be
“broken”. Similar considerations apply to equilibrium states at fixed temperature: If, in the above
situation, there is only one KMS–state for a given β, then it is invariant also with respect to αG.
The phenomenon of phase transitions is usually considered as equivalent to existence of several
KMS states for any temperature of “phase coexistence”, e.g. below the critical temperature of a
ferromagnet. In the last mentioned case, e.g., the group G might be the Euclidean group in R3

(or only its rotation subgroup O(3)) with respect to which the Hamiltonian of the ferromagnet is
invariant. Different (extremal) KMS states correspond to different directions of the magnetization
of the ferromagnet, hence the rotation symmetry αG is broken; translation symmetry is broken
in states of any crystal state of many–particle systems (with translation invariant Hamiltonians).
The stationary and G–invariant states always exist, but in the mentioned “degenerate” situations
they are not “extremal”: they have nontrivial convex decompositions to states (e.g. equilibrium)
with lower, hence “broken”, symmetry. These situations are considered in the above mentioned
decomposition theory, resp. in a part of the ergodic theory, [225, 42, 92, 272, 154, 229, 68].

B.4.1 Note. Let us add several words on possible structures of physically relevant C∗-algebras,
resp. W ∗-algebras. It is useful to classify C∗-algebras according to the sets of projections contained
in (the W ∗-algebras obtained by) the weak closures of their (e.g. GNS) representations. Let us
concentrate on a von Neumann classification of W ∗-algebras. Let M be a W ∗-algebra. Let us
denote by P(M) the set of all projections in M. Two projections pj ∈ P(M), j = 1, 2 are
equivalent: p1 ∼ p2, if ∃u ∈ M : p1 = uu∗, p2 = u∗u. This allows us to introduce an ordering
between projections in M: p ≺ q ⇔ {∃p′ ≤ q & p ∼ p′}. If {p ∼ q ≤ p ⇒ p = q}, then p is
finite. If ∃q < p (q 6= p) & q ∼ p, then p is infinite. If 0 6= q ≺ p ⇒ q is infinite, then p
is purely infinite. A projection p ∈ P(M) is abelian, if pMp := {p ·x ·p : x ∈ M} ⊂ M is
an abelian algebra; p is minimal, if pMp ∼ C. We call M finite (resp. infinite, resp. purely
infinite), if its identity e := idM, as a projection, is finite (resp. infinite, resp. purely infinite). M

is continuous, if ∀p ∈ P(M) there are q, q′ ∈ P(M) : p = q + q′, q ·q′ = 0, q ∼ q′. Now we can
introduce the types of W ∗-algebras: M is of type I ⇔ ∀p ∈ P(M) ∃ abelian q ≤ p ⇔ M

is isomorphic to a W ∗-algebra with abelian commutant. M is of type II, iff it is continuous and
its center Z(M) does not contain purely infinite projection. M is of type III, iff it is purely
infinite (⇒M is continuous, and each nonzero p ∈ P(M) is purely infinite). Any M can be written
as MI ⊕MII ⊕MIII , with Mα of type α ∈ {I, II, III}, cf. [68, 228, 255].

Let IH ∈ M ⊂ L(H). Then the type (I, II, or III) of the commutant M′ = the type of M.
For M of type III, no pure state is normal (hence no vector–state given by ψ ∈ H is pure). Von
Neumann even doubted existence of type III algebras, [191]. Now we know, that perhaps “most”
of W ∗-algebras occuring in QT are of type III: Many KMS states lead to type III representations,
and also many algebras of observables “localized” in restricted domains of Minkowski space in
relativistic QFT are of type III, cf. [43, 239, 141, 121]. Such a “wild” structure of the physical
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C∗-algebras is (also) a consequence of imposed symmetries. ♥

C Notes on Unbounded Operators in Hilbert Space

Unbounded operators usually appear in QM as selfadjoint generators A of one–parameter unitary
groups t 7→ ut ≡ exp(−itA) which are not continuous in norm topology of L(H), but they are
operator–weakly continuous. Such generators seem to be unavoidable in the present–day formalism
of QM, since their presence is a consequence of usage of “nontrivial” unitary representations of
noncompact Lie groups G “of motions”, such as Galileo, or Poincaré groups. Hence, necessary
unboundedness of some operators in QM can be connected, e.g. with our common models of
noncompact space–times.

Unbounded linear operators A are also characterized by their domains of definition D(A) which
are, as a rule, dense but not equal to the B-space, on which the operators A act. This is especially
a property of unbounded symmetric operators on an infinite–dimensional Hilbert space H, and
these will be the object of our interest in this Section. The reason for a necessity of dealing with
unbounded symmetric operators in some details in framework of papers on physical applications
is that ignorance of several basic facts can lead to serious ambiguities in obtained results. Several
methods and results presented in the following subsections can be generalized to other spaces and
operators than Hilbert spaces and operators acting on them.

C.1 Unbounded operators, their domains and adjoints

Let H be an infinite–dimensional Hilbert space with scalar product (x, y) = (y, x), x, y ∈ H, and
let A be a linear mapping from a linear subset D(A) ⊂ H into H. The linear set D(A) is called the
domain of A, and the mapping A is a linear operator on (a domain D(A) in) H. We shall
usually assume (if it will be possible) that D(A) is dense in H, i.e. the norm closure D(A) = H.
The operator A is symmetric if

(x,Ay) = (Ax, y), ∀x, y ∈ D(A), D(A) = H. (C.1.1)

If D(A) = H for a symmetric A (now symmetry means (x,Ay) ≡ (Ax, y)), then A is bounded
(Hellinger–Toeplitz). We shall introduce now a useful description of operators on H. Let us
consider the Hilbert spaceH⊕H consisting of ordered couples (x; y), x, y ∈ H, with pointwise linear
combinations (x1; y1)+λ(x2; y2) ≡ (x1+λx2; y1+λy2), and with scalar product ((x1; y1), (x2; y2)) ≡
(x1, x2) + (y1, y2). For any operator A : D(A) 7→ H, let us define the graph Γ(A) of A as a
subset of H⊕H:

Γ(A) := {(x;Ax) : x ∈ D(A)}. (C.1.2)

If Γ(A) is closed in the norm of H ⊕H, the operator A is closed. If the closure of the graph of
an operator A is again a graph of a (uniquely defined) operator, we denote this operator A, it is
called the closure of A, and that operator A (with Γ(A) = Γ(A)) is called a closable operator.
The closure of an (closable) operator is a closed operator.

Let A be now a densely defined linear operator on H (such are, e.g. all bounded operators
A ∈ L(H)). Let us define, for any x ∈ H, the linear functional

fAx := (x,A·) : y(∈ D(A)) 7→ fAx (y) := (x,Ay)(∈ C)
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on the dense domain of A. If this linear functional is continuous (in the induced topology from the
norm–topology of H), hence bounded, it can be uniquely extended by linearity and continuity to
the whole Hilbert space H. We shall denote these extensions by the unchanged symbols. In that
case fAx ∈ H∗. The dual H∗ of H is antilinearly isomorphic to H itself; hence, each its element
f ∈ H∗ is uniquely represented by an element yf ∈ H by the identification f(x) ≡ (yf , x) (this is
the Riesz’ lemma, [219]). Let us denote, with A fixed, by x̃ ∈ H the vector corresponding by the
Riesz lemma to (the continuous extension of) fAx ∈ H∗. The adjoint A∗ of A is a linear operator
on H with the domain

D(A∗) := {x ∈ H : fAx ∈ H∗, i.e. there is x̃ ∈ H, (x̃, y) ≡ (x,Ay)}, (C.1.3)

and with the values
A∗x := x̃, ∀x ∈ D(A∗).

It is seen that the density of D(A) in H: D(A) = H, is essential for possibility of definition of the
adjoint operator A∗.

For D(A) = H, this definition of adjointness is the “usual one”, valid also for the bounded A’s.
It is easily seen that A∗ is a linear operator (hence D(A∗) is a linear subset of H), but it needn’t
be densely defined.

The reader can check that this definition of A∗ can be expressed in terms of graphs as follows:
Let V be the unitary operator on H⊕H defined by V : (x; y) 7→ (−y;x). Then the graph of A∗ is
expressed as an orthogonal complement

Γ(A∗) = [V Γ(A)]⊥, (C.1.4)

hence it is closed. It follows that the adjoint operator is always closed.
For two operators A,B on H, we write A ⊂ B iff D(A) ⊂ D(B), and Ax = Bx,∀x ∈ D(A), i.e.

A ⊂ B ⇔ Γ(A) ⊂ Γ(B). In this case, B is an extension of A, or A is a restriction of B. It
is clear from this that a restriction of any closed operator is closable.

C.2 Symmetric operators and their (selfadjoint ?) extensions

A symmetric operator A is selfadjoint if A = A∗, i.e. if for the above defined domain (C.1.3) we
haveD(A∗)=D(A). If “ i · ” is the multiplication by the imaginary unit i ∈ C inH, and an operator
A on H is selfadjoint, its multiple i·A is called antiselfadjoint. Only (anti-)selfadjoint operators
can determine one parameter weakly–continuous unitary groups uniquely. e.g. generators of time
evolution (Hamiltonians) in QM should be selfadjoint, and not just symmetric.

It is seen from the definition (C.1.1) of a symmetric operator A that the definition is equivalent
to the condition A ⊂ A∗. The Hellinger–Toeplitz theorem states, [219], that if a symmetric
operator A is everywhere defined : D(A)=H, then it is continuous: A ∈ L(H). This shows, that
an unbounded symmetric operator cannot be defined on the whole Hilbert space H. Most of the
Hamiltonians H of particle systems in models of QM are unbounded symmetric operators, e.g.
formally defined second order differential operators

∑
ajk(q)∂j∂k + v(q) on H := L2(Rn, dnq),

where an “initial domain” can be chosen such that H is symmetric, e.g. D(H) := C∞
0 (Rn), but it

is not there selfadjoint. The natural question arises, whether there is a selfadjoint extension of such
a H . The answer needn’t be, in a general case, positive: Besides an “ideal possibility” of existence
of a unique selfadjoint extension, one can have, for some H ’s, infinitely many (physically distinct)
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possibilities, or also there could be no selfadjoint extension of some H ’s. The theory analyzing this
situation was formulated by J. von Neumann, known sometimes as deficiency indices theory.
Let us describe briefly its results.

Let A be symmetric, hence densely defined with densely defined adjoint A∗. Then there is
defined the second adjoint A∗∗ of A, and from the graph formulation (C.1.4) of definition of the
adjoint operator one can see that

A ⊂ A∗∗ ⊂ A∗, (C.2.1)

and that A = A∗∗. If A∗ = A∗∗, the operator A is called essentially selfadjoint, and this is
the only case, when A has a unique selfadjoint extension which is then equal to A∗=A. Since
any symmetric operator A is closable, we can assume, that we have a closed A = A∗∗ ⊂ A∗ from
the beginning. Our present problem is about classification of conditions for existence of possible
selfadjoint extensions of a (generally not essentially selfadjoint) closed symmetric operator A.

Let us introduce, for a given A = A∗∗ ⊂ A∗ two linear subsets KA± := Ker(A∗ ± iIH) of
D(A∗) ⊂ H.103 Their dimensions n±(A) (finite, or not) are called the deficiency indices of A.
A closed symmetric operator A is selfadjoint iff both of its deficiency indices are equal to zero:
n+(A) = n−(A) = 0, i.e. if the adjoint operator A∗ has no eigenvalues equal to ∓i. The domain
D(A∗) can be endowed with the scalar product

(x, y)A := (x, y) + (A∗x,A∗y), ∀x, y ∈ D(A∗), (C.2.2)

and it becomes a new Hilbert space HA = D(A∗) in this way. The three linear subspaces D(A),
KA∓ are closed, mutually orthogonal subspaces of HA providing its orthogonal decomposition. This
“reorganization” of the dense subspace D(A∗) of H allows us to find an elegant expression for all
closed symmetric extensions of A; this is done with a help of the bilinear form σA on HA defined
by:

σA[x, y] := (A∗x, y)− (x,A∗y), ∀x, y ∈ D(A∗).

Closed symmetric extensions AW of A are exactly all the restrictions of A∗ onto arbitrary closed
linear subspaces DW of HA that contain D(A), and annihilate the form σA:

σA[x, y] = 0, ∀x, y ∈ DW . (C.2.3)

From these results, one is able to construct domains DW of the symmetric extensions AW with
a help of linear isometries W (in the original Hilbert space H) from closed linear subspaces SW of
KA− into KA+, dimSW ≤ min{n−(A), n+(A)}. The domain DW is

DW := {y + x+Wx : y ∈ D(A), x ∈ SW }, (C.2.4)

and the wanted symmetric closed extension AW of A is:

AW (y + x+Wx) := Ay + ix− iWx, ∀y ∈ D(A), x ∈ SW . (C.2.5)

The deficiency indices of this AW are n±(AW ) = n±(A) − dimSW , if dimSW < ∞. We see
that selfadjoint extensions of A exist iff it is n−(A) = n+(A). In that case, all the selfadjoint
extensions are in the easily definable bijective correspondence with all linear isometries W of KA−
onto KA+. Hence, the selfadjoint extensions AW of a symmetric operator A with equal deficiency
indices n∓(A) =: n are in bijective correspondence with the elements of the Lie group U(n) of all
unitary operators of an n–dimensional complex Hilbert space onto itself. The action of AW ’s on
the corresponding domains is given by (C.2.5), where SW := KA−.
103Remember that Ker(F ) for a linear operator F is the subset of its domain on which its values vanish.
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C.3 The spectral theorem. Stone’s theorem

The resolvent set and spectrum of a selfadjoint unbounded operator A is defined essentially in the
same way as it was done for bounded operators in Subsection B.1: The resolvent set ρ(A) := {λ ∈
C : (λI−A)−1 ∈ L(H)}, but the spectrum σ(A) := C \ ρ(A) ⊂ R is not compact now. Also in this
case, however, it is possible to associate unique projection measure EA on the real line (supported
by the spectrum σ(A)) to any selfadjoint A, and to formulate the corresponding spectral theorem
expressed by the same formula, as it was done in the “bounded case”, cf. Theorem B.1.3. This
projection measure provides a transparent representation of the functional calculus also for
unbounded A, cf. Subsection B.1, and Subsection B.2. It is now natural, however, to use also
unbounded real Borel functions f on R for construction of other unbounded operators f(A) from
the given one, cf. Theorem B.1.3. In the case of unbounded functions f ∈ F(R, EA) :=the set
of measurable, EA–almost everywhere finite (i.e. EA

(
f−1({∞})

)
= 0) real functions on R, the

domain questions arise. One has (cf. [20])

C.3.1 Proposition. Let A be a selfadjoint (generally unbounded) operator, and let EA be its
canonical spectral (projection valued) measure. Let f ∈ F(R, EA), and let104

f(A) =

∫

R

f(λ)EA(dλ).

The operator f(A) is selfadjoint, with the (dense) domain

D(f(A)) := {x ∈ H :

∫

R

|f(λ)|2(x,EA(dλ)x) <∞}.

For any two functions f, h ∈ F(R, EA), and for 0 6= λ ∈ R, one has

(i) D(f(A) + λh(A)) = D(f(A)) ∩D(h(A)) ⊂ D((f + λh)(A));

(ii) D(f(A)h(A)) = D((f ·h)(A)) ∩D(h(A)). All these operators {f(A) : f ∈ F(R, EA)} mutually
commute, i.e. their projection measures commute. ♣

Clearly, the special choice f(λ) ≡ λ gives f(A) = A. Another (bounded, but complex) choice
f(λ) ≡ exp(itλ) gives a one–parameter unitary group U(t):

t 7→ U(t) := exp(itA) =

∫

R

exp(itλ)EA(dλ).

This group is strongly continuous, and it is also norm–continuous iff A is bounded. Different
operators A give different groups U(t).

The converse statement is the celebrated Stone’s theorem, [221, 219]:

C.3.2 Theorem (Stone). Let t(∈ R) 7→ U(t) be a weakly continuous one–parameter unitary group
on a Hilbert space H, i.e. U(t1+t2) ≡ U(t1)U(t2) ∈ U(H) (∀t1, t2 ∈ R), and all the complex–valued
functions t 7→ (x, U(t)y), ∀x, y ∈ H are continuous. Then there is a unique selfadjoint operator A
such, that

U(t) ≡ exp(itA).

(Let us note, that strong and weak continuity of the unitaries U(t) are equivalent.) ♣
104We skip here details on exact meaning of the integral in the spectral representation of f(A).
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This theorem has a natural generalization to many–dimensional commutative locally compact
groups of continuous unitary transformations of H known as the SNAG theorem (by Stone–
Najmark–Ambrose–Godement), cf. [221, Chap. X.140], [104, Chap. IV], [219, Theorem VIII.
12]. The SNAG theorem can be used naturally also for construction of “macroscopic (classical)
subalgebras” of large quantal systems determined by a group action, [31].
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[31] P. Bóna: J. Math. Phys. 29 (1988) 2223;
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[196] W. Pauli: Teorija Otnositeĺnosti (Theory of Relativity) (translated from an English edition),
Nauka, Moscow, 1983.

[197] G. K. Pedersen: C∗-algebras and their Automorphism Groups, Academic Press, London -
New York -San Francisco, 1979.

[198] R. Penrose: The Emperor’s New Mind: Concerning Computers, Minds and the Laws of
Physics, Oxford University Press, Oxford, 1989.

[199] R. Penrose: Shadows of the Mind: An Approach to the Missing Science of Consciousness,
Oxford University Press, Oxford, 1994; R. Penrose: The Large, the Small, and the Hu-
man Mind, The Press Syndicate of the University of Cambridge, Cambridge, 1997 (Czech
translation, Prague, 1999).

[200] A. M. Perelomov: Commun. Math. Phys. 26 (1972) 222;

[201] A. M. Perelomov: Generalized coherent states and their applications, Springer, Berlin, 1986;
J. R. Klauder and B. S. Skagerstam: Coherent States. Applications in Physics and Mathe-
matical Physics, World Scientific, Singapore, 1984; S. T. Ali, G. G. Emch: J. Math. Phys.
27 (1986) 2936-2943;

[202] A. Peres: Quantum Theory: Concepts and Methods, Kluver Academic Publishers,
Dordrecht-Boston-London, 1994.

[203] A. Peres: Phys. Rev. Lett. 74 (1995) 4571;

[204] C. Piron: Helv. Phys. Acta 42 (1969) 330; C. Piron: Foundations of Quantum Physics,
Benjamin, Reading, Mass., 1976; A. Amann, U. Müller-Herold: Helv. Phys. Acta 59 (1986)
1311; A. Amann: Helv. Phys. Acta 60 (1987) 384; A. Amann: Fortschr. Phys. 34 (1986)
167;
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[217] E. Prugovečki: Stochastic Quantum Mechanics and Quantum Spacetime, Reidel, Dordrecht,
1984; J.A. Brooke, E. Prugovečki: Nuovo Cimento 89 A (1985) 126;

[218] M. Reck, A. Zeilinger, H. J. Bernstein, P. Bertani: Phys. Rev. Lett. 73 (1994) 58;

[219] M. Reed, B. Simon: Methods of Modern Mathematical Physics, Vols.I and II, Academic
Press, New York - London, 1972 and 1975;

[220] G. de Rham: Variétés Différentiables, Hermann, Paris, 1955.
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[285] L. G. Yaffe: Rev. Mod. Phys. 54 (1982) 407;

[286] H. Zeh: Found.Phys 1 (1970) 1;
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Ad(u), O̺, ν(y), ̺(b), Ej 42
U̺, M̺, N̺, p̺, q̺ 43
ad∗, ad∗

̺, β̺, T̺O(U), ‖ · ‖̺ 44
F(B), {f, h}, hy(ν) 48
D(hX), D(X), UX 60
Da(X) := Dω(X), Dd(X), D(X) 62
D(δX), Dr(δX) := D(δX) ∩ Fs ∩ S∗ 62
Dr(X), Dra(X), Drd(X) 62
Dra(δX) := Dr(δX) ∩ Dra(X) 62
d̺hX ∈ T ∗

̺Oν(U) 64

v̌f (ν), v
(n)
f (ν) 67

Dr, D 68
q̺(Drh), d̺h(i[̺, b]), D1

r+ 69
vh(̺), Vν 69
Dω(G), Lie(G) ≡ g, Dωr (G) 71
Lie(G)∗ ≡ g∗ 73, 154
Dr(F) := Dωr (G) ⊂ D(F) 73
F : D(F)→ Lie(G)∗ 72
̺ 7→ F(̺) := F̺ 72
fξ : Lie(G)∗ → R 72
GF(̺) 75
{F∗h, f}(ν) 76
fν = F∗fν , EF 77
Ran(F), E0

F
80

conv0(B), conv(B) 80
GGcl , ϕ̃f

t, ϕ
f
t 52, 82

uf(·, ·) : R× S∗ 7→ U 52, 82
uf(t, F ) := uf(t, ν

′), τ f
t 82

s∗(L(H),D(F)), h·(F ) 83
pν , p

∗
ν (ν ∈ D(F)) 83

Cbs, CG, CGU , CGq 83

CGcl := I·C(EF,C) ⊂ CGU 83

Y (F ) , EY (F ), ĥf(̺, ν), ĈG 84
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normalized functionals 177
operator valued measure 32
operators 167

power set of X 142
predual A∗ of a C∗-algebra A 172
product 171
product topology 143
projection 172
projection πM 151
“projection (resp. reduction) postulate” 96
projection (valued) measure (PM, equiv. PVM)

26, 32, 170
projective Hilbert space 28, 44
projective representation 38, 116, 118
pull–back 70, 156
pure state on A 177
purely infinite projection 184
pure–point spectrum 167
push–forward 70
quantal 9
quantum deviation functions 89
(quantum) G–generator 86
quantum phase space 50
quantum theories (QT) 13
quantum variable 88
(quasi–) equivalent representations 176
quasi state space 59, 177
quasilocal algebra 135
quotient–space 143
quotient–topology 143
reduced function representative 88
reduction postulate 30
registration ≡ detection 91
relative (or induced) topology 142
representation(-s)

A– 35
adjoint of G 163
coadjoint 76, 163
covariant 181

cyclic of A 175
cyclic vector of r. π 175
GNS 178
of a group G 161
“interaction r.” in QFT 166
irreducible 175
macroscopically (or classically) distin-

guishable 176
nondegenerate 175
of A in H 175
of G 181
projective38, 116, 118
(projective) m–r. 116
strongly continuous unitary or projec-

tive 73
TG is a r. of G 161
universal of A 172
W ∗–r. 176
zero 175

resolvent set 167, 173
restricted analytic domain of δX 65

analytic domain of X 65
domain of X 65
domain 65, 76
G–system 111

restriction of, A ⊂ B 186
restriction of Poisson structure 80
resultant 59
Riemann bracket [[·, ·]] 112
Riesz’ lemma 185
right cosets 160
right translations 161
rigid 39
Schrödinger equation 31
Schrödinger picture 33
second derivative 148
sections of the (vector) bundle 152
(selfadjoint) generator of uR 182
selfadjoint 166, 172, 186
seminorms 144
separate points 143
separates points 144
set of quantum states 32
σ(Aut(A),F∗)–weak topologies 180
σ–strong (ultrastrong) topology Tus 169
σ–strong∗ (ultrastrong∗) topology Tus∗ 169
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σ–weak (ultraweak) topology Tuw 169
similar multiplier 117
simple C∗-algebra 175
simplex 26, 31
SNAG theorem 188
space=algebra F(M) 150
spectral radius of x 173
spectral theorem 169
spectrum of A: σ(A) := C \ ρ(A) 167
spectrum of the abelian C∗-algebra 174
spectrum of x 173
“spectrum space” 178
stability Lie algebra of F 165
stability subgroup 165

of G at the point F(̺) 78
(of G) at x 161

states 13
ω1, ω2 ∈ S(A) mutually disjoint 178
on the C∗-algebra A 177

stationary subgroup of x 161
Stokes’ formula 154
Stone’s theorem 188
“strange attractors” 24
strong operator topology Ts 169
strong∗ topology Ts∗ 169
strong topology 180
strongly continuous unitary or projective re-

presentation 73
strongly nondegenerate 159
structural group 152
structure of (Cm−)differentiable manifold 149
(sub–) central decomposition 179
subalgebra of elementary quantum observables

87
subdomain of analytic vectors 65
subensembles 31
subgroup of G 160
submanifold 149
subrepresentation of π 175
subsystem relatively isolated 12
subtheories 13
symmetric (or real) linear functional 176

algebra 172
operator 185
set of operators 167

symmetries 13

symmetry αG 181
symplectic and Poisson structures 57

homogeneous space of G 23
leaf of g∗ 165
leaves Mι 22
transformation 23

system isolated 11
tangent bundle of M 151

bundle projection 151
mapping of f 152
of f at x 151
space to M at x 151
vector 151
vectors to the leaf OF (G) 165

tensor fields of type
(
p
q

)
152

TG is a representation of G 161
the functional calculus 171
the inverse of g 159
the transformations group of X 161
time dependent Hartree–Fock theory 127
time 13
time–dependent Hartree–Fock equation 129
Tomita–Takesaki theory 183
topological (Banach) manifold 148

dual of g 163
dual (space) of L 145
group 160
linear space (=t.l.s.) 144
space X is separable 142
space 142
subgroup of G 160
subspace 142

topologically isomorphic 143
topology 142

T1 is weaker (≡ coarser) than T2 142
T2 is stronger (≡ finer) than T1 142
determined by the functions 143
discrete 142
factor–topology 143
generated by S 142
l.c. (locally convex) 144
metric 143
norm t. Tn 169
of P (H) 106
product 143
quotient 143
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relative (or induced) 142
strong 180
strong operator 169
strong∗–t. Ts∗ 169
σ(Aut(A),F∗)–weak 180
σ–strong (equiv.: ultrastrong) Tus 169
σ–strong∗ (equiv.: ultrastrong∗) t. Tus∗

169
σ–weak (equiv.: ultraweak) t. Tuw 169
weak 145
M–weak t. on L 145
weak operator 169
w∗–t. on L∗ 145

trace norm ‖A‖1 := Tr|A| 168
trace of A 168
trace–class operators 167
“transition probabilities” 30, 114
transitively 23
U(G)-field F 76
UGI–subsystem 6, 89
U(G)–macroscopic field 77
unbounded G–observables 87
uniformly bounded infinitely differentiable

functions 59
unit = unity = unit element 159, 172
unital (C∗–)algebra 172
unitary group of H 167
unitary element 167, 172
universal enveloping W ∗–algebra of the C∗–

algebra A 172
universal representation πu(A) of A 172
unrestricted bounded G–observables 87
value of Planck constant ~ 39
vector bundle (P, πM , E) 152
vector field, Hamiltonian 22

vf on Ts, complete 54
on M 152

von Neumann algebras 34, 172
von Neumann bicommutant theorem 173
W ∗–algebra of observables 25
W ∗-algebra 172

of type I 184
of type II 184
of type III 184

weak operator topology Tw 169
weak (strong) Riemannian metric on M 159

weak (strong) symplectic form on M 159
weak topology on L 145
weakly (strongly) nondegenerate 159
wedge–product 155
Weyl form of CCR 119
Weyl–Heisenberg group 115
W ∗–representation 176
w∗–topology on L∗ 145
x is invertible 172
x−1 is the inverse of x 172
zero subrepresentations 175
zero–forms 155


