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Introduction

Quantum Theory entered the world of Science at the beginning of the twentieth century. It
satisfactorily explained a lot of phenomena: description of the spectral lines of the hydrogen atom, the
black body radiation, the transistor effect, etc. Without any doubts we can say that Quantum Theory
has been succeeding. Although there is no contradiction between its predictions and experimental
reality, sometimes the vain effort to understand its rules makes the Quantum Theory “mysterious”.
On one hand, we wonder at its precision, but on the other hand, the comprehension of basic principles
have remained misty. Simply, it is unnatural to see the world via “quantum eyes”.

At first, its probabilistic essence is in deep disharmony with the classical determinism. Foundations
of the Probability Theory were established by Kolmogorov and now the concept of probability is widely
used in many different areas of Science. Quantum Theory is not an exception. However the properties
of “quantum probabilities” are exceptional. To understand the phenomena such as wave-particle
duality, or uncertainty relations, one needs to start thinking in the language of probabilities. Our
intuition is subjected to probabilities that, in principle, cannot be eliminated.

All the differences between quantum and classical statistics originate in the superposition principle
Combining this principle with the description of a system consisting of two distinguishable particles,
we obtain states with very peculiar properties. These states can be used to violate Bell inequalities,
to transmit two bits of information with two-level signals (superdense coding), to teleport a state of
quantum system (quantum teleportation), or to distribute a cryptographic key (quantum key distri-
bution) in a secure way. FErwin Schrédinger introduced the word entangled particles to name this
feature of quantum states. Today the concept of entanglement is investigated in order to understand
basic properties of quantum world. It was recognized that entanglement stands behind many purely
quantum phenomena, but its role has not still been satisfactorily specified.

The development of the computers is facing with the problem of minimalization, and as we know,
the adequate theory of the microworld is Quantum Theory with its own rules. Therefore, in the
last decades all aspects of Quantum Theory have been studied and analyzed in order to provide us
new trends in the information processing. A real boom has started after the discovery of the Shor
algorithm, that solves an old algorithmic problem of the prime factorization in an efficient way. To
run this algorithm one needs a device ruled by the laws of Quantum Theory, i.e. a quantum computer.
Proposals of the experimental realization of this idea (trapped ions, quantum dots, cavities QED,
etc.) are now studied and tested in laboratories all around the world. To transform this idea into
reality we must avoid the phenomenon of decoherence, which is responsible for the destruction of
quantum coherence (superposition) and, consequently, the quantum advantages cannot be exploited.
In a sense the entanglement stands also behind this phenomenon, because the decoherence is caused
by interactions of the system with an environment, in which the system and the environment become
superposed (entangled). Here one can see a very strange feature of the entanglement. Compared with
the correlations (often used as an analogy of the entanglement) the entanglement cannot be shared
among particles freely (Coffman-Kundu-Wootters inequalities). If one particle starts to entangle with
another, then all its previous “entanglements” decrease. It is very important to understand the
behavior of the entanglement in multi-partite systems. This investigation can give us a better insight
how to “coherently” control the dynamics of open quantum systems that encode the information we



want to manipulate.

In this thesis we shall introduce the entanglement as a structure of quantum states having its
consequences also in quantum observables and quantum dynamics. In detail we shall study the
following topics: Quantum dense coding, Quantum homogenization, Quantum version of processor,
Entanglement and correlations in multipartite systems. This thesis covers a few separated areas of
investigation in the field of Quantum Information Theory that connects two different languages of
physicists and computation scientists.

First two chapters introduce elements of Quantum Theory and Information Theory. They are
written without any references, because they contain the general knowledge, which can be found
in usual textbooks, or review articles [1]-[10]. The mathematical formalism of Quantum Theory is
demonstrated on the example of the two-dimensional system called qubit. The notion of information
is introduced as a measure of correlations between the outcomes of two observables. The question of
classical communication is addressed at the end of the second chapter. In the whole thesis we pay
attention only to finite sample spaces and finite dimensional Hilbert spaces, i.e. the difficulties of
the formalism with infinite spaces are omitted. The third chapter uses the correlation properties of
quantum measurements to introduce the notion of entanglement. The properties of the entanglement
between two qubits are studied in detail and also the measure of entanglement for this case is explicitly
given.

The fourth chapter concerns the problem of the dynamics of open quantum systems. We analyze
the general evolution maps and time dependence of quantum states. We introduce a specific collision
model between a qubit and a reservoir (homogenization process), that transforms the qubit into the
average state of the reservoir. The dynamics plays a central role in the transmission of information.
The usage of quantum states to represent (encode) the information is investigated and the derivation
of the general formulas for the capacity of various communication protocols is given.

The fifth chapter continues the study of quantum dynamics, but from another point of view. We
investigate the properties of the so-called gquantum processors. These devices are defined in analogy
with the classical processors, i.e. they control the evolution of one system (data) with the help of
the second system (program). From the mathematical point of view the quantum processor is just
a unitary transformation defined on a composite Hilbert space of program and data registers. The
quantum processor can be used either in deterministic, or probabilistic regime. We will show that in
the latter case a “universal” processor (= realizes all quantum operations) can be designed, whereas
its deterministic counterpart does not exist. The quantum processors can be used to realize not only
quantum maps, but also quantum measurements (POVM). We will show an explicit example how to
exploit a quantum processor to perform the complete state reconstruction.

The last chapter turns back to the problem of entangled states, but the problem is shifted from
bipartite to multi-partite systems. Hence, the question of the classification and quantification of multi-
partite entanglement is open and studied. The study of the properties of multi-partite entanglement
is just at the beginnings and conceptually there are many open questions. We introduce the graphical
representation of the entanglement and correlations shared in composite systems between individual
parties. We use this representation to divide the state space into the classes of states representable by
the same graph. This is only the first step in the comprehension of the analysis of the entanglement
in composite quantum systems.



Chapter 1

Basics of quantum mechanics

Newver judge a theory by it’s formalism.
D.Hilbert

1.1 Mathematical tools

The central notion of quantum theory is the Hilbert space H used for the description of quantum
objects.

Definition.
Hilbert space is a complez linear space with defined scalar product (.|.) complete in the norm
[|¥]| = /(W|¢). The scalar product needs to satisfy the following conditions

1. Linearity: (¥|¢1 + Ad2) = (¥|d1) + A(|¢2)

2. Symmetry: (Y|¢) = (¢|¢)
3. Nondegeneracy: (¢|¢) =0 V¢ = ¢ =0
4. nonnegativity: (¢¥lp) >0

Moreover, the Hilbert spaces used in quantum theory has to be separable, i.e. the orthogonal
basis is countable. In this thesis we shall deal only with finite dimensional spaces, which are trivially
separable.

Strictly speaking, not all elements ¢ of H are needed in quantum theory. Define a so-called
projective Hilbert space P(H) consisting of elements called rays. Two vectors 1, ¢ represent the same
ray, if ¥ = A¢ for some A € C. In quantum mechanics we choose such representatives of rays that are
normalized, i.e. (¥|¢) = 1. Each element of P(H) corresponds to a quantum state (we exclude zero
vector from this set). Although not every quantum state can be described by a ray.

By a linear operator we will understand a mapping A : H — H satisfying A (¢ + A@) = A+ AA¢.
To make such operator useful for our purposes in quantum theory we also require that the domain of
definition D(A) is dense in the Hilbert space H in the norm induced by scalar product. For separable
spaces it means that the mapping is determined by its action on a fixed complete orthonormal basis
{¥n} (Vm|tn) = Omn) with n taking its values from the countable index set J C N. The action of A
can be extended to all elements of H by linearity, because each vector ¢ € H can be expressed in the
form ¢ =", anyp, with a, := (¥5]¢). For finite dimensions the linear operator A can be represented
by a matrix with coefficients (A)mn 1= (¥m|A|¥n) and to each vector ¢ it corresponds a column of
complex numbers a,.



The norm of the operator A is defined by formula

[[Agl|
[|A|| := sup
sen |19l

(1.1)

We call an operator bounded, if the norm is finite, i.e. ||A|| < co. The set of bounded operators L(H)
has the Banach space structure.

Definition
Banach space is a linear space with a defined norm ||.|| and complete in this norm. The norm is
determined by conditions

1. Nonnegativity: ||A|| >0

2. Nondegeneracy: ||A||=0 = A =0

3. Homogenity: ||AA|| = |A-||A]|

4. Triangle inequality: ||A + B|| < ||A]| + ||B|

The set of bounded linear functionals H* (topological dual of H) is the set of linear mappings
f : H — C satisfying
F(@
7] = sup ML)

ver |9l
Let us remind that the domain of definition D(f) must be dense in .

< 0

Riezs lemma
For each f € H* there exists exactly one vector vy € H such that f($) = (Yy|¢) for all ¢ € D(f),
where D(f) is dense in H.

Next, we define the adjoint operator At corresponding to linear operator A. We start with defining
its domain of definition

DAY ={y eH: ¢~ fu(9) := (V|Ag), fy € H*}
Applying Riezs lemma to our definition of D(A') we can define the adjoint operator by the formula

Al :=1; Vi € D(AT), where (7]¢) := (¥|A¢) Yo € D(A) (1.2)

In the finite dimensional case this is equivalent to

(ATy|g) = (V|Ad) = (Y|Alp) Vi, d€H (1.3)

what means that all of the three expressions listed above are equivalent.

Maybe the most important type of the operator is the selfadjoint operator. The operator A is
selfadjoint, if A = At for all ¢y € D(A) = D(A'). Let us consider finite dimensional Hilbert spaces.
The projective operator is defined by condition P = Pt = P2, If (3, Ay)) > 0 for all v € H, then
we say that the operator is positive. Unitary operator need to satisfy UUT = UtU = 1, where 1 is
a unit operator, i.e. 1(¢) = ¢ for all ¢ € H. Unitary operators transform one complete basis onto
another and preserve the scalar product, i.e. (0|¢) = (Uy|U¢) for all 9, ¢ € H. We denote by A~?
an inverse operator of A. The property AAt = ATA defines normal operators.

The spectrum of the normal operator A is a subset of complex numbers o(A) C C such that
for each A € o(A) the inverse operator (A — A1)~! does not exist. In finite dimensional case all
the elements of spectra are eigenvalues, i.e. to each A € o(A) there exists vector ¢y € H, for which
Ay = M. This vector is called an eigenvector 1 belonging to the eigenvalue A\. Note that the set



of eigenvectors belonging to the same eigenvalue forms a closed subspace of H. The spectral theorem
tells that each normal operator A can be written in the form

A= Z APy (1.4)

where P, is the projector on the subspace spanned by eigenvectors 1, belonging to the same eigen-
value Ay, i.e. P, =3, Py .. Using this theorem we can define the operator function of any normal
operator

FA) =) F(A)Pn, (1.5)

where f is a function f:C — C.
Let us choose a complete orthonormal basis {¢,} in . The trace of the operator A is a mapping
Tr: L(H) — C given as

d
TrA := ) (¢n|Aldn) (1.6)

n=1
and d = dim H. We list the properties of trace
e Tr(AB) = Tr(BA)
e Tr(A + AB) = TrA + \TrB
e TrA = Tr(UAU') for all unitary U

The last property means that the trace operation is basis independent. Define the absolute value of the
operator |A| := vV AAt. The set of traceclass operators T (H) C L(H) consists of operators satisfying
Tr|A| < oco. This set 7 (#H) form a Banach space with respect to the trace norm ||Al|l; = Tr|A].
Density operators form a subset S(H) C T(H) of positive elements ¢ € T (H) with a unit norm, i.e.
llo|ln = Tr|g| = Tro = 1.

Consider the scalar product defined on £(H) by relation

(A|B) := TrA'B. (1.7)

The set of operators 75(H) bounded in the induced norm ||A||z := TrATA has the Hilbert space
structure and its elements are called Hilbert-Schmidt operators. Similarly, like in the case of H we
can define the set of linear transformations ® : T>(H) — 7T2(#H) acting on linear space of operators.
Superoperators are specific linear mappings ® transforming density matrices into density matrices, i.e.
®:S(H) > Se C S(H).

Consider two Hilbert spaces H1,Ho. The Cartesian product of them denoted by H; X Hs consists
of elements 12 = [11,42] where ¢ € Hy and 2 € Hy. Let us define the linearity

[¥1,%2] + Alp1, d2] = [P1 + A1, 92 + Ago] (1.8)

and scalar product

(W1, 9][[p1, $2])12 := (1 |1h2)1 + (f1]h2)2 (1.9)

where (.|.); is the scalar product defined on #;, j=1,2. The linear space H; x H embedded with
these structures is abbreviated by H; @ H» and is called a direct sum of Hilbert spaces. In this case
dimH, & Hs = dim H; + dim Ho.

Next, define what linear combination in each of the Hilbert spaces means on H; X Ha

(Y1 + Ad1, Y2 + pda] := [P1, 2] + AP, 2] + plthr, @] + Aplgr, ¢a]- (1.10)



The scalar product consistent with such structure is given by

([th1, Ya]ll#1, P2]) = (P12h12) := (P1]d1)1(2]P2)2 (1.11)

The linearity of it means (Y12 +Ad12|€12) = (¥12|€12) + A* (¢12/€12)- In this case the obtained structure
H1®Hs is called the tensor product of Hilbert spaces and dim H; @ Ho = (dim H;)(dim Hz). Moreover,
we are allowed to express the elements of H; ® Hz in a form of tensor product ¥ ® 12 = [11,12].
Such notation is more comfortable and the relations defined above become more natural, i.e.

(b1 + A1) @ (P2 + pda) = Y1 @ Y2 + A1 @ 2 + b1 ® P + My @ ¢
(Y1 ® Ya|d1 ® ¢2) (1] 1)1 (v2[d2)2 (1.12)
Let’s define partial trace and partial transpose operations. Both of the definitions will be given in
the form of matrix elements. It means in a fized basis. Suppose the Hilbert space composite from two

Hilbert spaces H1,Hz as a tensor product of them with the basis {¢, ® ¥}, where {¢,}, {¢)r} are
complete orthonormal bases in H1, H2, respectively. Express the operator A in such basis of H; ® Ha

(A)mn,kl =(pm ® ¢k|A|¢n ® ). (1.13)

The partial trace over the second subsystem is a mapping Tro : £L(H1 ® H2) — L(H1) that to each
operator A € L(H; ® H2) assigns an operator As on H; with matrix elements

dim H1

(A2)kl = (¢k|Tr1A|¢l) = Z (A)nn,kl- (114)

n=1

The partial transpose over the second subsystem is a mapping Ty : L(H1 ® Ha) — L(H1 ® H2) defined
as A —» AT with matrix elements

(ATZ)nm,kl = (A)nm,lk- (1.15)

In the same way we can define the partial trace and partial transposition over the first subsystem.
The partial trace unlike the partial transposition has one important property

Try[1; @ UsAly @ Uil =TroA  for all U, € U(Hy) (1.16)

that is, the partial trace is independent of the chosen basis {¢}} in H,, in which the operator A is
expressed. As we said, the partial transpose does not have this property, but the eigenvalues of AT
are basis independent!

1.1.1 Dirac’s notation and repetition

Now, we shall introduce the Dirac notation very often used in quantum theory. Formally, the step is
very simple, but we have to be very careful with its usage in infinite dimensional cases. As we have
said earlier, in this thesis we shall work with finite dimensional Hilbert spaces. Hence we skip
these problems.

Let the element of projective Hilbert space, the ray, be denoted by ket symbol |b) € H. We shall
denote the elements of topological dual by bra symbol ()| € H*. Here we use the Riezs theorem,
which to each element of H* assigns a vector from H. For scalar product we get (¢|¢) = (¢|4).
Let {¢;} = {|j)} be the orthonormal basis in H. The operator A is given as A = 3, (A);x|7) (k|
in this basis with (A);, := (j|A|k). To each vector |¢) it corresponds one dimensional projection
onto subspace spanned by this vector P = |¢)(¢)|, and vice versa. The completeness of the basis is
equivalent to the relation ), |k)(k| = 1.

In the following we list the defined sets:

o L(H)...... set of bounded linear operators, i.e. ||A|| < oo



o Lo(H)...... set of selfadjoint operators, i.e. A = At

o Li(H)...... set of positive operators, i.e. A = At A >0

o T(H)...... set of traceclass operators, i.e. Tr|A| < oo

o To(H)...... set of Hilbert-Schmidt operators, i.e. TrATA < oo
e S(H)...... set of density matrices, i.e. ¢ > 0,Trp =1

e UH)...... set of unitary operators, i.e. Ut = U~!

o L(T3)---... set of superoperators, i.e. ® : S(H) — S(H)

Some properties of these sets are of importance in the context of quantum theory, which we shall
list later on. Now we only write the properties related to the set structure

SH) CLL(H)C Ls(H) C L(H) and T(H) C T2(H) C L(H) (1.17)

1.2 Minimal interpretation

By minimal interpretation we mean statements that are common for all, or at least for most of all,
different interpretations of quantum theory. In each theory there are four main objects : states, ob-
servables, dynamics and symmetries. Supported by one hundred years of successful explanation of
quantum phenomena, we shall not talk about the details of motivations for mathematical represen-
tation of these objects. Of course, this topic is very interesting, but also very hard and as far as the
author knows, none of the existing interpretations is satisfactory. We also omit the question of what
we mean by quantum objects and where the border between the classical and quantum world lies.

Let’s start with the quantum state. As we have mentioned before, to each quantum object we can
define corresponding Hilbert space H that is the central object in the theory. The dimension of the
Hilbert space reflects the maximal number of mutually perfectly distinguishable quantum states in
a single observation. We identify quantum states with the elements of density matrices S(H). The
set S(H) contains also one dimensional projectors, that, as we know, can be written in the form
Py = |¢)(¢|, i.e. they correspond to a ray in the projective Hilbert space. Such states identifiable
with the normalized vectors |¢)) € H we shall call pure states.

The gquantum observables are represented by the selfadjoint operators lying in the set L4(#H). The
only way how we can check the validity of the theory is compare its predictions with the experimental
reality. Let A be a selfadjoint operator corresponding to the measurement of a quantity and g be a
state of the measured system. Eigenvalues of A determine the possible outcomes of the measurement.
Since in each observation we finish with some statistics of the outcomes, the quantum theory should be
able to tell us the probabilities of single events. If the system was prepared in a state g the probability
P(An, 0) of an outcome A, is given by formula

P(An; 0) := Tr(oPn) (1.18)

where P, is the projector on the eigenspace belonging to the eigenvalue \,. The fact that the operators
are selfadjoint reflects that we are able to observe only real numbers, i.e. eigenvalues are real. Hence,
we have defined the quantities that enable us to make a comparison with real experiments. The mean
velue of the measurement A is

(A)g =D AP\, 0) = Tr(0A). (1.19)

The dynamics of quantum theory describes the change of the state with the flow of the time ¢t. At
first we shall define the evolution of pure states by postulating the Schridinger equation

in ) = . (1.20)
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where i = 1,00095.10734.Js~! is the Planck constant and H is a specific selfadjoint operator of energy
called Hamiltonian. The rays |¢) then evolves according to the formal rule

[90) = Uak) = exp(~ HO) ) (1.21)

where [¢) is the initial condition of the differential equation (1.20).

Each density operator can be written in infinitely many ways as a convex sum of pure states, i.e.
0 = Y Me|¥r) (|- Due to the linearity of Schrodinger equation we can write for general density
matrix g

0= Melti) (Wil = o0 = > A Ur|voe) (0| Uf = U, oU] (1.22)
¥ k

Hence, the dynamics is given by unitary map U; : S(H) — S(H)
Us[o] = U;oU] (1.23)

satisfying the group property Us = Uy olU; for all ¢, s € R. Differentiating the above equation we get
the Heisenberg equation for general states

d
dt
We say, that the evolution of the system is generated by the Hamiltonian H.

ot = %[Qt;H]- (1.24)

1.3 The simplest quantum object

The simplest nontrivial quantum object is described by two-dimensional complex Hilbert space C2 =
C x C and is called a qubit, because of its importance in quantum information processing. The aim of
this section is to make a reader more familiar with the introduced notation.

1.3.1 The set of states - quantum kinematics
We shall denote the basis of the Hilbert space H by ket symbols
[0) and |1) (1.25)

that correspond to mutually orthogonal vectors normalized to one. Each pure state |¢)) can be
expressed as a superposition of the basis vectors, i.e.

) = al0) + B|1) (1.26)

where o, 8 € C and |a|? + |32 = 1 to ensure the norm ||3)|| = (1[¢)) = 1. Here we need to point out
that the bra vector (1| corresponding to ket |¢)) takes the form

(] =™ (0] + B*(1] (1.27)

where a*, 8* are the complex conjugated numbers to «, 3. Hence, according to the normalization
condition for coefficients a, 3 the pure states are given by three real parameters. Moreover, every
complex number we can write in the trigonometric expression, i.e.

a=ale™ B =|Ble*. (1.28)

Now the normalization means that two real numbers a = |a|,b = |B| must satisfy the condition
a? + b = 1. Without any loss of generality we can put

a = cos ¢ b=sing (1.29)
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for ¢ € [0, 2x]. Since the pure states are elements of projective Hilbert space, the vectors [¢) and k|v)
represent the same ray. Let K = e~*7 then

) = cos ¢|0) + sin e’ |1) (1.30)

with 0 < § = k —n < w. The factor e~ is called global phase. The global phase together with
normalization condition implies that we need only two real parameters ¢,0 to determine the pure
states of qubit. Moreover, with these parameters from the mentioned intervals our definition of a state
is unique. To each pair (¢,8) corresponds one pure state. The manifold endowed with coordinates
(¢,0) is known as Bloch sphere, i.e. pure states are points on the surface of the three-dimensional
sphere.

The mixed states g are positive selfadjoint 2x2 matrices with unit trace, i.e.

1 .
i14+z zT—iy
—( 2
g_<w+iy %—z) (1.31)

where the positivity condition requires that 0 < z? + y* + 22 < 1/4. For finite dimensions the
requirement of positivity is equivalent to positivity of eigenvalues of the selfadjoint operator g. For
2 x 2 matrices A we have the eigenvalues read

Ay = % (TrA + /(TrA)? — 4det A) . (1.32)

Since for quantum states Tro = 1 and det o = 2 —22 —y?—2? we get Ay = (1+21/22 + y2 + 22))/2 > 0.
The condition written above assures the positivity of eigenvalues.

Since the set of Hilbert-Schmidt operators 72(H) form a complex Hilbert space we can express
each element A € T2(H) as a linear combination of basis elements in the following way. Choose an
orthonormal basis in this space, that is a collection of operators Ay € T2(H) satisfying

Tr(ALA;) = 0u (1.33)

for k,l =1,...,dim 73(H), where dim 73(H) = (dim H)?2. The general element A € T5(H) is expressed
as a linear combination

A= aAp  with a;:=Tr(ALA). (1.34)
k

In the case of qubit the basis consists of four operators. Let us define the basis of c—matrices

10 01 0 —i 1 0
ao—(OI),aw—(lo),ay—<i 0),az—<0_1). (1.35)

The matrices %ak are orthonormal in the required sense. Moreover the - matrices are all unitary. In
fact, one can easily prove the validity of the following (very important) formula

0101 = Ol + 1€kImOTm.- (1.36)

where we put x = 1,y = 2,2 =3 and k,l, m = 1,2,3. The €4, denotes the completely antisymmetric
symbol, i.e. €193 = €231 = €312 = 1, €321 = €132 = €213 = —1 and all the other coeflicients are zero.
Expressing the general state g in this basis we obtain

1 1
0= 5]1%—31:03c +yoy + 20, = 5]1—{—1’5.6’ (1.37)

where 7 := (z,y, 2) is the real three-dimensional vector satisfying |ii| < 1.
We have found that states are in a bijective correspondence with the real three-dimensional vectors
of the length less then 1/2. Geometrically it can be described by a ball with radius r = 1/2. As we
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have said before, the pure states corresponds to surface of this ball. Indeed, the state is a projection
if and only if |77| = 1/2, because only in these cases

1 1 1
g2zzl+§(ﬁ+ﬁ)&’+(ﬁ6)(ﬁ&'):5-}-1’1’.5':@ (1.38)
In our calculation we used the relation implied by (1.36)
(71.6)(m.¢) = ()L +i(7 x m).¢ (1.39)

and the fact that @ x @ = 0.
Remark. The property that the boundary of S(H) consists of pure states is typical only of the qubit
case! The negative operators are arbitrarily close (in the trace norm) to the boundary of state space.
For each state o with one zero eigenvalue we can define an operator ¢ with the same spectrum, only
instead of the zero eigenvalue we put the eigenvalue of the mew operator equal to € < 0, i.e. o is
negative. Then the distance between the operators g and o' is given by the value of € which can
be arbitrarily small. Consequently, each o (with one zero eigenvalue) lies on the boundary and for
dimH > 2 not only pure states can have one zero eigenvalue. Hence, in general, the boundary of
S(H) contains also nonpure states.

Suppose a collection of states o, € S(H). By convexr combination we understand a specific linear
combination

0= Z)\ka (1.40)
!

with A\ > 0 and ), Ay = 1. It is easy to verify that operator g is again an element of state space, i.e.
0 € S(H). The set S(H) is convex, because for all states g,& € S(H) also their convex combinations
Ao + (1 — X)¢ are elements of S(H). In particular, for the qubit we get

1 . 1 5 1
where £ = At + (1 — M. Since |f] < A#| + (1 — A)|| < 1/2 we know that the operator defined as
% + 1. corresponds to a regular quantum state of a qubit.

Notice the difference between the convex combination and superposition of pure states. They are
defined on the different spaces and there is no relation between them. In fact, the pure states of a
qubit are such elements of S(#), that cannot be written like a convex combination of other states.
Put the projector Py = |[¢){¢]| = %]l + i.¢, i.e. |f] = 1/2. Consider the possibility to write such
projector [¢)(y| in a way

[) (0] = Ao+ (1= A)E. (1.42)

for some p,& € S(H) and X € [0,1], where g, ¢ are defined like before, i.e. via 7, M. We shall show
that the only possibility how to fulfill the condition

[t]2 = |AT 4+ (1 — N> = XA + (1= A2 )% + 20(1 — N)i.m (1.43)

is to put 7 = 17 = i. The triangle inequality || < |ii| + (1 — \)|/7| implies that, if either |7, or ||,
is strictly less than 1. then also |f] < 1, what contradicts the fact that Py, is a pure state. In what

follows |7i| = || = 12 Introducing it into the eq.(1.43) we are getting
1 1
11 [14+2MA = 1)(1 — cosb)] (1.44)

where 6 € [0, 7] is an angle between the vectors @ and 3. It is straightforward that last equation is
valid if and only if @ = 7 (cos@ = 1). Since t = Mi+ (1 — A)m = i we have found that it is impossible
to express pure states as a convex combination (1.42), except the ¢ = & = |){¢].
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1.3.2 The set of observables

Observables correspond to selfadjoint elements of £(#H). Note that since the density operators are
selfadjoint, too, they can also play a role of observables. The selfadjoint operators form a real linear
space. It means for A, B € L;(H) also the operator aA + bB is selfadjoint for a,b € R. Hence, the set
Ls(H) is a real Hilbert space endowed with the trace scalar product. A general element of this real
Hilbert space can be written in the form

a c—1id
A= ( ct+id b > (1.45)
with a,b,c,d € R.

Since the o matrices are selfadjoint, they form an orthogonal basis in £s(#), too. Then each
element A € L£,(H) can be written in the form

A =qal+pni.d (1.46)
with unit vector || = 1 and «, 8 € R. Comparing the two expressions for A we get

_a+b
)

o and B = (c,d, %(a _ ). (1.47)

The outcomes of an experiment described by the selfadjoint operator A correspond to eigenvalues

A+ of A given by Eq.(1.32),i.e. Ay = atf with =4/ +d?+ @. Since we are able to observe
only real numbers, we require the eigenvalues to be real. If A is selfadjoint, then eigenvalues are real
(a, B € R), but the opposite is not the case. For example, the matrix X ¢ L,(H)

x:(g 8) (1.48)

with real eigenvalues Ay = +vab, if a,b € R and ab > 0.
The corresponding eigenvectors |1) of A are mutually orthogonal, i.e. (¢4|¢p_) = 0. It means
the selfadjoint operator A can be written in the spectral form

A=)\;P, +)A_P_ where Py = |¢:|:><¢:l:| (149)

In addition, the requirement that eigenvalues are real also requires the orthogonality of corresponding
eigenvectors, we shall trivially obtain the selfadjointness of the operator A. Why do we need the
orthogonality of the eigenvectors? Here we come to the biggest problem in interpretation of quantum
theory. What happens with the system after a measurement has been performed?

Consider the measurement described by the introduced operator X. In that case the eigenvectors
belonging to eigenvalues A\ = ++/ab are

) = 40+ /). (1.50)

Of course, they are not orthogonal for general a,b > 0, because (¢ |¢_) = Z_T% If the measurement
does not destroy the system, then we can repeat the same measurement of the quantity X again.
It is an experimental fact, that the observed outcome is always the same. If we select among the
outcomes only those with the value Ay fixed and perform the measurement again only on such selected
subensemble, then we should obtain the mean value equals to Ay. As we have said, this means that
in the second measurement we observe A, with the unit probability. Since the probability P(A,, g) of
the outcome A is equal to the mean value of the selfadjoint operator (P ),, we see that P(A4,0) =1
implies p = P. In other words, the state of the system belonging to the outcome A must correspond
to eigenvector |t4). This is known as the projection postulate, that is, after the measurement the
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state of the system jumps into the state associated with the eigenvector belonging to the observed
eigenvalue. A simple consequence of this postulate is the relation P(A_,P;) = TrP,P_ = 0. For
the eigenvectors it results in the condition of orthogonality, i.e. |[()4|¥—)|?> = 0 (the operator X is
selfadjoint only if a = b, when the eigenvectors are orthogonal).

To conclude, let us stress that the selfadjointness of the operators corresponding to physical ob-
servables (=quantities) follows not only from the requirement of real spectra, but also from the validity
of the projection postulate, which ensures the orthogonality of eigenvectors. The eigenvectors for the
general selfadjoint operator A with 7 = (sin cos ¢, sin ¥ sin @, cos ) coincide with the eigenvectors
of the operator 7.7, i.e.

. 9 ,
1) = e~/ sin §|O) + eiv/? cosg|1). (1.51)

1.3.3 Quantum evolution

We mentioned that the quantum evolution is described by a unitary mapping. For qubits the general
element of U € U(H) is represented by a matrix

U=<‘c’ Z) (1.52)

for a,b,c,d € C such that aa* + bb* = 1, cc* + dd* = 1, a*c+ b*d = 0 and c*a + d*b = 0. The
operators belonging to U(#H) form a group with the matrix product as a group binary operation, that
is1eU(H), U eU(H) and (U;Uy)U;z = U;(U2U3z). We shall denote this group of the 2 x 2
unitary matrices by U(2). Moreover, it is a Lie group, because each element is determined by four
real numbers that play the role of coordinates. To each Lie group we can define a corresponding Lie
algebra (denoted by u(2) in our case). Choose some operator A € L(H). Define a one-parametric
subset of £(#) in the following way (exponential mapping)

~ ~ 1.
Ro>t— Uy =exp(tA) =1+ A + 5A2...eU(2) (1.53)

The condition of unitarity of U; determines the constraints on the possible operators A IfU, =
exp(tA) , then U,Ul = UlU, =1 for all ¢ € R. For small values of ¢ we get the condition

1=U.Ul =1 +cA)1+eAh) =1+¢(A +A}) (1.54)

that is, the allowed operators A must be antihermitian, i.e. A = —At. Hence, the Lie algebra u(2)
is an algebra of antihermitian operators. The Lie algebra form a real linear space endowed with the
defined antisymmetric bilinear form - commutator. It means, if A,B € u(2), then oA + B € u(2)
and [A,B] := AB — BA = C € u(2), too.

If A is antihermitian, then the operator A := iA is selfadjoint (=hermitian), i.e. there is a one-to-
one correspondence between antihermitian and hermitian operators. The exponential mapping then
can be expressed as U; = exp(itA) with A € L,(H). Note that £,(#) is not closed according to
commutator of its elements, because

[A,B] = [iA,iB] = —[A,B] = —-C = iC (1.55)

is antihermitian operator. It is also not closed with respect to the product of two operators, i.e. AB
is in £4(H) if and only if [A,B] = 0, because (AB)! = BtAt # AB for general A,B € L,(H).

We are going to try to express the general unitary operator U in the basis of ¢ matrices. Since
the unitary operator U is normal (UUT = UtU), its eigenvectors 1) are mutually orthogonal. The
eigenvalues are complex numbers of the kind e?*+, because in spectral form the matrix U is diagonal
and unitaries must preserve the scalar product, i.e. (¢4|UtUps) = MAL = 1 implies Ay = i@+
with a+ € R.
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It follows that we can define a unitary operator in U(2) by specifying two real numbers a4 and
one normalized vector |¢4) = |¢) = «a|0) + F|1) with @,8 € C. In the qubit case the basis is
fully determined by a single vector, because |[)1) = |o/_) = B*|0) — a*|1) is unique. Put U :=
e*+Py + €'~ P,., where Py, = 11 4 7.5 and Py. = 11 — 7i.. Then for the general U we get

i ia— g _ pio—
u="¢ ;e 1+ 26 7.G. (1.56)

But the pure states in quantum theory are given up to a global phase. Therefore the unitary trans-
formations U and e*¥U are equivalent. Putting oy = ¢ £ 7 we obtain

U = cosnl + i sinn(7.0) (1.57)

where we have omitted the global factor e®.

The equivalence up to a global factor defines new subset of unitary operators called special unitaries
satisfying the condition det U = e®e~" = 1. Such operators form again a Lie group SU(2) with a
corresponding Lie algebra su(2). The requirement det U; = 1 for all ¢ implies for elements of Lie
algebra TrA = 0. Traceless selfadjoint operators form a linear space! su(2) C Ls(#H). Except 1 all
the matrices from o basis are traceless and selfadjoint and the dimension of su(2) C 7T3(H) is three.
The general element A € su(2) can be written in the form

A =0, +yoy, + 20, =n(il.5) (1.58)

with |f]] = 1. The element of SU(2) are then U = exp(nfi.d’). Using the formula (1.39) and a little
calculation we obtain

U = cosnl + isinn(ii.5). (1.59)

The question is whether each element of SU(2) can be expressed like exp(iA) for some A € su(2).
In the Eq.(1.57) we have the most general element of SU(2). Comparing it with the last equation
we can conclude that SU(2) = exp(i.su(2)) is an exponential group. We have found that the general
qubit Hamiltonian H generating the evolution U; = exp(iHt) is an element of su(2).

1.4 Quantum theory: summary

In this section we shall briefly repeat basic mathematical representations of the physical concepts of
quantum theory.

1. Quantum state.

Quantum state of a physical object represents the maximum of our knowledge about the quantum
system. The essential underlying concept in the determination of quantum system is the notion of
the dimension d = dim H of the associated Hilbert space H. The dimension represents the maximal
number of perfectly distinguishable quantum states in a single observation, i.e. by measuring a single
outcome. The set of states p € S(H) is contains the selfadjoint positive elements of the set of Hilbert
space operators £(#) with unit trace (density operators), i.e. o = of, o > 0 and Tro = 1. The
convez structure of the set of states implies that there exists a specific subset of pure states, which are
identified with extremal points of S(H). Equivalently, one can say that the state g is pure, if o = o2
is a projection, or Tro? = 1. There is one-to-one correspondence between pure states and normalized
vectors |¢) ((¢]) = 1) from the underlying Hilbert space H. The set of pure states can be identified
with the set of unit vectors from the Hilbert space 7. Such identification enables us to speak about
the superposition principle in quantum theory. This principle guarantees the existence of the quantum

1Here we use the same notation for traceless hermitian and traceless antihermitian operators, but we hope that the
right usage is given by context

16



state Py jyy18)0) (for |a|? +|B]> + 2Re[a*B(y)|¢)] = 1), on condition the states Py, Py do exist. Each
quantum state can be written in the form

1 ~
where @ = (©4,...,042_1) is the vector of selfadjoint traceless operators and 7 is a real (d* — 1)-

dimensional vector such that the positivity of g is assured.

2. Orthogonal (projective) measurement

The concept of orthogonal measurement reflects the property of the dimension of Hilbert space
H, because the number of different outcomes can be maximally d. Let us denote these outcomes
by real numbers Aq,...,A;. The projective postulate determines that after measuring the outcome
A; the quantum state of the physical system is described (up to the normalization) by ¢; = P;oP;,
where g is the initial state of the quantum system and P; are the projectors associated with the
outcomes A; satisfying the normalization ) j P; =1 and the property P;P;, = 0 = §;,P;. Projective
measurements A are associated with selfadjoint operators, respectively with their (unique) spectral
decomposition

A=) \P;=kl+1i-6 (1.61)
J

where the last equality uses the elements introduced in the previous paragraph with an arbitrary real
number k and real vector 1.

3. Probability rule

The probability rule is the most important formula in the whole quantum theory, because it
connects the abstract mathematical notions of states and observables with experimentally observed
quantities, i.e. with the probability distributions of the measurement outcomes. Hence, the probability
P(p, \;) of observing the result A; is given by the formula

P(o,\;) = TroP;. (1.62)

where p is the state of the system before the measurement. The mean value of the quantity A =
>_; A;P; in the state o is given as

(A), = TroA =k +7i.m (1.63)

where the last equality is valid only if operators {©;} are orthonormal in the following sense Tr©;0; =
0. It follows that the vector coeflicients ny represent the mean values of the selfadjoint operators
O, i.e. ngy = TrpOy.
4. Evolution

In quantum theory the time evolution is driven by a Hamiltonian operator H in the following sense

. 1
Ot = ﬁ[@t, Hy] (1.64)

The Hamiltonian of the system H; is a selfadjoint operator related to the energy of the system. In
the case of time-independent Hamiltonian, H; = H, the evolution is described by a one-parametric
group of unitary transformations U; = exp(—¢Ht).

5. Composed systems

The description of a composed system uses the operation of the tensor product of Hilbert spaces.
The aim of this thesis is to study consequences of this structure onto elementary objects of quantum
theory, such as states, observables and dynamics. Tensor product of two Hilbert spaces H; and H; is
a new Hilbert space (denoted by) H; ® Ho with elements from the Cartesian product H; X Ha, i.e.
ordered couples ¥ = [¢1,12] € H1 X Ha such that ¢; € H; and 12 € Ha. In the Dirac notation we

17



will write ¥ = [¢)1,¢2] = |11) ® |12). Moreover, we shall define new scalar product on the set H; ® Ho
by the relation

(U[®) = (1|¢1) - (Y2[42) (1.65)

The dimension of the resulting Hilbert space d = dim(H; ® Hz) = (dim H;).dim(Hs) = dyds. Let
{0;} be the operator basis of the space £(#1) and {A} be the basis of £L(#2). Then the most general
operator defined on the Hilbert space H; ® Hs takes the form

A=kl ®1,+3 001+ 11 ®F - K+ uOr @A (1.66)
kl

This operator is selfadjoint, if all the parameters k, ay, 8, vk are real. That is, the set of all quantum
projective measurements £ (1 ®Hs) form a real 16-dimensional linear space. The local measurements
of the first subsystem have the form A ® 15. Denote the set of all local operators by £1 C Ls(H1 ®Haz).
Similarly, define the subset £o C L,(H; ® Hs) representing the local measurements of the subsystem
B. Another type of measurements have the form A ® B. Let us denote the set of such observables by
L12. They describe joint measurements of the local ones, because formally A®B = (A®1,)(1; ®B) =
(1; ® B)(A ® 12). In classical physics the outcomes of the joint measurements are couples of single
outcomes. The postulates of quantum theory imply that the outcomes are given by eigenvalues of
A ® B, i.e. by the product of the single outcomes of A and B. Physically the joint measurement
A ® B can be realized by two observers and each of them obtains a result of his local measurement.
It means their outcomes together represent a pair of outcomes and not only one number (product
of outcomes). However, the measurement of A ® B can be done also in a way, where we have no
knowledge about the values of A and B alone. There is nothing mysterious in it. Simply the product
of any two measurements X and Y can describe two physically different situations. In one case, we
realize joint observations of X and Y on the physical system, while in the second case we perform a
new measurement C = XY. In both situations the operators X and Y must commute. We remind
us that a product of selfadjoint operators is selfadjoint only if the operators commute. In our case
X =A®1and Y = 1®B. Therefore, the product A ® B can be understood in two different ways that
correspond to different experimental realizations. One can say that the locality of the measurement
A ® B depends on the physical context. Global measurements are those that cannot be implemented
locally (in the above sense). The generalization to more than two systems is straightforward.
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Chapter 2

Basics of information theory

Probability: The Logic of Science
E.T.Jaynes

2.1 Clarifying the information

It is meaningless to ask about the absolute meaning of information, that is about the absolute amount
of information contained in an object. The question “How much information is it in ...” is difficult
and we are not able to answer it. We assume that information is a relative notion. Our questions
should have the structure “How much information do we have about ..., if we know that ...”. The
natural question arises, what it means, if we say “we know that ...”.

Here the physical reality enters into these abstract ideas. Our knowledge (we know that...) is based
on our observations, that have a strictly physical essence. Denote single observation by A and the
whole set of observations by 0. We shall denote the outcomes of the observation A by a. These values
determine the abstract notion of observation A, which is a collection of outcomes. On the other hand
the set of all observables O determines the system under investigation. This corresponds to the fact
that the only way how we can learn something about the system is by performing an observation.
Everything else remains hidden for us.

In the heart of every observation is a potential randomness. We cannot base our knowledge about
the system on a single observation. The possible randomness of outcomes in our repeated observations
requests the usage of the mathematical statistics and probabilities in our description of information
gain. The characterizes the amount of our knowledge I(A, B) about the observation B gathered from
the observation of A. In particular, if we measure (a random event) a € A, what are the possible
outcomes b of the measurement B? To answer this question we must use the probability theory and
the answer is, in general, not deterministic. Without any specifications we can intuitively discriminate
the situations when the information is maximal and when it is minimal. On one hand if outcome a
determines the value b uniquely for each a, then I(A,B) is maximal. On the other hand, if b is
randomly distributed for all outcomes a, then we have no information about b, that is, information is
minimal, I(A,B) = 0.

The state of a system represents our state of knowledge about the given object. It enables us
to calculate the probability of any outcome of every observation. Denote the state by ¢ and the
probability rule by P(a € A, ). In a sense the projection postulate is valid also in classical theory, but
its meaning is “trivial”. If we measure the value a € A, then the single system is described by such
Qa, that P(a € A,p,) =1 and P(a’' € A, 9,) = 0 for a’ # a. In classical physics (unlike quantum),
the measured object had been in the state g, also before the measurement was performed. That is,
in classical physics the measurement does not cause a “jump evolution” from one state to another.

The purity of state o corresponds to the existence of at least one observable A with the outcome
a, for which the probability P(a € A, p) = 1. In classical physics for all A € O the pure state has a
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definite value a, i.e. for all A there exists a € A with P(a € A,p) = 1.

In classical physics pure states form a set of elementary events {2 and observables are functions
A : Q — R. We can identify the set 2 with the set of outcomes A, if such an outcome of observation
A determines the results for all other observations B € (0. The standard choice of 2 is in classical
mechanics given by couples of the position ¥ and momentum 7. The observation A = {1,2,3,4,5,6}
determines the set of elementary events in the case of a die. Suppose we are not interested in the value
of the die, but only whether the number is odd, or even, or n < 3, or n > 3. Then the corresponding
sets we are interested in are E; = odd = {1,3,5}, E» = even = {2,4,6}, E3 = 3 = {1,2,3} and
E, =4 = {4,5,6}. Define new observations P = {odd, even} and B = {3,4}. The sets E; will be
called events. Denote the set of all possible subsets (so called the potential set) of Q by P(Q2). The
set of all possible events £(€2) is a subset of P(2), i.e. £(Q) C P().

2.1.1 Probability, statistical dependency and correlation

Kolmogorov, the father of the probability theory, simply identified the random event = event =
set and founded the basics of modern probabilistic theory. Let Q be the set of elementary events w,
or the sample space. The set of events £(2) form a o-algebra, if it possesses the following properties

1. 0,Q € &E(Q)
2. ;€ £(Q), then |, F; € £(2)
3. E€&(N), then Q\ E € £(NQ)
The probability is a function p: £(2) — [0, 1] satisfying
1 p(9) = 1,p(0) = 0
2. for mutually disjoint collection {E;} € £(Q), i.e. E;NEy =0 for k # j, p(U; E;) = 3, p(Ej)
3. p@\ E) = 1 - p(E)

For finite sets it is possible to define the probability as a mapping p : @ — [0, 1]. These probabilities
p correspond to classical miztures, i.e. general states of the classical object. The random variable, or
observable in classical physics, is the real valued function A : O — R. The corresponding probability
distribution pa of A for the probability space (2, p) is defined as mapping pa : A — [0,1]

pa(a) :== Z p(w) where E(a):={we N:A(w)=a} (2.1)
w€EE(a)

Note, that the last expression is the probability rule P(a € A, ¢ = p) of the classical theory: each
value a € A determines a subset E(a) := {w € Q: A(w) = a} € £(Q), that is, a corresponding event.
The mean value (A), of the random variable A is a functional defined on the set of random variables

(A)p =) p(w)A(w) = apa(a) (2.2)
For two random variables A, B we define the joint distribution denoted as pag(a,b) by the relation
paB(a,b) = Z p(w) where E(a,b):= E(a) N F(b) (2.3)
wEE(a,b)

with E(a) := {w € 2, A(w) = a} and F(b) := {w € Q,B(w) = b}. Two random events E, F € £(Q)
are independent, if

p(ENF) = p(E)p(F) (2.4)
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Two random variables A, B € O are independent, if the random events E(a) and F'(b) are independent
for all values a € A and b € B. Independence is equivalent to the equation

pan(a,b) = p(E(a) N F(b)) = p(E(a))p(F (b)) = pa(a)ps(b) (2.5)

for all (a,b) € A x B. All these notions are extendible for the case of more than two variables. The
collection of N observables Ay, is independent, if the events Ei(ax) := {w € Q,Ap(w) = ax} are
independent for all the collections (a1,...,an) € Ay X ... x Ay, i.e. p((, Er(ar)) =[], p(Ex(ar)).
The case of continuous (2 is a little more complicated, but this analysis goes beyond the scope of the
present thesis.

The disjointness E N F = () corresponds to the perfect distinguishability between the events. Note
that for probability the following relation holds

p(EUF) =p(E)+p(F)-p(ENF) (2.6)

Consider two events E, F' corresponding to two different outcomes of the observation A = {e, f}. We
surely obtain one of the two possible outcomes, i.e. P(e or f,9) = 1 = p(E U F). To achieve the
unit probability on the left side of Eq.(2.6) we have to put p(E) + p(F) =1 and p(EN F) = 0. In
what follows the observation always defines the mutually disjoint set of events E(a) corresponding to
outcomes a € A.

The conditional probability pg(bla) characterizes the probability that the outcome of the observa-
tion B would be b providing that the outcome of A is a. It is defined by the Bayes rule

pas(a,b)
pB(bla) = 7“((1) (2.7)

for all a with pa(a) # 0. Writing the joint probability in the form pag(a,b) = p(E(a) N F(b)) we
obtain the conditional probability pg(bla) = % expressed via original probability p. The
conditional probability is zero if and only if E(a) N F(b) = §. If pg(bla) = p(b) for all a,b then the
observables A, B are independent.

In the case of more than two random variables, we can define many types of conditional prob-
abilities. For example, pag(a,blc) := % is the conditional probability of the joint out-
come (a,b), if we know that the outcome of the observation C was c¢. As we have said, three
corresponding events E(a), F(b),G(c) are independent, if p(E(a) N F(b) N G(¢)) = pasc(a,b,c) =
pa(a)ps(b)pc(c) = p(E(a))p(F(b))p(G(c)). The conditional probability indicates a “three-partite”
independence, if pan(a,b|c) = pas(a,b) = pa(a)ps(b) for all permutations of a,b,c. That is, we can
interpret the “three-partite” independence in the following way : if we know the outcome of one of the
observations A, B, C, then the other two observations are independent. It does not mean that these
two random observables are independent without the knowledge of the outcome of the third variable
(see Examples 1,2)! That is, pas(a,b) # pa(a)ps(d).

e Example 1 ( Tripartite independence)
In the following example we shall consider three events E, F,G. Note that each event (e.g. E)

can play also a role of an observable (E) called characteristic function, E(w) = if w € E and

Ew)=0ifw¢ E. Put @ ={1,2,3,4,5}, p(1) = p(2) = p(3) = 1, p4) = 61, p(5) = 13, E = {1,5},

F = {2,4,5}, G = {3,4,5}. We have to check that p(ENFNG) = = p(E)p(F)p(Q), ie.
1

they are independent. But p(ENF) = & # p(E)p(F) = 16, p(E ﬂG) = 13 # p(E)p(G) = 16,
p(FNG) = 11—2 # p(F)p(G) = 14. Tt follows they are not mutually independent. We say that the
events are bipartite correlated, but tripartite uncorrelated (= independent).
e Example 2 ( Tripartite dependence)
Put Q = {1,2,3,4}, p(i) = ; fori =1,2,3,4, E = {1,2}, F {1,3}, G ={1,4}. Do the same as
in the example before. p(ENFNG) = + # p(E)p(F)p(G) = %, but now p(ENF) = 1 = p(E)p(F),
p(ENG) =1 =pE)p@G), p(FNG) =1 = p(F)p(G). Hence, in this case we have three events

(random varlables) bipartite independent, but tripartite correlated.

’
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e Example 3 (Correlation function)

In the last example we will show, that the “standard” correlation function C = |(AB), —(A),(B),|
is not the best choice in order to detect the statistical dependence. Two random variables A, B are
uncorrelated (in terms of correlation function), if (AB), = (A),(B),. Put Q = {1,2,3} and p(i) = %
for i = 1,2,3. Define A(1) = —1, A(2) = -2, A(3) = 3, B(1) =1, B(2) = 4, B(3) = 3. It is easy
to verify (AB), = (A),(B), = 0. Since the conditional probability p(b = 1lla = —1) = p(b = 4|a =
—2) = p(b = 3|a = 3) = 1 and all the others do vanish, the information contained in A about B is
maximal, that is to each a € A corresponds exactly one b € B.

2.1.2 Measuring the information

Consider two random variables A, B. We have mentioned two bounds for information : (i) if these
variables are independent, i.e. pg(bla) = pg(b) for all (a,b) € A x B and I(A,B) =0, and (ii) if the
case when I(A,B) is maximal, i.e. for each a € A there is b € B such that E(a) = F(b) and vice versa.
In both cases the information is symmetric under the exchange of A and B. In what follows we shall
require the information to be symmetric also between these extremal cases, i.e. I(A,B) = I(B, A).

The occurrence of pairs (a,b) is described by joint probabilities pag(a,b). The probabilities
pa(a),pB(b) (called also marginal) are given by relations pa(a) := } ;g PaB(a,b) and pg(b) :=
> aca PaB(a,b). The conditional probabilities are determined by formulas pg(bla) = pas(a,b)/pa(a)
and pa (a|b) = pas(a,b)/ps(b). We see that the knowledge of pag(a,b) is sufficient to define all the
probabilities, that implicitly depend on the original probability p defined on 2, where p represents a
state of the system under consideration.

In particular, the maximum of information is achieved by “self-information” contained in A about
A, ie. I(A,A). But what does such a quantity really mean? Consider we observe this quantity A
repeatedly recording a long sequence of observed outcomes. Imagine somebody else who will measure
again the same quantity A on each object, that we had already measured. How precisely are we able
to determine the sequence of his outcomes? That is, what is the outcome of a single observation of A
(performed by him) following the observation of A (performed by us) on the same copy of the system?
Of course, if we once observed a, then each other measurement of A performed on the same object
must result in a, too. It means the sequence measured in the second measurement of A realized in
the described way can be predicted with certainty.

In general case, the information in A about B is understood in the same way. It means we measure
A first and we try to predict the outcome of the measurement B based on our knowledge about the
outcome of A. Here again the observation of B and A is performed on the same single object. Consider
we have recorded a sequence of outcomes of repeated measurements of A, i.e. @ = (aj,,...,05y) €
A x ...x A. What is then the number of all possible sequences b = (bjy,..-»bjy) €EBx...xB
of the repeated observation of B, if we know the sequence of A7 This question is very similar to
the original one, i.e. How much information do we have about ..., if we know that ...? It follows
that the number of sequences Qg (NN, &) corresponds to the amount of information about B, if we
know the sequence of outcomes @. The larger the number of sequences Qg (V, @), the less information
we have about the observables B. The number Qg(N,d@) can be understood as a random variable
AN — R with the probability pan~ (@) defined on AN = A x ... x A. The mean value of such a
random variable (denoted by Qg (V,A)) will represent the information on average. For example in
the case of independent observables, the value Qg (N, A) = Qg (N) is maximal. On the other hand,
for deterministic observables the sequence can be predicted precisely, i.e. Qg(N,A) = 1.

The fraction of numbers I'g (N, A) := Qg (N, A)/Qr () represents our information gain. We shall
define the information by the formula

I(A,B) = lim _logI's(V,A)

where the logarithm is used to obtain I(A,B) = 0 for independent variables, when I'g(N,A) = 1.
The minus ensures the positivity of information, because the defined fraction is always less then one.
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e Example 4 (On the symmetry of information)

Choose the observations A = {1,2,3,4,5,6} and P = {odd, even}. If we measure a € A , then
we know the outcome of the observation P with certainty. But, if we measure P, then the outcome
of A is still non-deterministic, Qa (N, P) # 1. It seems that the knowledge of P about A is different
than the knowledge of A about P. Have we lost the symmetry of information? We have defined the
information as a fraction and its value depends on the number of all possibilities. Although in this
case Qp(N) # Qa (), it is still possible that the fractions I'p (N, A) and I'a (N, P) are equal. That
is,

_ Qp(N,A) 1 Qa(N,P)

I'p(N,A) = 00 " e~ a0 =Ta(N,P). (2.9)

We shall see that information (and also the fractions) is symmetric and there is no loophole in our
consideration. As we have said, information is a relative notion.

Next, we shall calculate the numbers Qg (N, A), Qg(N) and I'g(N, A) which are defined above.
Let us start with Qg(V,d). Since the outcomes of the repeated observations are considered to be
random and independent, the conditional probability is given by

N
pe~ (6(@) = ][ pe(biclaz,) (2.10)
k=1

If the sequence @ was measured, then not all sequences b are allowed, because not all of them satisfy
the statistical properties. The probability of such typical sequence b € BN pgn (b|d@), for a fixed @
should approximately satisfy the relation

1 S 1 .
— logpe~ (bld) = - log (1_{) pB(Bla)¥ (") +6
= — Z paB(a,b)logps(bla) £ 4 (2.11)
(a,b)
= H(BJA)£§
where H(B[A) := =}, ;, paB(a, b)logpr(bla). We shall denote the set of typical sequences be BN

by 78(@, N) C BY. Note that the number of the sequences equals Qg (N, d@). This number does not
depend on @, because of the Eq.(2.11) that implies Qg(N, A) = Qg (N, d) for all allowed sequences
@. The probability of each typical sequence is approximately the same, pgn (b|@) &~ 2-NH(BIA) | The
main result of the information theory is that the probability pg~ (TB(d@, N)|@) of the set of typical
sequences tends to unity with N — oo and, consequently, the number of them equals roughly to

Op(N,A) = 2NH(BIA)E9) (2.12)

The number of all sequences b € BY that can occur is given by typical sequences Tg(N,d) and
is defined in a similar way, but with different probability distribution pg~(b) = [], pB(b;,). The
condition determining such sequences b is

1 - R
gl () = —log [ pab,) £ (213)
k=1
= —ZpB(b)long(b)ﬂ:J (2.14)
b
= H(B)+6 (2.15)
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where we used similar trick as before, i.e. pg(b) = N(b)/N and H(B) := — )", p(b) log pr(b). Hence,
the number Qg(N) = 2NH®B)E)  The information can be expressed as

B .1 Q(N,A)
I(A,B) = - A}gnoo N log (V) (2.16)
= — lim 1 log 2V (H (BJA)—H(B)+3) (2.17)
—00
= H(B)—-H(B|A) (2.18)

where finally we put § = 0. Introducing the definitions of H functions and the relations between the
mentioned probabilities we get for the information

pB(bla)
pB(b) '

I(A,B) = pas(a,b)log (2.19)

(a:b)

What about the symmetry of this function? Performing the same steps only exchanging the
observables A and B we obtain

_ pa(alb)
I(B,A) = gb:)pAB(a, b) log NOR (2.20)

If we use the Bayes rule in the form pap(a,b) = pg(bla)pa(a) = pa(a|b)ps(b), the symmetry is
evident.

2.2 Communication

In the previous section we introduced the notion of information as the measure of correlation, or
degree of dependence of two random variables A, B measured on the same object in a given state.
Intuitively, this notion concerns also the possibility to communicate it among some individuals, to
transfer it from sender to receiver, etc. Next we shall introduce a model of communication, in which
the information characterizes the reliability of the information transfer.

The most important is to have a source of information, which produces information we want to
communicate. Imagine a standard communication between Alice and Bob. Both Alice and Bob can
be viewed as a source of information. In fact, the information arises in their minds. If their distance is
small enough, they can simply talk together using their voices!. Increasing their mutual distance they
have to use other (more sophisticated) types of communication, for example telegraphy, or telephones.
In both cases they transform the original information into the sequence of signals, i.e. into the words,
or letters, or some other symbols representing the letters. From the physical point of view different
signals correspond to different states of a physical object, that carries the information from a sender
to a receiver. The received signals are finally transformed back into the original message.

Hence, the communication consists of three steps:

1. Encoding the information. First of all, before the encoding transformation, we somehow
need to read the message produced by a source. That is, we have to perform an observation A,
with which we are able to distinguish between the possible messages. Different outcomes a € A
compose the set of possible messages. The encoding C is a transformation of these outcomes
into signals, or sequences of signals, i.e. C : A — X", where X is the set of signals x which
can be transmitted via the channel we use. For example, standard letters can be represented
by a sequence of dots and dashes, as in the case of telegraphy (Morse alphabet). In the digital
encoding we transform all letters into the sequence of eight binary digits.

1We overpass the possibility of explaining their feelings by sounds and gestures, and concentrate only on communi-
cating the words.
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2. Transmission via the channel. We consider both, the encoding and decoding transformation
to be perfect. The main problem of communication is the noise which can arise during the
transmission. In general, the interaction between the channel and the environment cannot be
neglected and our description of these influences might be only probabilistic. As a result we
obtain that the state evolution of the signals is described in terms of probabilities. Namely
we use conditional probabilities py (y|z) to describe the transmission, where Y is the set of all
received signals. Note, that the number of elements in X and Y may not be the same.

3. Decoding the received signals. Decoding transformation D is in some sense inverse map to
C,i.e. D: Y™ — B, where the set B represents the set of all possible received messages. The
received message b € B is read out by performing an observation B. If we suppose that we have
one-to-one correspondence between the sets B and A, i.e. between the sent and the received
messages, then the problem is whether the sequences § and Z represent the same message. The
main question of communication is how to minimize the effect of noise in the channel.

The aim now is a little bit different than in the previous section. There we had physical system
in one defined state and we were asking about the correlation between two measurements performed
on the same copy of the system. Now we have again two observations X and Y realized in the same
way as before, but the state of the system is changing during the transmission. However, the derived
formalism can be used also in this case, because the evolution can be understood as a part of the
receiver’s measurement.

In particular, after an encoding the letters © € X occur with some probabilities mx (x). Using the
conditional probability determining the channel, py (y|z), for the joint probability we get

pxy (2,y) = mx (€)py (y]z)- (2.21)

Having the joint probability we have everything in hands that is needed to define the information
contained in observation Y about the preparation X. In other words, based on the knowledge of a
received sequence ¥, we want to reconstruct the original message encoded into the sequence .

For channels we are interested in the maximal value of information they can transmit. Since the
channel is given by the conditional probability py (y|z), the only thing we can vary is the input signal
probability mx (x). The so-called channel capacity is then defined by formula

€ =maxI(Y,X,r) =max Y pxy(z,y)log py(ylz) (2.22)
™ ™ ™ (:L')
(z,9)
e Example 5 (Classical bit)

Consider the simplest classical object called bit. It is given by two elements sample space 2 = {0, 1}.
Such object is often used as signal system in the modern communication. As we have mentioned the
symbols of the standard alphabet are encoded into the sequence of eight bits. The channels using such
signals are called digital. We shall calculate the capacity of such digital channels. Put 7x (0) = 7 and
mx (1) =1 — 7. Consider the channel is symmetric in the following sense

py(0[0) =py(1]1)=p and py(0]1) =py(1j0) =1-p. (2.23)

Then for the capacity we have

1-— 1-—
C(p) = max (7r log T +plog P log p) (2.24)
s s 1-p
= plogp+ (1 —p)log(l — p) + max (—mlogm — (1 —7)log(1 — 7))
= maxH(n)— H(p)
K

where H(p) := —plogp — (1 — p)log(1 — p) is the binary entropy function with its maximum achieved
in p =1/2. For the capacity of symmetric digital channel we get

C(p) =log2—- H(p) =1—- H(p). (2.25)
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In the limit of noiseless channel p = 1 we get that the capacity is equal to one, i.e. one signal bit
communicate one bit of information.

To conclude this part, let us stress that the information describes the number of bits transferred
via the channel per one signal object. Of course, the problem is more complicated and we have
introduced here only a brief sketch of the communication problem, which is relevant in the context
of the present thesis. In fact, we have considered that transmitted signals are mutually independent,
i.e. that channel is memoryless. We used the same information function in two different contexts : as
a measure of correlations between two observables performed on the same object and as transmission
rate in communication.

2.3 Concept of entropy

One of the most “mysterious” physical quantity takes the name of entropy. It was introduced by
Clausius in his work concerning thermodynamics and since then the discussions about its meaning have
started. Non-decreasing of entropy represents a simple form of the second law of thermodynamics that
determines the possible physical processes. Suppose we measure the energy of a system with the
probabilities pr(Ey) of outcomes Ey. Following Boltzmann the thermodynamic entropy is defined as

S=—-kTlnO(N,E,p) (2.26)

where k = 1,38.1023JK ! is the Boltzmann constant, T is temperature and © (N, E, p) is the number
of all possible sequences of N repeated observations described by the probability pg(E}), or the number
of microstates with the mean value of energy equal to (E), for a given state p. This number @(N, E, p)
reflects our intuitive notion of uncertainty about the energy observation of the system. It means
thermodynamic entropy measures our uncertainty about the physical system.

How to calculate ©(N,E,p) for a given probability pe(Ek)? The number of occurrences of a
single outcome Ej, should be about N(Ey) = Npg(Ey). The number of all such sequences is given by
formula

N!

©(N,E,p) T N (BT (2.27)
Note, that not every typical sequence defined before is an element of O(N, E, p), because the sequences
are defined by their probabilities and not by the number of occurrences of single outcomes. The number
of all sequences is equal to ©(N) = KV, where K is the number of different values of energy E. Taking
the logarithm of Eq.(2.27) and using the Stirling approzimation we obtain (in the logarithmic sense)
InO(N,E,p) ~ NS(pg), where S(pg) := — ), pe(Ey) Inpe(Ey). For the thermodynamic entropy we
can write

S=—kTN > pe(Ey)Inpe(Ex). (2.28)
k

This function measures our ability to predict the outcomes of the repeated observations of the energy.
In a specific case, if there is only one possible outcome, i.e. pg(FEy) = 1 for some Ey,, the thermodynamic
entropy is zero, because our uncertainty is zero. But, if the distribution of the energy is totally random,
i.e. pe(Er) = 1/K for all Ej, then our uncertainty about the energy is (intuitively) maximal and, of
course, thermodynamic entropy takes its maximum S = kTN In K.

We shall generalize this notion for each probability distribution pa (a). Define the entropy function
by formula

H(A):= - pa(a)logpa(a) (2.29)

where we choose the logarithm with the base 2. Let us note that the entropy function of the mea-
surement of energy and the thermodynamic entropy are of different values. Such quantity defined for
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an observation A represents our ability to predict its outcomes. Formally, the entropy function is the
same like the one used in the definition of information.

We have mentioned that states represent our states of knowledge about the system. In classical
physics the usage of probabilities reflects our practical inability to observe all the physical quantities
of the system. It means the knowledge about the state is not complete, but still is maximal we can
have. Applying the above definition of entropy to a state p we obtain H(p) = 0, if and only if p(w) = 1
for some w € , i.e. if the state of the system is pure and we have full “information” about the system.
It means we are able to predict outcomes of all observations with certainty. The entropy of the state
H(p) = =), p(w)logp(w) reflects the quality of our state of knowledge. Here we used the word
“information” in different context as before. By “information” we mean the characterization of our
knowledge about the system, if the state p is given. Sometimes H (p) is called negative information,
because H(p) = 0 indicates maximal possible “information” we can have.

We can define many types of entropy functions. The joint entropy H(A,B) is defined for a joint
probability distribution pag(a,b). The entropy of conditional probability pg(bla) with the fixed
a € A is defined in the standard way, i.e. H,(B) := —3, pg(bla)logps(bla). The conditional
entropy is the mean value of random variables H,(B) averaged over the set A, i.e. H(BJA) :=
2opa(a)Ho(B) = 3, ;) paB(a,b)logpe(bla). The equivalent definition of the conditional entropy

H(B|A) = H(A,B) — H(A). Another important function is given by

H(A:B)=H(A) + HB) — H(A,B) (2.30)

and is equivalent to the information function, i.e. I(A,B) = H(A : B). The collection of all the
possible entropy functions is very huge and we shall not list them all.

Denote the set of probability distributions on a sample space Q by P(). Let p,q € P(2). Then
the relation

HOll) = 3 p(e) log 22 (231)

defines the relative entropy of two distributions p,q € P(2). Important property of this function
is that H(p||¢) = 0 if and only if p = ¢q. Consider the probability distribution pag(a,b) on the
sample space A x B. The probability distribution paxs(a x b) defined on A x B by equation
paxB(a,b) = pa(a)ps(b) corresponds to independent variables A and B. It is easy to check that

PAB(a,b) _
H E b)log—————~ =1(A,B 2.32
(pAB”pAXB (a b)pAB a‘ ) Og (a)pB(b) ( ’ )7 ( 3 )

i.e. the information function can be defined via relative entropy function. The relative entropy
determines the “distance” of two probability distributions 2. Using such interpretation we can say,
that the information measures the distance between the joint probability distribution and the canonical
distribution corresponding to independent observations. Since the relative entropy vanishes only if
pan(a,b) = pa(a)ps(b), it follows that correlation is zero, if and only if the observations A and B
are independent. As a consequence of this fact we obtain that information is really an appropriate
measure of correlations.

2.4 Correlated systems

Let us suppose two physical systems. Could we say anything about the correlations between their
observables? Yes, of course. We only need to know the probability of the joint outcome pan(a,b) of
the measurements A realized on the first system A and B realized on the second system B. But what
does it mean to find a joint outcome? The sample space for two systems A and B is given as Cartesian

2The relative entropy, unlike the distance, is not symmetric

27



product Q = Q4 x Qp and this is also the set of joint outcomes. The first step of each observation is
the preparation process, where we must specify, which objects correspond to the whole physical system
A + B. The preparation process makes the question of correlations reasonable, because it allows us
the repetition of the observations. For example, one can find that the daily expected value of the
temperature in the South Pole is maximally correlated with the number of girls born in China per
day. Nobody can take such correlations as “real” in the sense that these two events are physically
related. But in this case we did not perform any joint preparation. We only read some results of
some experiments and compare them a posteriori to find pag(a,b) and correlations. And it is, of
course, meaningless in the physical context. We cannot expect that by increasing the temperature the
population of China will decrease (or increase), too.

We often say that two systems are correlated without saying something about the observations.
As we said, we only need the joint probability distribution. Let pap be the probability defined on
Q4 x Qp, i.e. the classical state of the composed system A + B. Define the correlation between
the subsystems A and B

C,(A,B) = I(A,B) = H(A) + H(B) — H(A, B) (2.33)

where H(A) is the entropy of state pa(wa) := }_, . pap(wa,wp) and H(B) is the entropy of pp(wp) :=
> w, PaB(wa,wp). We will say that state pap is correlated if and only if Cj(A4, B) # 0. But, what
does such formal definition really mean? In some sense the correlations of states compares two different
description of the composed system. We have mentioned that the entropy of the state corresponds to
the negative information. The correlation Cp(A, B) quantifies the difference between the “information”
we have in two different cases : (i) if we describe the whole system A+ B by pap, and (ii) if we describe
only the subsystems A by pa and B by pp independently. It vanishes for independent subsystems. The
nonzero correlations implies that two observers A and B have more information (= are less uncertain)
about the whole system, if they are allowed to cooperate and communicate. From the point of view
of measurements, the local measurements of subsystems for uncorrelated states (Cp(A,B) = 0) are
always statistically independent. In the case of correlated states the subsystems “feel” each other, i.e.
there exists quantities (measurements) of the subsystems which are mutually correlated.
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Chapter 3

Entanglement - just two qubits

We all agree that our theory is crazy.
But is it crazy enough?
N.Bohr

3.1 Probabilities in quantum theory

In the previous the elements of two theories: Quantum Theory and Information Theory have been
described. In this chapter we shall continue to connect these two theories. In both of them the
concept of probability plays a very important role. The classical probabilistic theory, which is used in
the Information Theory, is defined on the sample space Q. In what follows, we shall assume that the
set Q0 contains a finite number of elements. Then the classical states are associated with the set of all
probability distributions P () and the set of random variables O represents the classical observables.
The concept of random event E C Q enables us to define a relation (called probability rule) between
the theory and experimental reality. In particular, for finite sample spaces 2 each subset £ C
represents a random event. The classical random variable A € O is determined by the set of mutually
disjoint sets E(a) € Q such that |J, E(a) = Q. The index a distinguishes different outcomes of the
observable A. The probability of measuring the outcome a is given by the classical probability rule
P(a,p) = p(E(a)) = ZjeE(a) pj, where p: 0 — [0,1] is the classical state and j are elements of .

In the Quantum Theory the probability rule is given by the equation P(a,g) = TroE(a), where
E(a) is a projective operator. Therefore, the quantum analogy of the random event - quantum event
is represented by a projector E(a). That is, the set of quantum events is the set of all projectors that
has different properties in comparison with the o-algebra of classical events. The quantum observable
is represented by the set of mutually disjoint (= orthogonal) projectors E(a), i.e. E(a)E(a') = 0 for
a # o' and, moreover, ) E(a) = 1. Hence, the operator product plays the role of the set union of the
classical events. However, there is one difference between these two operations. Whereas the union of
any two classical events is again a classical event, the product of two quantum events EF is a quantum
event only if E and F commute. Simply, the product EF is a projection, i.e. EF = (EF)! = (EF)2,
only if [E,F] = 0.

This property is related to the so-called uncertainty principle, which says that in Quantum Theory
for each state g there exists a measurement A = 3 aFE(a) with an undefined value, i.e. for all
outcomes a the probabilities are less then one. For classical pure states the outcomes of all observations
are determined with certainty. The Quantum Theory is not deterministic in this sense, i.e. there
always exist measurements with a non-trivial statistics.
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3.1.1 Entropies and correlations of quantum systems

The concept of entropy for a probability distribution is purely mathematical and therefore independent
of the physical theory. Each observation A € £;(H) determines a probability distribution and we can
define its entropy by the formula

H(A, Q) = ZPA(G: Q) logpA(aa Q) (31)

a

where pa(a,p) = TrE(a)g. Consequently, the introduced definition of the correlation between two
measurements can be used also in the quantum case. In classical physics we went further. We have
introduced the entropy of a state without any direct relevance to the performed measurements. Can
we somehow generalize this notion into the field of Quantum Theory? We need to analyze, what the
entropy of state means in classical physics. We have seen that it vanishes for pure states, i.e. there
exists a measurement, for which an outcome is determined. Of course, in classical physics we know
the outcome of each measurement, but it is not the case in quantum physics. In what follows, we
can define an entropy of quantum state as a minimal entropy of the outcome probabilities (minimized
over all observations), i.e.

S(o) := mjin H(A, ). (3.2)

The minimum is achieved for the observation A that commutes with the state operator g, that is the
probabilities of outcomes are given by the eigenvalues of . In spectral form o = >, Ax|tx){(¢x| and

== AplogA. (33)
k

To see that this value is really minimal, let us choose a general observation A with the eigenprojectors
|#a){¢a]- Then the probability rule implies P(a,0) = Y, Ae|{¢k|¢a)|> = >f AePre- Our aim is to
compare the values S(p) and H(A, p). Let us calculate the difference

D Aklog Ak = Y Aepralog(D Mipa)
[ ka ]

> M (Z Pralog M — Y Pralog( )‘lpla))
k a a i

Ak
= AePro log =——— 3.4
kz,a kR & Zl )‘lpla ( )

H(A,0) - S(e)

where we used ), pro = 1in the second equation. Sincelogz > 1 —z~!

H(A, ) ) > Z AkPra (1 Zl /\lpla = Zpka Z AiPia- (3.5)

we get the following inequality

Using the identity }°, pra =1 and }°,; Mipia = -, P(a, 0) = 1 we find that
H(A,0) - S(e) > 0. (3.6)

It means that the function S(g) = —)_, AxlogA; is really the minimal value and the observation
commuting with the state p is really the optimal one in this sense. Using the functional calculus we
get the famous von Neumann formula for the entropy of quantum state

S(0) = —Trplogoe . (3.7
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In a similar way we can define the quantum relative entropy
S(ollo) = Tre[log ¢ —loga]. (3.8)

Consider two quantum systems A and B described by the state gap € S(Ha ® Hp). Then the
quantum joint entropy is given as S(oap) = —Troaplogoap. The quantum conditional entropy can
be formally defined by the formula S(04|5) := S(0aB) — S(¢B), where g4 = Trpoap. The definition
of the quantum mutual entropy is S(pa.B) := S(0a) + S(oB) — S(0ap). For the factorized states
0AB = 04 ® pp this quantity vanishes, because S(p4 ® 08) = S(04) + S(oB).

In what follows we shall list (without any proofs!) some of the properties of the entropy functions
defined above.

1. Unitary invariance: S(g) = S(UoUY) for all U € U(H).

2. Subadditivity: S(oap) < S(ea) + S(oB)

3. Araki-Lieb inequality: S(oaB) > |S(0a) — S(eB)|

Strong subadditivity: S(oasc) + S(es) < S(0ar) + S(eBc)
Independence: S(pa.p) = 0if and only if pap = 04 ® g8

Klein’s inequality: S(p||o) > 0 with equality if and only if p =0
Ensemble inequality: S(o) < H(p;) +32;pjS(0;) where o =3, p;o;
Concavity: S(3_; pjoj) > >, pjS(e;j), where -, p; =1 and p; >0

The properties 2 and 5 assure that S(g4.5) is a good measure of bipartite correlations between two
systems. Intuitively, the maximally correlated system is described by state 045 = & EZ:1 lka)(ka|®
|kB){kB|, where d = min{dimH 4,dim Hp}. In this case Ha.p = logd achieves its maximum.

The bipartite case can be directly generalized into the multi-partite case. For instance, we can say
that three systems are tripartite independent, if the state is three-factorizable, i.e. papc = VAR eBR0C-
The function S(ga..c) := S(0a)+S(0B)+S(0c)— S(eaBc) vanishes, if and only if the state papc is
tripartite uncorrelated. It is a direct consequence of the identity S(pa.B:c) = S(0aBC||0a ® 0B ® 0C)
and Klein’s inequality. The first identity follows from the equality

® N o otk

logoa ® 0B ® 0c =logpa ® 1pc +1logep ® Lac +1ogoc ® 1aB (3.9)

that implies Troapclogoa ® o ® oo = Trpalogoa + Troploges + Troc log oc.

In classical physics we did not satisfactorily answer the question on the meaning of correlations
between two subsystems. Pure states of the classical composite system do not exhibit any correlations
and the correlations between any two local observations A,B are also zero, because H(pa) =
H(pa) = H(ps) = 0. If the state pap is not pure, but uncorrelated, i.e. pap = paps, then for two
observables A of the system A and B of the system B we get

paB(a,b) = pas((E(a) x 2p)N (24 x F(b)))
= pas(E(a) x F(b)) = pa(E(a))ps(F (b)) = pa(a)ps(b).
It implies that every pair of such observables, namely A x Ig and I4 x B, are independent, if the
state pap is uncorrelated. Here we denote by I the trivial random variable I(w) := 1 for all w € Q.
In the quantum case the local observables of the subsystems A, B have the form A ® 15,14 ® B,

respectively. Consider independent qubits, i.e. pap = g4 ® 9. For the probabilities of outcomes of
joint observations we have

paB(a,b,048) = Tr[(E(a) ® 1)(1 ® F(b))oas] = Tr[E(a) ® F(b)oas] (3.10)

Lfor proofs see [8]
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Note that we have used the definition of the joint outcome in analogy with the classical case, only the
intersection of events is replaced by the product of events. For factorized state pap we get

paB(a,b,04 ® 0B) = TrapsE(a)TrposF (b) = pa(a, 04)pr(b, 0B) (3.11)

It means that all pairs of local observations are independent. We have obtained the same result as in
the classical case. Let us conclude that independence of systems corresponds to the independence of
all their local observations.

In what follows we shall use the function

Co(A,B) = S(ea) + S(eB) — S(0aB) (3.12)

to measure the mutual correlations between the systems A and B. Consider a correlated state, i.e.
04B # 04 ® op. We have mentioned that the mutual entropy function S(oa.) = C,(A4,B), can
be also interpreted as a distance between the joint state p4p and the canonical uncorrelated state
0% = 04 ® oB- These two descriptions of joint systems are indistinguishable by performing local
observations. Of course, if the parties are allowed to communicate and compare their results, then
they are able to find differences. For correlated systems there always exists a pair of local observations,
for which the joint outcomes are correlated.

3.1.2 Specific quantum correlations

The title of the whole chapter indicates that we shall deal mainly with the composite system of two
qubits. Of course, we know the states of this system, its observables and dynamics. Hence, why is the
case of two qubits so different in comparison with the case of a single qubit? In this section we shall
introduce a relatively new notion in physics - entanglement. This concept is crucial in quantum
mechanics, because it stands behind many purely quantum phenomena.

The general state of a two-qubit system pap € S(Ha ® Hp) can be expressed in the form

3
1 - 3o
oap = 71+ (3.6) ®1p + 14 ® (5.6) + > ok ® oy (3.13)
k=1

where o}, are the usual sigma matrices. Note again that the operators 1,0, ® 1p,14 Q 0, 0 ® 07 form

an orthogonal basis of the set of operators. To define a state we need 15 real parameters oy, Bk, Vii,

where k,l = 1,2,3. Of course, not each collection of 15 real numbers determine a quantum state.
The reduced states (describing the subsystems) read

1 1 "
0A = 51_'_0_2-6 oB = Eﬂ.—l-ﬁ.é". (3.14)

That is, the parameters oy, 8, must satisfy the restrictions for qubits, i.e. |@| < 1/2 and |/§| <1/2.
The positivity conditions on p4p then specify the possible choices of other parameters. Uncorrelated
state of two qubits is given by condition vk — agf; = 0 for all k,I. The correlation matriz T’ (with
matrix elements 7}, 1= v — agf;) reflects all correlations between the systems A and B. The state
can be expressed in the form

3

0AB =04 Q0B+ ) YOk Q01 (3.15)
k=1

where the correlated and uncorrelated part of the state are separated. The correlations are completely
described by matrix I''. Next, we will argue that in quantum mechanics the correlations can have a
feature, which cannot be observed in the classical case.

In particular, pure states have different properties in classical and quantum case. As we said, in
the quantum case we have pure states, for which the correlation matrix does not vanish. It indicates
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the possibility to find correlations between subsystems, if the whole system is described by a pure
state, for example [1)) 4p. Such thing could never happen in the classical case, where the purity of the
joint state pap implies that the subsystems are necessarily statistically independent, i.e. pap = papB-
Consider the following pure state of two qubits

l¥)ap =al0)a®[0) +b[1)a®|1)B (3.16)

with a,b € C and |a|? + |b|? = 1 This vector state can be expressed in the operator form

04B = [P)AB(Y] = 04 ® 0B + > _ Y10k ® 01 (3.17)
kl

where 04 = 0p = [a[?|0){0] + [b2[1)(1], i.e. @ = § = (0,0, (|a|* — [b[*)/2), and

Yot =Ykt — B = %TT[WJ)AB(W% ® oy —arf = i(¢|0k ® o) — arBy

After a little algebra we get the correlation matrix

1 ab* +a*b  i(ab* —a*b) 0
= 1 i(ab* —a*b) —(ab* + a*b) 0 . (3.18)
0 0 1= (|af* = [b*)?

As a measure of correlations we will use the mutual entropy function C(A4, B) = S(e4.8) = S(04) +
S(oB) — S(oap)- Hence, the state 1)) ap is correlated except for the cases when a = 0 or @ = 1.
If S(04) = S(oB) = log2, i.e. for a = b = 1/1/2, the correlations defined by S(o4.p) achieve the
maximal value S(pa:.p) = 2log2. In this case I'" = diag{1,—1,1}.

This example shows that the value of correlations could be larger then 1, that is the maximum
allowed for classical two-bit (mixed) systems. In the classical case the state space contains only four
pure states {00,01,10,11}, that can be represented with quantum symbols {|00),|01),[10), |11)}, but
the superposition of these symbols is completely senseless. Consider a mixture

eaB(p) = p|00) 45(00] + (1 — p)|11) ap(11] (3.19)

with p € [0,1]. The correlation is given by the binary entropy
C(A,B) = S(ea) + S(eB) — S(ear) = Hyin(p) (3.20)

because S(ga) = S(eB) = S(0aB) = Hpin(p) = —plogp— (1—p)log(1l—p). The maximum is achieved
for the case p = 1/2 (mazimally correlated state pmqz), when C(A, B) = 1. In this case the correlation
matrix takes the diagonal form I"(omas) = 1diag{0,0,1}. In quantum two-qubit state space there
exist pure states (called mazimally entangled states with a = b = 1/+/2), for which the correlations
can be two times larger and the correlation matrix reads I'" = fdiag{1,—1,1}.

However, there is still no evidence for making differences between the correlations in classical
and quantum physics. The correlation matrix has the following physical meaning. Its elements are
associated with the difference between the mean values

= [(ox ® o) — (o) o) (3.21)

and therefore they represent standard correlation functions between the measurement o, of the sub-
system A and the measurement o; of the subsystem B. For classical two-bit system there exists only
one (non-trivial) pair of local measurements, that can be represented by the matrix o3. It means that
all the other coefficients of I (except I'45) have no classical sense and must be zero in classical theory.
Quantum theory of two qubits is richer. There are infinitely many pairs of measurements, but only
nine of them are needed to characterize all correlation properties of quantum state. All the elements
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of I'" can take values from —1/4 to 1/4 (correlation coefficients). The extremal values of I'}; indicate
that the measurements are maximally correlated. The classical states of quantum system, i.e. those
of the form a|00){00| + b|01){01| + ¢|10)(1)| + d|11)(11|, exhibit correlations only for the pair of local
observables 0, ® 1 and 1 ® o,. For some specific states of a quantum system more pairs of local
measurements can be not only correlated, but even maximally correlated. In fact, one can say, that
there are more correlations in quantum than in the classical world and these “extra-correlations” got
a new name - entanglement.

The existence of the pure state entanglement between two systems is related to the presence of
correlations. To see the strength of these “quantum” pure state correlations we have to perform more
then just a single pair of local measurements. From the mathematical point of view the entanglement
arises as a result of the composition of two quantum principles: the superposition and the tensor
product structure used in the description of joint quantum systems.

3.2 The entanglement

As we could see, the entanglement is a property of states of two systems without any direct relation
to a certain choice of local quantum observations, whereas correlations have a sense even in this
case. Of course, entanglement has observable effects, but one needs to perform more pairs of different
measurements to be able to see them. Therefore, it is possible to use phrase “entangled couples of
observables”, but the concept of “entangled pair of observations” is undefined and senseless. In this
section we shall define the entanglement and we will show how it can be quantified.

We have argued that correlated states of quantum systems can be prepared by mixing the fac-
torizable pure states together. Does it mean, that if we mix together entangled pure states, we
shall obtain an entangled mizture? Consider a mixture of two maximally entangled states |[¢*)4p =
(|00) + |11))/v/2 with p = 1/2 (random mizture)

(00)¢00]| + [11)(11]) (3.22)

N =

045 = SN + Sl =

In the previous section we constructed the same state (maximally correlated classical state) by mixing
two factorizable pure states. The conclusion is, that the entangled miztures could be prepared only
by mixing pure entangled states, but not all such mixtures lead to an entangled mixture.

To be more precise, due to the non-existence of superposition between classical pure states, the
classical region of quantum states is smaller than the set of all separable (equivalently not entangled)
states of the form

0aB =Y prohi ® ol (3.23)
k

with pr > 0 and ), pr = 1. The mentioned absence of classical superposition in classical physics
implies that states are always composed like mixtures of pure and mutually orthogonal states. That
is, for two bits the most general state is a|00)(00| 4 b|01)(01| + ¢|10)(10| + d|11){11|. In what follows,
by classical states we will understand the states, for which the spectral decomposition results in
the convex combination of (mutually orthogonal) factorized states. The set of separable states is
much larger and contains all convex combinations of factorized states, even the convex combinations
of mutually non-orthogonal pure factorized states. In some applications the separable non-classical
states can have interesting non-classical properties. In principle, the boundary between the entangled
and separable states is sharp and it is only a technical problem how to determine that a given state
belongs to one of these two sets.

From the mathematical point of view the property of entanglement determines a new structure in
the set of joint states. This structure is related to the defined tensor product of the Hilbert spaces
representing the fact that the composite system consists of physically distinguishable subsystems.
Formally the Hilbert space of two qubits is only a four-dimensional complex Hilbert space. But the
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structure of the tensor product makes it rich and allows us to investigate the entanglement properties
of this space.

3.2.1 The structure of states of two qubits

The problem of the indication of entanglement is very difficult. Suppose you have a state and you
want to know whether it is separable, or not. Since the mixture of separable states is again a separable
state, the set of all separable states Ss.p is convex, unlike the set of entangled states Sen:. The set
of all states S(Ha ® HB) = Ssep U Sent is convex, t0o and Ssep N Sene = B, because the boundary is
sharp.

e PURE STATES »

A general pure state of four dimensional Hilbert space is parametrized by six independent real
parameters a, b, ¢ € [0,1], k,n,w € [0, 27]

|9) = pe|0) + ge™*|1) + re®’|2) + s|3) (3.24)

where s = \/1 — p? + ¢ + r2. Introducing the tensor product we can write |0) = [0)4 ® |0} = |00),
1) = |0)a®|1)p = |01), |2) = 1) 4 ®|0)s = |10), |3) = |1)4 ® |1)p = |11). Note, that such relabeling
of states does not correspond to any real physical action, but it reflects our knowledge, that the whole
system is composite. The correspondence between these two notations is given by the possibility to
write numbers in their binary form. Each binary number labels the usual basis of one qubit Hilbert
space.

Next, we shall formulate a very useful and important theorem, which is widely used in the theory
of entanglement .

Theorem (Schmidt decomposition)
Consider a pure state |Y)ap € Ha @ Hp of a bipartite system. It can be written in the form

d
W) aB =Y VAklbr)a ® [¢k)B (3.25)
k=1

where {|pr)a} and {|¢r) B} are orthonormal bases of Ha and Hp, respectively, and d = min{dim H 4,dim Hp}.
Moreover, the coefficients Ay, are positive and 04 = o = Y, ANi_, |k ) (P

Proof. Express the general state |[¢))4p in a product basis that consists of product vectors
{|k)a ® [l)B}, where {|k)4} is an orthonormal basis of H4 and {|l})p} forms an orthonormal basis in
Hp. That is,

dimHs dimHp

[¥)aB = Z Z zri|k)a ® [I)B. (3.26)

k=1 =1

Formally, we are allowed to represent the states of composite systems (expressed in product bases) by
suitable rectangular matrix X with complex elements x;. The change of a basis in one of the Hilbert
spaces, for example |k) 4 := uiy.|k') 4 in Ha, where uz,, forms unitary matrix U 4, corresponds to the
transformation [Y)ap = >, Tu kM) = 31 o Truiy [KHL) = 34, 24 |K)|1) where the elements
Tl = >, up T determine a matrix X' = U X. Transforming also the basis in the second Hilbert
space Hp using the unitary transformation Ug, we get X' = UsXUg with o, = 3, upzriuf.
The Schmidt theorem says, that we are able to choose such Uy and Up, that the matrix X’ is a
diagonal matrix, i.e. Th; = vV ApOppr.

To finish the proof we will use the singular value decomposition theorem. Fach matrix X can be
written in the so-called polar form X = UE = FU with unique positive operators E = VXX F =
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VXXt and an unitary operator U. Since E is positive, we can find a unitary transformation V, such
that E = VDV! and D is a diagonal matrix. It means, positive operators can be diagonalized and
moreover the positivity implies, that the diagonal entries of D are nonnegative. Thus, we get the
needed identity X = UE = UVDV! = WDV!. Putting W = U, and V! = Up we have finished
the proof of Schmidt decomposition theorem. ¢

Schmidt theorem implies that each state of two qubits can be written in the form

[¥)aB = ald)a @ |9)p +bl¢1)a © ¢1)B (3.27)

just by performing suitable local unitary transformation U = U4 ®U g and, moreover, a, b are real and
positive numbers. We only need to choose appropriate bases in each of the subsystems. Comparing
it with eq.(3.16) we find that the correlation matrix is diagonal

2ab 0 0
=21 0 -2 0 (3.28)
0 0 44

but the basis, in which this matrix is written has changed. Instead of o we have used the operators
Sy, defined as follows Sy = [6) (% |+]¢4) (@], S = —i(|#) (g |~ |¢+)(g]) and Sg := |@)(g|— |64} (6",
where |@), |¢+) represent the corresponding Schmidt basis. In conclusion, any pure state of two qubits
can be written in the form

b
04B = 04 ® 0B + %(Sl ® 81— 82 ®S;3) +a’h’S3 ® Ss. (3.29)

The entanglement described by I is parametrized and given only by one real parameter a. Hence,
any real function of a can be used to measure the entanglement. To reduce the set of possible functions,
we need to take into account specific properties of the entanglement. The function must be positive
and it can be zero only for a = 1, and a = 0. The maximal value is achieved by the mazimally
entangled states, i.e. a = b = /1/2. Moreover, since the parameter a determines the eigenvalues of
the reduced states p4,0p, we can define the entanglement measure with the help of these reduced
states (their eigenvalues). For example,

E(|YYaB) = S(0a) = —a’loga® — (1 — a?)log(l — a?) (3.30)
Ey(|¢)ap) := detoa = a*(1—a?) (3.31)
By($)ap) = 1-Trdh =a’(1-0) (3:32)

where p4 = Trp|Y)ap{¥|. We know that the presence of correlations in pure states is purely a
quantum feature. Therefore, we shall use the correlation function C,(A, B)

E(¢pap) :==25(0a) = —2Troalogoa (3.33)

as a measure of entanglement of pure states.

We shall see that in many applications of the information theory the entanglement plays a cen-
tral role. Predominantly, the maximally entangled states are of the main importance. How many
the maximally entangled states of two qubits do exist? Necessarily each of them has the Schmidt
decomposition |)ap = (|#)|@) + |¢)|¢))/v/2. The pure states in between the separable and the
maximally entangled states will be called partially entangled. Fix one of the maximally entangled
states, [¢*)ap = (J00) + |11))/v/2. Each of the two qubit pure states |®)4p can be obtained from
[ %) ap by applying a transformation

|®)ap = (Ae ® 15)[¢1)ap = (14 ® Bs)|[¢ 1) 4B (3.34)
where Ag,Bg are uniquely determined linear operators, i.e. Ag,Be € L(H). Put Ag = V2 ( : ’g )

then |®)4p = |00) + B|01) + 7|10 + §|11) and By = ﬁ( g g ) = AZ, where 7 denotes the
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transposition in the basis |0),|1) determined by Schmidt decomposition of |)*)4p. The state |®)ap
is maximally entangled if and only if Ag is unitary. One can find that the following important relation
between the Hilbert space scalar product and the Hilbert-Schmidt operator’s scalar product holds

(®|0) = %Tr(A‘;)A\I,). (3.35)

Each orthogonal operator basis {Sy} (satisfying the identity TrS;S; = 24y for k = 0,1,2,3), defines
an orthonormal vector basis in H4 ® HpB.

If we put Sg = 1, then necessary all other Sy are traceless. Since o-matrices are traceless and fulfill
the orthogonality condition, we get an example of such operator basis. The unitarity ensures that
the corresponding states are maximally entangled. Hence, we get an orthonormal basis of H4 ® Hp
composed of maximally entangled states . In particular,

B0)ap = 1O UI)am = [67) 4 = 7= (00) +11) (3.36)
[#0an = 01 @ Han = [6an = —=(01) +[10)) (3.37)
[®hap = 02 @110 4 = [67)ap = (01 = [10)) (3.38)

[Bahan = 03 @ 110 a5 = [07)am = —=(100) = |11) (3.39)

Any traceless operator can be expressed as a complex linear combination of o—matrices. That is,
Sy = 7i.0, where, in general, 77y, is a complex three-dimensional vector. According to the orthogonality
condition TrS;’cSl = 201 we get T}y = O [cf. Eq.(1.39)]. Any collection of operators Sg = 1,S;, =
fig.0 with k = 1,2, 3 and ny mutually orthonormal three-dimensional complex vectors, determines an
orthonormal basis in H4 ® Hp. Moreover, if the vectors 7ij, are real, then the corresponding basis
consists of maximally entangled states, because Sy = ;.0 are unitary.

e MIXED STATES e

We have already introduced a general state of two qubits, which is parametrized by 15 real numbers.
For pure states the question of entanglement and separability is in a sense trivial, because we do not
have any problem with classical correlations. The main problem of the quantification of entanglement
is how to separate the classical correlations from the quantum correlations. We need to find such
properties of states that are typical only of separable, or only of entangled ones.

For example, we know that if p4p is separable, then

1. S(ea) < S(eap) and S(ep) < S(0aB)
2. g:‘g%, or QZ;AB is positive operator

The first necessary criterion is not a very strong one, because there are also entangled states for which
these relations hold. The second criterion was introduced by A.Perez [18]. Let us remind that partial
transposition depends on the basis, but the eigenvalues of a partially transposed operator do not. It
was shown by Horodeccy [20] that for two qubits this criterion is also sufficient. It means that the
partial transposition of an entangled state is always a negative operator, and vice versa.

Can we somehow quantify the entanglement between two qubits? We have shown that for pure
states we can use the entropy of a reduced state. Unfortunately, this simple quantity cannot be used
for mixed states, because even the factorized states can have nonvanishing entropy of the subsystems.
So what to do? One approach is purely mathematical, where one tries to define functions that somehow
diminished the part of the state, which is classically correlated. For example, we can measure the
smallest “distance” between the state and the set of all separable states

Eqist(04B) = D(0,Ssep) :== min  D(gaB,EaB) (3.40)
£ABES

sep
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where D may not be a distance in a strict mathematical sense. In fact, it need not be symmetric in
the usual sense, but D(0aB,Ssep) = 0 if and only if p4p is separable.

Another approach is operational. That is, we use a physical process, for which we think the entan-
glement is crucial. Unfortunately, till today nobody has found a process that strictly discriminates
between classical and quantum correlations. The measures of entanglement E defined? must satisfy
some properties that are typical of entanglement. We shall formulate them at the end of this chapter
after introducing the set of all possible physical manipulations with quantum systems.

To quantify the entanglement we can exploit also the measures E(¢ap) defined for pure states,
where the degree of entanglement can be better understood. It is reasonable to require that the
measure for general states coincides with the known measure for pure states. In the two qubit case it
means E(ap) = S(04), or E(¢Yap) = det ga. For mixed states, pap, the entanglement measure can
be defined also in the following way

E(oaB) = min ATy (3.41)
0aB=, P|¥r)aB (Vi ;

where we minimalize over all possible decompositions of the state p4p into convex sums of pure states.
We shall call this measure the entanglement of formation. From the definition it is obvious that
E(pap) is zero if and only if the state g4p is separable.

Concurrence

For two-qubit system the problem of calculating the entanglement of formation has been solved by
W.Wootters [23]. He introduced the function called concurrence C, which determines the entangle-
ment of formation in the following sense

1-v1-C?

E = Hyin( 2

) (3.42)

To obtain the concurrence of the state p4p we must perform the following steps:

1. Time reversal

0aB = R = 00y ® 00 goy ® 0y, where (0 g)k = (04B)y (3.43)

2. Calculating the eigenvalues of R: /A1 > VA2 > VA3 > V4
3. Calculating the concurrence C = max{0,v/A1 — VA2 — VA3 — vV}

Example
Consider a state

a d e 0
@ b f O
0= | o« e 0 (3.44)
0 0 00
The matrix R takes the form
0 ef*+dc eb+df —2ed
1 0 ff*+bc, 2fb —(eb + df)
B=1 0 "Tacf ffebe —(ef*+do) (3.45)
0 0 0 0

and it has only two non-vanishing eigenvalues

A = Ff* +be+2/Ffbe (3.46)

2see for example article of V.Vedral and M.B.Plenio [14]
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and consequently the tangle (=square of the concurrence) equals

7(0) = [C(Q) = 2(f 1" + bc) — 2| £ f* = be| = min{4be,4f f*} (3.47)

To find the minimum let us assume that g is written as the convex sum of unnormalized vectors |¢;),
ie. 0 =73 .|¢;)(¢;]- Then the matrix elements [01)(01|,|10)(10],|01)(10],|10){01| of o will take the
formb =73 ,b7bj, c =3, cjcj and f =}, bjc;, respectively. We use the definitions b; = (¢;]01) and
¢; = (¢;]10). Our task is to compare the following two terms

be = (Y bib)(>_ chex) = [B(E (3.48)
j k

I (Dobie) (D cibw) = |b.a1 (3.49)

where we introduced vectors b = (by,...) and &= (ci,...). The Schwartz inequality asserts [b|?|&> >
|b.¢]? and therefore we have proved the relation

ff<be (3.50)
It implies that the tangle (= square of the concurrence) of g equals

7(e) = C* = 4f f* = 4/(01]¢[10)[” (3.51)

3.3 Entanglement and positive maps

Let us denote the set of linear mappings A : T4 — T by L(Ta,Ts), where T4, T denote the sets of
Hilbert-Schmidt operators. The element A € L(Ta,Tg) is positive, if it maps positive operators of T4
into the positive operators of 7g, i.e. A > 0= A[A] > 0. The map A is called completely positive,
if the induced map A,, := A ® Z,, is positive for all n € N, where 7, is the identity map on T with
dimHe = n, ie. Z,(C) = C for all C € L(Hc) = Te- In what follows, we shall put B = A and for
convenience we shall use the notation £(74) instead of £(T4,Ta). Let L1 (Ta) C L(Ta) be the set of
all positive maps and L.,(Ta) C L4 (T4) be the set of all completely positive maps defined on L(H 4).
Apply a positive map A4 € £4(T4) on a separable state oap = ., pro® ® of

oap = (Aa®Zp)[oas] = ZPk(AA[Qlfx]) ® 0% (3.52)
k

Obviously, the obtained operator ¢/y 5 corresponds to a separable quantum state, ¢’y 5 € Ssep. The
question is, whether the output operator ¢/yp corresponds to a positive operator also for initially
entangled states pap. If the map A4 is completely positive, then this operator is positive. However,
for positive and non CP maps the situation is different. Therefore, we can use them to probe the
entanglement. We shall see that for all positive non CP maps A 4 the separable states remain positive,
but some of the entangled states can be transformed into negative operators.

Consider the partial transposition T4. Without any doubts this transformation is linear and
positive. Transforming the maximally entangled state [¢)™) by the map T4 ® Zg we get the state

1

ok = Ta @ Ip)[lWH) (W] = 5

5 (3.53)

O = OO
_o oo

0
1
0
0

OO O

with eigenvalues A = {£1/2}. It means that the operator ga‘}} is not positive and, consequently,
the partial transposition indicates that the state [¢)*)4p is entangled. The partial transposition is an
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example of the positive non CP map. The relation between such maps and entanglement has been
studied (see for example [20], [11], [26] and references therein) in order to detect the entangled states.
Based on the result of Woronowicz in [19] the partial transposition can be used to completely identify
the entanglement in two-qubit systems. In a sense the partial transposition is the “only” positive
non CP map in this case. Unfortunately, this result does not hold for general systems [27], where the
positivity of the partially transposed state does not imply that the state is separable. Let us denote
the set of all positive non CP maps by V(Ta) = L4 (Ta) \ Lep(Ta).

Consider the set of positive operators A € Lpp(HA®HRB) on pure product states pap =Py, Qg y,
ie. Tr(APy, ® Q) > 0. The following set relations holds £ (Ha @ Hp) C Lpp(Ha ® Hp) C
Ls(Ha ® Hp). We have mentioned that the set of separable states Sy, is convex. The extremal
points are pure factorized (= product) states It follows that the operators A € L,,(Ha ® Hp) are
positive on all separable states gap € Sep, i-€.

Tr(pasA) >0, (3.54)

This characterization of separable states via elements of £,,(Ha ® Hp) is similar to the one with
positive linear maps £ (7). Let us define the set of positive non PP operators W = L,,(Ha @ Hp) \
Li(Ha ® Hp). These operators A € W are called entanglement witnesses, because their negative
mean values (TrpA < 0) indicate the entanglement. In what follows we shall show a one-to-one
correpsondence between the elements of V(7a, Tg) and Wy, g w5 -

Take A € L(Ha ® Hp) and define a map A € £(Ta,Tg) by the formula

Aloa]l ==Y D )V [Avy a0 Caa = D, Gaa (A)ab,arer [D)(V] (3.55)
a,a’ b,b’ a,a’,b,b’
where we have used the notation

04 = Oaar|a)(d’] (3.56)

aa’

A= S DA e la)(@ (3.57)

7 7
a,a’,b,b

with Appr g0 = Tr(|b)(V'|A[|a)(@']]) = (A)ab,a'r = (ab]Ala’d’). This map defines the one-to-one
correspondence J : L(Ta,Ts) = L(Ha ® Hp) between the operators and linear mappings. Note that

(abl(Aa @ Zp)[I¢ ") (@ F [l|a'") é D _{alAallk)(K[]|a) blk) (k|D)
k

= (A0 = 5 (A)aser (3.58)

where [ )4 = Y, |kk)(kk| and d = dimH 4. As a result we get the following expression for the
correspondence J

“A = (A e Tp)W )t ) (359)

Let us verify the positivity of the operator gpg = A4[04] providing that g4 > 0. In particular, for
all |¢) € Hp and pa € L4 (H4) we have

<¢|QB |¢) = Z ¢; Obb’ ¢b’ = Z ¢;Abb’,aa’ Qaa’ ¢b’

b .0’ b,b/
= Z ¢Z¢b’ (A)ab,a’b’ Qaa’
a,a’,b,b’
= TrA(ea ® |¢)(4]) (3.60)
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It is easy to see that the linear map A is positive, if and only if the operator A is positive on pure
product states. The restriction of the map 7 onto the set of positive maps transforms the set of positive
maps onto the set of positive operators on pure product states, i.e. J : L4(Ta,TB) = Lpp(Ha @ HB)
is again a bijection.

The complete positivity of A € L.,(Ta,Tr) implies that for all |¢)pc € Hp ® He and gac €
L4+ (Ha ® He) the following inequality must hold

0< Bo(W|(Aa®Zo)eacll¥)sc = Tr[(A ®@ Py)(0ac: ® [¥)Be, (¥])] (3.61)

where the last equality follows from the Eq.(3.60). The Eq.(3.59) determines the operator A @ P
(with Py = [ ) o,0,(¥T|) as an image of the map As @ Z¢ : Tac, = Tee, Zo : Te, = To,)
Consequently, the operator A®P_ must be positive on pure product states, i.e. AQP € L,(Hac, ®
Hpc,). Define the operator square root v/A by the condition vVAVA = A. Since P, = P isa
projector, the following identity holds A ® P, = (vVA ® P, )(VA ® P,). Let us rewrite Tr[(A ®

Py)[Y)apcic, (W] = (|A ® Pyly) and put [Y)apcic, = (3o, Yaclac)acy) ® (324 4%balbd)Bos,)-
Applying the transformation v/A ® P, we obtain the product state

\/K ® P+|w)ABC102 = Z ¢ac¢§;c\/K|ab>AB ® |¢+>0102

a,b,c

= (VA|x)a5) ® [¥T)csc, (3.62)

where [¢)e, 0, = % > i |kk)c,c, and |x)ap can be an entangled state of the systems A and B.
Consequently, we obtain that the condition of the complete positivity (Eq.(3.61)) takes the form

0 < Bo(¥|(Aa ® Io)[eacll¥) o =aB (x|Alx)aB (3.63)

It means that the operator A must be positive, i.e. A € Ly(Ha ® Hp). As a result we get that
T Lep(Ta, Te) = L4 (Ha @ Hp) is a bijection.

We have shown the one-to-one correspondence between the sets £ (T4, Tg),Lep(Ta,Ts) and
Lpp(Ha ® Hp), Ly (Ha ® Hp), respectively. Consequently, also the following one-to-one correspon-
dence holds J : V(T4,TB) > W(HAQ®HBE), i-e. the positive non CP maps can be used to characterize
the entanglement in the same way like entanglement witnesses. The separability of the state pap is
equivalent to the positivity of the operator (Ag ® Zg)[pap] for all linear maps Ay € V(T4,Tp). We
said, that for two qubits the partial transposition is a generic form of all elements of V(Ha,HB).
Therefore, the separability of two-qubit state is equivalent to the positivity of partial transposition.

3.4 Quantum operations

In this section we shall review all the possible manipulations we are able to perform on quantum
systems. In particular, any quantum operation results in the state transformation of the system.
That is, mathematically the operations are described by mappings S(H) — S(H). Any operation can
be divided into the following four elementary operations:

1.Measurements

Measuring the observable A = 3" aE(a) € L;(H) we obtain the following map My : S(H) = S(H)

0~ ¢ = Mald =) (TrE(a)0)E(a) - (3.64)

a
2.Unitary transformations
o o =U[p] = UpUT. (3.65)
3.Addition of uncorrelated ancilla

Consider the following situation. We have a quantum system g we want to manipulate. Consider we

41



have also some other quantum systems called ancilla prepared in the state £4. We can put these two
systems together and apply measurements, or unitary transformation on both of them. That is, we
realize a mapping A¢ : S(H) = S(H ® Ha)

o 0 =Agfo] =o0®¢&a - (3.66)

4.Tracing out the subsystem

Consider the reverse situation. We have a composed system A + B described by the joint state
04 € S(Ha ® Hp). The system (of our interest) A is described by the reduced state g4. That
means, we can define a map Ap : S(Ha ® Hp) — S(Ha) by the relation

0aB — 04 = Ap[oaB] := Trpoas (3.67)

All these quantum operations together form a general quantum operation, which can be realized on
quantum systems.

It is easy to see that all these maps Ma,U,A¢, Ap are completely positive and tracepreserving.
The question is, whether each tracepreserving completely positive map A : S(H1) — S(H2) can be
written as a sequence of these elementary quantum operations, or not.

In the previous section we have shown the one-to-one correspondence between the set of completely
positive maps Aa € L.,(74,Tg) and positive operators A € L4 (Ha ® Hgp) given by the relation
(Aa ®Z4)[P4] = A. Consider A = Py, where [¢))ap = >_, , Yas|a) ® |b) is a vector in Hap. Then
the induced completely positive map A reads

@) = GlAsleallt) =3 e Vastiloy
= > (M)pa0uar (M) = (MoaM)py (3.68)

where 04 = ), . Caa|@)a{a’| € L(Ha) and M = 3_ ;Yap|b){al : Ha — Hp. As a result we get that
the linear map Ay corresponding to each vector [i)) 4p takes the form

Ayloa] = MoaM'. (3.69)

Because the set of positive operators £, (H4®Hp) is conver, each positive element A can be expressed
as a convex sum of extreme points (i.e. operators corresponding to pure states P¢). Consider A =
> & PePy, . Then the corresponding completely positive map Aa is given by formula

Aaloa] =Y MyioaM] (3.70)
k

where My, == 3_, /Pr¥,|b)(a| are linear bounded operators H4 — Hp. Thus, we have obtained
the most general form of completely positive maps. The tracepreservity of Aa, i.e. TrAa[g] = Tro,
implies that ), MLMk = 1 4. Let us denote the set of all tracepreserving completely positive maps
A:Ta— T by Etcp(n;TB)-

In what follows we will see that every tracepreserving completely positive map A € Licp(Ta, Tp) can
be composed from the elementary quantum operations. Consider the map Ap given by the collection
of operators My, : H4 — Hp satisfying >°, MLMk = 1 4. Introduce the third Hilbert space H¢ with
dimHp = dimHc. Let |0)pe € Hp ® He be a pure state. It means we add an uncorrelated ancilla
BC to obtain a state p4 ® |0) pc(0|. Define the linear operator U : H4 @ Hp @ Hce = Ha@He @ He
by the formula

Ula)a ® [0)pc = Y _(Mgkla)a) ® |k) ac (3.71)
k
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where |a) 4 is a basis in H4 and |k)ac is an orthonormal basis in Hyg ® He. The transformation U
restricted onto the subspace spanned by vectors {|a)4 ® |0) o }o preserves the scalar product, because

4Bc(d'0|UTU|a0) apc = ZAC(k'|k)AC B<GI|MLMI¢|G)A
Kok

= ) Suw (0 [MEMila)a = (a'|(D_ MIMy)|a)a
I &

= daar =aBC (a'0[a0) apc (3.72)

It means the collection of mutually orthonormal vectors is transformed onto another collection of
mutually orthonormal vectors. The action of the operator U can be extended to the whole Hilbert
space Ha ® Hp ® Hc in a unitary way, i.e. it can preserve the scalar product for all states. Applying
this unitary transformation onto the state p4 ® |0) g (0| we get the state

04 ®[0)5c(0] = Y M, 0aMy @ |k’ ac (k| (3.73)
k,k'

Tracing over the systems A and C' we obtain the desired map A : T4 — T

04— > ML oaMTrac|k') (k| =) MLoaMy, = Aafo4] (3.74)
.k’ k

In conclusion, we have obtained that any completely tracepreserving map A can be carried out like a
composition of three elementary maps:

A=Ascolac o Apyge (3.75)

3.4.1 Local manipulations

In the context of entanglement the local manipulations are of importance . Let us suppose two spatially
separated subsystems A and B. The local operations are maps of the form A ® Zp, or T ® A. Tt
is important that these classes of operations commute. It means that Bob (Alice) does not know
about the existence of the second party. And, of course, they cannot say anything about their mutual
correlations, or about the shared amount of entanglement.

One must allow the parties to communicate to enable them to find the possible correlations and
entanglement. We have mentioned that in a sense the communication can help to “simulate” the
local joint observations and they are able to reconstruct their joint state. The question is, whether
the possibility of cooperation via the exchange of classical information could create, or destroy the
existing correlations and entanglement.

To create the entanglement we need to perform an operation that superpose the product states.
Since the local operations are of tensor product form, they are not able to create the entanglement.
It is straightforward that the classical communication does not change this property. Hence, the
local quantum operations powered by classical communication (LQCC) cannot increase the shared
entanglement. Using such operations we can only concentrate the entanglement. Consider we have a
number N of copies of the state pap, i.e. Alice and Bob share N pairs of equally prepared qubits. That
is, the whole system consists of 2V qubits and the corresponding state is pap = ®N:1 0A;B; = gfg .
By the concentration of entanglement we mean the possibility to transform this state into £ EPR pairs
(k < N) by LQCC, i.e. A: 055 — P$*, where P is maximally entangled state.

The case of classical correlations is different. On one side we cannot create correlations by local
operations, but if we have an opportunity to communicate, then the correlations can be established.
Consider two systems in the uncorrelated state g4 = |00){(00|. Creation of the correlations means
the possibility of mixing. We can use the sum of tensor product operations to do it. Let Alice perform
a measurement in | & z) 4 basis. Then she transmits the outcome of her measurement to Bob and
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Bob performs unitary transformation Ui. It corresponds to a linear map Alpap] = p+|+){+| ®
UL[0)(0[UL, + p_|-)(~| ® U_|0){0|UL, where pi = TrosP4, and U4|0)g = |+)p. For the pure
state [00) we get the state oy g = 3(| + +)(+ + | + | — =)(— — |), that is, the maximally correlated
state.

3.5 Summary

3.5.1 State space

general form 0AB = 04 ® 0B + D1y Vi Ok ® 01
factorized (product) states ~v;,; =0 0aB =04 ® 0B

correlated states Y 70 04aB #04® 0B

classical states S¢ o4 has factorized eigenstates
separable states Ssep 0aB = Y, Pr0% ® 0%

entangled states Sen 0AB # 2, kol ® 0f

3.5.2 Entanglement properties
1. Equivalence: E(Us ® UBQABU:'4 ® U}LB) = E(gaB)

2. LQCC: Entanglement between two parties cannot increase, if the parties are allowed to per-
form local operations and communicate classical information, only.

3. Sharpness: E(pap) = 0 if and only if the state gap is separable
4. Subadditivity: E(oap ® ocp) < E(0aB) + E(ocp)
5. Pure states: E(|Y) aB(¥|) = S(0a) where 04 = Trp|Y) ap{¢|

3.5.3 Conclusion

In this chapter we have introduced the notion of entanglement and we have showed its structural
meaning. Thus, what is the entanglement? It was defined as a pure quantum characteristics of
physical systems, that cannot be found in the classical domain. The reason is in different mathematical
structures representing the objects of both theories. We started this chapter by comparing the notions
of entanglement and correlations. We mentioned that it is not clear what such correlations represent
and therefore it is also questionable what the entanglement is.

This chapter did not concern all aspects of entanglement 3. We demonstrated properties of entan-
glement mainly of two-qubit systems. Most of the results can be simply generalized for the case of
more dimensional subsystems, except the uniqueness of the partial transposition. We left untouched
the problem of entanglement measures, which is still an open challenge. We only mentioned some
possibilities how to quantify the entanglement for pure states, where everything is “clear”, and we
introduced the concurrence (and tangle) that measures the entanglement between two qubits. Finally
we qualitatively described the behavior of entanglement under quantum operations and formulated
the properties it needs to satisfy. The whole chapter has been only a brief introduction into the huge
research area concerning the entanglement, which meaning and role is still not satisfactorily under-
stood and explained. We will turn back to the problem of entanglement in the last chapter, where we
will be interested in the behavior of multi-partite entanglement.

3 A nice review of the problem of entanglement one can be found in [11].
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Chapter 4

Quantum dynamics and
communication

By convention there is colour, ...
but in reality there are atoms and space
Democritus

Dynamics is a rule that describes a change of states of a system with the flow of time, i.e. the time
dependence of quantum states. Each dynamical transformation £ of states caused by dynamics has to
be an element of the set £(72) (= completely positive tracepreserving maps) that transforms the set
of states S(H) onto a subset Fg C S(H). In closed systems, i.e. systems that do not interact with an
environment, the dynamics should be reversible. Because of the reversibility it has to be a bijection,
i.e. Fg¢ = S(H). Moreover, the requirement of the mean values ((Py),) preservation (for all |¢) € H
and all g € S(H))

(Py)o = (€[Py])erq (4.1)

implies ( Wigner theorem) that £ is either unitary, or antiunitary. The evolution as a function of time
t will be denoted by &. We expect that for time ¢ = 0 the evolution is trivial, i.e. & = Z and from
the continuity of the evolution in time it follows that evolution of closed systems must be unitary.
However, open systems can evolve also in a different way as we will see later.

4.1 Dynamics of composite systems

Dynamics of two qubits is described by elements U (Ha ® Hp). Similarly to the case of observables
we can define two basic subsets of unitaries: local unitary transformations Ujpe(Ha ® Hp) = Uoe
having the form Uasp = Ug ® Up and global unitary transformations, i.e. Uuap # Ug @ Up €
Usp(Ha®Hp) = Uap. Any unitary transformation U can be written in the form U = exp(iA) with
A € L,(H). For example, for two qubits the general unitary transformation can be expressed as

(4.2)

Uap = exp |"L (sI].A ®1p+ (@d.0)®1p+14® (3.&') + Z’Yklok ® Jl)
kl

Unitary transformation is local only if the associated generator has the form A ® 1 + 1 ® B. Then
Uasp =U, @ Up = ¢ @ P = ¢ilAG1+13E] (4.3)
where the last equation is easy to get by applying the Baker-Haussdorf formula for commuting oper-

ators X, Y, eXtY = eXeY. Note, that Uy ® Up = A ® B # ¢iA®B_ Therefore, not every local
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observable induces local unitary transformation. Physically, local unitary transformations describe
the evolution of mutually non-interacting systems.

As we have already mentioned in Chapter II the time evolution of a closed quantum system is fully
determined by a specific operator H called Hamiltonian. The equation of motion is the Schrédinger
equation with the formal solution

0aB(t) =Uloan] == e "M pe™ (4.4)

where we put the Planck constant equals to unity, i.e. i = 1. That is, the time evolution of the isolated
composite system is represented by one parametric group of unitary transformations U; generated by
Hamiltonian Hyp.

4.1.1 Reduced dynamics

In this section we shall derive how the states of the subsystem g4 transform providing that their
joint system evolves in a unitary way. In principle, there are many situations where we are interested
only in the state of one subsystem (say A). For example, the evolution of open systems, or coherent
quantum manipulations (as we shall see later). The second system is still present, but for us it
is experimentally unreachable (we are not able to manipulate, or control it), or we are simply not
interested in its behavior. The transformation of the system A alone is obtained by the partial trace
rule

o4 = Eloa) = TrpUapoanUly, (4.5)

where p4p was the initially prepared state of both systems and p4 = Trppap was the original state
of the subsystem A only.

In these general settings the map £ can be written as the composition of the following three
transformations: (i) P : S(Ha) — S(Hasp), (i) U : S(Hap) = S(Hag), (iii) T : S(Hap) = S(Ha).
The map P is not well defined. It assigns a state gap = Ploa] € S(Ha ® Hp) to each state
04 € S(Ha), but there are many possibilities, in which such an assignment can be done, only the
validity of the relation Trppap = 04 is required. The transformation I/ is the unitary evolution of a
composite system A + B and finally, the map 7 corresponds to a partial trace, which describes the
removing of the second system from our further consideration. In a sense P is an inverse operation
to the partial trace 7, but as we know the partial trace is not a bijection. Let the composite system
be in a state gap = Y Rii,ap|k){l| ® |a){(B]. The general unitary transformation can be expressed in
the following form (see the next chapter) U =3 A, ® |u){(v|, where A, = (u|U|v). Then the
mapping £ reads

Eloal = Y RuapAualk)(I|AL, (4.6)
klaBu

There is one problem with the equation above. The same state o = >_,; ot |k)(I| with orr = 3, Rki,aa
can be obtained from many different joint states p4p and the mapping £ strongly depends on such
choice. Therefore, in order to obtain a well defined dynamics of our subsystem (valid for all the states
p4) we need to define the mapping P in a consistent way. Linearity is quite a general requirement on
any dynamics of quantum systems [34]. In order to preserve the linearity of £ = T o U o P we need
to define the assignment P to be linear. Note that &/ and 7T are already linear. Since we demand
the validity of P for any unitary transformation I, the only possible choice [33] is the mapping
P :oa— 04 &, where £ is a fixed state of the subsystem B. Therefore, it is standard to use
an initially factorized state of the systems A and B, when speaking about dynamics of open systems.
Such assumption (of initially uncorrelated particles) is even experimentally quite acceptable.

Consider that Ugp is given and the initial state is uncorrelated, i.e. pap = 04 ® o Then the
induced mapping

04 = Eloa] = TrgU4poa ® QBULB = Z MleAM};l (4.7
kol
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where (in spectral form) op = Y, Ax|k)(k| and My = /A, {l|Uap|k)s. This linear map & has
been obtained in the following three steps: (i) adding an uncorrelated ancilla in the state op, (i)
realizing the unitary transformation U4p and (i4i) tracing out the ancilla system B, i.e. £ = Ago
UoA,,. According to our discussion in the previous chapter it follows that the evolution mapping £
is necessarily a completely positive and tracepreserving map. The representation of £ by a collection
of operators {My} will be called Kraus representation. In what follows by a general dynamical map
& will be understood any mapping satisfying the following conditions

1. Linearity: £[(1 = X)o1 + Ao2] = (1 = A)E[o1] + AE[e2]
2. Tracepreservity: Tr€[p] = Tro =1
3. Complete positivity: € ® Z,, > 0 for all n € N

The complete positivity reflects physical situations, such that the system is entangled with another
system, before it starts to interact with the ancilla system B. The complete positivity of £ ensures that
the whole state of all three systems remains positive, that is, it remains still a quantum state. In other
words, if £ is not completely positive, then we are not able to find an induced unitary operation acting
on the joint Hilbert space of ancilla and the system under consideration. We shall call the evolution
maps & superoperators. Let us list the basic classification of possible types of superoperators:

e 1.Unitary superoperators.

This class of superoperators corresponds to the set of all unitary operators U defined on the
original Hilbert space H. The relation U[g] = UpUT defines the unitary transformations as
mappings on the set of states S(H). The set of unitary transformations I possesses all the group
properties according to composition of mappings. Only unitary superoperators are invertible.
Therefore, no other subset od superoperators (which is not a subset of unitary transformations)
can form a group. The number of fixed points, i.e. elements g of S(#), such that U[p] = o, is
infinite. namely, the fixed points are given by eigenvectors of U in the following sense. Every
convex combination of corresponding eigenvectors is a fixed point. We say that the set of fixed
points form a simplex with eigenvectors as extremal points. If the spectrum of U is degenerated,
then this set is more complicated.

e 2.Unital superoperators.
This class is characterized by its action on the maximally mixed state of S(H), i.e. 1. If the
transformation £ preserves a total mixture, i.e. £ [%]1] = 5]1, then & is called unital. It means that
such superoperators have one specific fixed point. In Kraus representation £[o] = >, MkQM};
the unitality is equivalent to the condition }_, MkM;'C = 1. It means that also the mapping
E'ol =2 ML oM, describes a regular evolution, but it is not an inverse map to £. Sometimes
the unital maps are called bistochastic. They form a convex subset of the set of all superoperators.

e 3.Contractive superoperators.

Let D(.,.) be a distance function defined on the set of all states S(H). For example, we can
use the trace distance D(p, ') := Tr|o — ¢'|. Each superoperator £ satisfying the property
D(&[g],&[0']) < kD(p,0") with k < 1 for all g,0' € S(H) will be called contractive. As a
consequence we get that € has a unique fixed point g; and repeated iterations EN¥ = Eo...0&
transform arbitrary initial state g into this fixed state oy, i.e. EN[g] = oy for all o € S(H) with
N — oo. We shall see later that the set of contractive superoperators is convex, too. Moreover,
it can be shown [30] that this set is dense in the set of all superoperators.

The evolution described by £ of a system A is physically caused by its interactions U 4g with the
external system usually called environment E. In the case when £ is unitary the interaction should
obviously take the trivial form Uy g = U4 ® Ug, but it is not always the case. It means the system A
and B can interact and still the evolution can be unitary. Here one needs to specify what we mean by
an interaction. We will say that two systems interact one with another, if the overall unitary evolution
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is not local, i.e. if the generating Hamiltonian does not have the form Hyp ZH, 1+ 1@ Hp. It is
easy to verify that the transformation Uap = Y, Vi ® |k)(k| (with V! = VZ and |k) being a basis
of Hp) is unitary and obviously non-local. If the environment B is initially in the specific state |k},
then system A evolves according to mapping g4 — Vi AV,Tc, i.e. in the unitary way. In the case of
unitary evolutions the purity of quantum states is preserved, but in all other cases the purity can be
changed in both directions. It is possible to evolve a system into the total mixture, or vice versa, the
total mixture can be transformed into a pure state.

4.2 One qubit’s superoperators

4.2.1 Left-right formalism

We shall introduce the so-called left-right (matriz) representation of superoperators. Let A € L0 (T,T)
and ¢ € S(H) C T2(H). We remind us that states form a closed convex subset of the Hilbert space
T2(H) endowed with scalar product (g|o) := Trpfo. For convenience, we shall denote the elements of
T2(H) by vector kets |g). In this notation the superoperators take a form of matrices with elements
Emn = (0|6]0,) = Tr(0} £]0,]), where the Hilbert space operators (="vectors”) |0,,) form an
orthonormal basis in T2(H), i.e. (01,]|0n) = dman.

In what follows, we shall choose the orthonormal basis of a qubit system consisting of o-matrices,
ie. O = \/ii]l, 0, = \%(Tz, 0, = %ay, 03 = %oz. Remind that o-matrices do not form an
orthonormal basis, because Troo; = 20y, but the operators @ do. Then the elements of S(#H) in
this basis have the form |g) = 21 + 7.5 = (1/V2,n4,ny,n.) = (no, ) and we will often use 7 to
denote the state. In this basis || = 1/2. Let us evaluate the element of general superoperator £.
Consider the realization of the transformation £ by operators {My}. Then

1 1
Eon = 5 ;TraoMkanM;rE = §Tr(; MLMk)Un = don
1 1
_ to b=
Emo = 5 ;TrUkaaoM = ETrUm(; MkMk) = (Zéjm
1
Emn = B ;TrakaanML =Enn (4.8)

where we defined the new real vector € and real (if operators Oy are hermitian) matrix E. For the
matrix corresponding to the superoperator £ we have

€= ( 215‘ 0; ) (*9)

where (7 denotes the transposed zero vector. From the mathematical point of view the superoper-
ators (in this basis) correspond to matrices associated with affine transformations on a real (three-
dimensional) vector space. Of course, not each affine matrix can be a superoperator, because superop-
erators must be linear completely positive and tracepreserving. The linearity follows from the matrix
representation. The tracepreservity is trivially ensured by the affine form, i.e. the first row implies
the preservation of the first element of density vector. We note that (in the chosen operator basis)
Tro = 2ng = 1. After the action of £ the state 77 evolves according to the rule

i i =é+ Ef. (4.10)

In the standard form ¢ = 11+ 7.6 — ¢ = £[o] = 31 + (€+ Eit).¢. To ensure that the final operator
corresponds to a density matrix the vector |7i'| = |€+ E7i| < 1 for all |7i] < 1. This condition puts
non-trivial requirements on the choices of E and €. However, this condition just reflects the positivity
of the transformation £. It is not easy to exhibit the complete positivity in this left-right formalism.
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The fixed points f are given by solving the equation &€+ Ef = f. Consequently, the formal solution
is f=(—-E)te
It is simple to rewrite the unitary superoperators U[g] = UpUT in this matrix form. We get

U:(é' 6;) (4.11)

where U is an orthogonal rotation in three-dimensional real vector space. There is one-to-one corre-
spondence between the special unitary transformations SU(2) and special orthogonal rotations SO(3),
but this bijection is valid only for two-dimensional Hilbert space. Such a bijection does not hold in
general. In particular, any unitary transformation U € SU(2) can be written as U, 7 = exp(iaf.d),
where a € R and 7 is a normalized three-dimensional real vector. Then the corresponding matrix U
of the superoperator U takes the form of the special orthogonal rotation Oy, 7, which is associated
with the rotation around the axis determined by # by the angle 2a. It is easy to verify the relation

1
U = §Tr [akUa,;alUL F] = 01 €08 20 + (1 — €08 20)rk Ty — EpimTm SiN 20 = Oaq 7 - (4.12)

The unitary transformation U of one qubit has two mutually orthogonal eigenvectors. The cor-
responding eigenstates are i and —# with the norm || = 1/2. Since & = 0 we get the condition for
fixed points U f = f Trivially for eigenevectors U (%) = £, i.e. they are fixed points of the unitary
map Y. Moreover, an arbitrary convex combination of them, f = Aff — (1 — A7, is a fixed point of
U, too. Let us remind the Bloch ball representation of the states of a qubit. Mutually orthogonal
eigenvectors correspond to antipode points on the boundary of the Bloch ball, i.e. on the surface of the
Bloch sphere. The line connecting these two points represents the convex set of all fixed points of U/.
Since the eigenvectors are opposite, this line contains also the total mixture 7 = 1 (7@ — ) = (0,0, 0).
Unitary transformations U/ leave the points lying on this line unaffected. For unital maps we obtain
the superoperator £ of the same form, because in this case )", MkM;rc = 1, too. Therefore, & = 0.
But now, U is not an orthogonal rotation.

Let us consider a d dimensional Hilbert space H. and let ©; be the orthonormal basis of the
Hilbert-Schmidt space T2(#H), i.e. k=0,...,d*>—1and (04|0;) = di;. The constraint that O = ﬁ]ld
ensures that the superoperator £ will have the same form as for the qubit. In this notation the states
S(H) have the form g = %]ld + 171 - ©, where all O, are traceless. If, moreover, O are hermitian, then
i is a real d> — 1 dimensional vector. The basis of 75(#) with traceless and hermitian operators Oy
(except the case of ©¢) always exists, because they form generators of the Lie algebra su(d). And we
know that such Lie algebra forms a d?> — 1 dimensional real linear space. In analogy with the qubit
we can define the action of the superoperator £ in a matrix form &[p] = €[] = A’ = €+ Efi, where E
and € are defined as before (see eq.(4.8)). Again, we get the superoperator as a specific affine map on
vectors i € R4 ~1. Let us find the most general unitary map & with respect to the Hilbert-Schmidt
scalar product between two elements o, g given by

d?-1
1 = 1 = 1
(0§ = Tr(E]l + 7 @)(E]l +m.0) = ﬁTr]l + Z nemTrO;,0;
k=1
Lo
= 3 + 7.m (4.13)

where we used Tr©;0; = dy;. Then (€[g] | £[¢]) = % + (€+ E).(€+ Em) and
(€+ ER).(€+ Em) = i.m (4.14)

is the condition of unitarity of £. Note that 7.7 is the standard scalar product in R’ ~1. For unitary
mappings U the induced vector € = 0 and the unitarity condition implies U~! = U”, because the
space of vectors 7 is real. As a result, to each unitary transformation ¢/ on the Hilbert space H it
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corresponds an orthogonal rotation U defined on RY -1, However, the opposite implication (except
qubit) does not hold, because of the inequality u(d) = d*> < % +1 = o(d?—1) that compares
dimensions of unitary transformations and orthogonal transformations.

We turn back to the qubit case. It is now easy to illustrate the actions of unitary superoperators on
the Bloch ball. They correspond to three-dimensional rotations of this ball around the axis determined
by the line connecting the eigenvectors of the original operator U. Since the basis of o—matrices is
not orthonormal, but Troo; = 20y, for the Hilbert-Schmidt scalar product in this basis we obtain

3
1
(0l6) = ZTrJl + Z ngmyTrogo; =

1
5t 27.m (4.15)
k,l=1
Let the distance D(.,.) be given by the trace distance, i.e.
D(p,&) := Tr|o — | = Tx|(7@ — m).¢| = Tx|F.5| (4.16)

where we put 7= 7 — m. Note that the operator 7.4 is selfadjoint and its eigenvalues are Ay = %|7].
It means D(p, £) = 2|]. If we transform both states g, o according to the map £ = (€, E) the distance
between them changes

D(Elg], £[E]) = 2|+ Efi — & — Ei| = 2|EF. (4.17)

It means that the contractivity of £ is equivalent to the contractivity of the transformation E.
Another important property of the trace distance is its non-increasing under tracepreserving com-
pletely positive maps &, i.e.

D(&[a], €[¢]) < D(e,§)- (4.18)

To prove this inequality we need to consider, that the operator ¢ — £ is still selfadjoint. Every
selfadjoint operator can be expressed in the spectral form. Since it is not necessarily positive, we
define two positive operators X and Y such that ¢ — & = X — Y and [X,Y] = 0. It means that the
eigenvalues of X are positive eigenvalues of 9 — &, and Y has originally negative eigenvalues of ¢ — &,
but taken with positive sign. Then the trace distance Tr|p — £| = Tr|X — Y| = TrX + TrY. Without
absolute value we have 0 = Tr(p — §) = TrX — TrY. Hence D(p, &) = Tr|o — £| = 2TrX. Moreover,
we can write

D(p,§) = 2mr2’Lx Tr[P(o — &)] = 2TrX (4.19)

where P = Pt = P2 is a projector onto a subspace of H. The proof is given in the following steps

D(p,§)

2TrX = 2Tr€[X] > 2TrPE[X]
2TrP(E[X] — £[Y]) = 2TrP(E[o] — £[E])
D(€[el, €1€]) (4.20)

where in the second equality the tracepreservity of £ we used.

Using this distance we can show that the set of contractive superoperators is a convex subset of
the whole set of superoperators. In particular, giving two contractive superoperators £ and &2, then
also £ = M1 + (1 — V)&, is a contractive superoperator. Since the trace distance is induced by the
trace norm, i.e. D(p,&) = |0 — &||1 := Tr|o — &|, we can write

D(Elel, £[€]) [I€[e] = E[E]llr = [[A1le — €] + (1 = M) &Ele = €Ik
All€ile] = Ef€][l + (1 = N)||E2[e] = &8I
[Mer 4+ (1 = N)k2]D(g, &) = kD(p, &)

v

INIA
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where k = Ak1+(1—A)ka < 1 and k1 < 1,k < 1 are the contractive coefficients for &1, &, respectively.
As a result, we get the convexity of the set of all contractive superoperators. Moreover, the fixed point
fof £ is given as the sum of fixed points fi, f; of superoperators &1, &,, i.e. f_'z )\fl +(1- /\)f;

Next, we shall show, that also the composition & o & of two contractive maps &1, is again a
contractive map. We have argued (for the qubit) that the contractivity of a map &£ is equivalent to
the contractivity of an induced matrix E. The composition of two affine maps results in the affine
transformation with € = €; + E1€> and E = E; Es. That is, to show the contractivity of £ = & 0 &
it is enough to prove the contractivity of the matrix Ey E5. Since in general |Ey EqF] < ||EvEs|| - |7 <
[|E1]| - ||E2|] - |¥] and ||E1|| = k1 < 1, ||E2||] = k2 < 1, we obtain that also ||E|| < kik2 < 1 and
|EF] < |F]. Therefore, the composition of two contractive maps is again contractive. To specify a new
fixed point f is quite a difficult problem and according to the knowledge of the author such solution
is not known.

4.2.2 Examples

1.Pauli superoperator
Define the set of operators My = /1 — pl, My, := ,/pror where p = p; + p2 + p3. They trivially
satisfy the normalization condition. In the left-right form we get for the Pauli superoperator P

1 0 0 0
0 122 +p3) 0 0
P=10 0 1—2(p1 +ps3) 0 (4.21)
0 0 0 1—=2(p1 + p2)

It means that the initial state ¢ = 7 is transformed into the state ¢’ =7’ = (1 — 2(pa2 + p3))n1, (1 —
2(p1 +ps3))n2, (1 —2(p1 +p2))ns). The first column of matrix P indicates, that Pauli superoperators are
unital. Their action corresponds to a contraction and a rotation of the Bloch ball, but the center (total
mixture) remains preserved. Note that not each superoperator £ with the diagonal (with respect to
some basis) matrix E and a zero vector € = 0 is the Pauli superoperator (for example see amplitude
damping channel). The condition for fixed points implies (p2+p3)fi =0, (p1+p3)fo =0, (p1+p2) fz =
0. In specific cases, if at most one p; = 0, the only fixed point is the total mixture, i.e. f =m =
(0,0,0). In this case the Pauli superoperator is also contractive, since D(P[g], P[£]) < kD(p,&) with
k=1—2min{p; + p2,p1 + p3,p2 + p3} < 1. In the specific case when p; = p» = p3 = q € [0,1/3] and
p = 1 —3q, the Pauli superoperator is called depolarizing superoperator. Such superoperator describes
the pure (and symmetric) contraction of the Bloch sphere with the contractivity parameter 1 — 4q
and the final state is i’ = (1 — 4¢)7i. If we put p1 = p» = 0 and p3 = p, we get the so-called z-Pauli
superoperator.

2.Phase damping superoperator

Let us introduce this class of superoperators C,, by the relation

err Gl =-posn( 0 0 )= (o, P (1.22)

where g, are the elements of the input state o. It is easy to see that the iterations of this map
transform each state into its diagonal form in a preferred basis (in our case |0),[1)), i.e. o' = CIJ,V [o] —
diag(goo, 011)- This evolution is typical of decoherence processes, because the quantumness hidden in
the superposition principle vanishes together with the off-diagonal elements in a given basis. In the
left-right form we obtain

1 0 0 0
o 1-p 0 o0

=10 o 1-p 0 (4.23)
0 0 0 1
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Comparing this matrix with the previous example we see, that if we put p3 = p/2 and py = ps =0
in the Pauli superoperator matrix P, then we will get the phase damping superoperator with My =
14/1—p/2 and M; = \/p/_20z being the corresponding operators in the Kraus representation. Using
the previous example we can conclude, that C, is unital and the fixed points read f = (0,0, 2) for
all z € [-1/2,1/2]. It reflects the fact that diagonalized matrices do not decohere. Let us note
that the presented phase damping superoperator is exactly the z-Pauli superoperator and causes the
diagonalization in the eigenbasis of the operator o,.

3.Amplitude damping superoperator

Previous example of the Pauli superoperator described the evolution, in which pure states evolved into
mixtures. The amplitude damping superoperator A describes in a sense the “opposite” transformation,
where the mixed states evolve into the pure state |0)(0|. If we define the superoperator A, by Kraus
operators My = |0)(0[ + /1T — p|1)(1] and My = ,/p|0)(1]|, we obtain the map

1 0 0 0
10 1—p 0 0
A, = 0 0 JT=7 0 (4.24)
p 0 0 1-p

that serves our purposes. Applying such transformation on 7 we obtain @’ = (n1+/1 — p,n2¢/1 — p,p/2+
(1 — p)ng), because A = (a@, A) with the vector @ = (0,0,p/2). Since

D(Ayla], Apl€]) = 2|AM =2|(r1y/1—p,r2/1 —p, (1 —p)r3)|
< 2y/1—pll = \/1—pD(e,¢) (4.25)

and /1 —p < 1 (if p # 0), we can conclude that amplitude damping superoperator is contractive. The
unique fixed point fis given by the equation @+ Af = (VT = pfi, VI — pfa, B+(1=p)f3) = (f1, f2, f3)-
To fulfill such condition we need to put fi = f> = 0 and then f3 = 1/2. Hence, the fixed point of A4,
is the state

0f = %]l+f.&‘= %(]l—i—ag) — |0)(0) (4.26)
and the Banach theorem implies that the iterations of the superoperator A, map any initial state into
this fixed point. Thus, finally the whole Bloch ball transforms into the single pure state |0){0|.

To each state £ there exist many contractive superoperators C¢ with the state £ as a fixed point,
ie. Cév [0] — & for all states p € S(H), if N — co. We have seen that some of the Pauli superoperators
ensure the convergence to the total mixture. Hence, in that cases we can put C 11 = P. The example of
amplitude damping superoperators describes the possibility how to transform all the states g into a pure
state [1)(1|. If we change |0) = [+)) and |1) = |¢)1), we obtain the amplitude damping superoperator
Ap(¢) transforming every state g into the state [¢). It means Cy = A,(¢). The above example of the
evolution of all states to a single pure state (ground state) |0)(0|, i.e. any transformation C|gy(o|, can
be used to describe the exponential decay process.

4.3 Quantum dynamical semigroups

In this section we shall pay attention to the explicit time evolution of quantum states. At any time
t the state transformation of the system corresponds to completely-positive trace-presereving (CPT)
map &. That is, the time dependency of the evolution is associated with a trajectory (one-parametric
subset) drawn in the space of all possible CPT maps. Consequently, any one-parametric subset could
be in principle considered as time evolution, but it is not the case. We know that for the isolated
systems the time evolution is driven by the Schrédinger (or von Neumann) equation

0¢ = i[H, o] (4.27)
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where H is the Hamiltonian of the system. Note that the existence of such equation of motion is
an independent postulate of quantum theory. As a result of this postulate (solving this equation)
we obtain that any time evolution is represented by one-parametric set of unitary transformations i
with the following properties:

L limy ooy =T
2. Uldy = Uy for all ¢,s € R

These two properties mean that the evolution U; of isolated systems corresponds to a one-parametric
group of unitary transformations.

The evolution of open systems is caused by the interaction of the system with its surroundings,
but together these systems evolve in a unitary manner. This assumption results in the following time
evolution

ot = &lo] = Trpli[oas] (4.28)

where g4 p is the initial state of the system and the environment such that ¢ = Trgpag. The overall
unitary evolution U; is induced by the hamiltonian H = 1 ® Hg + H4 ® 1 + H;,,;- Note that the
initial state p4p is really arbitrary. However, to be able to describe the evolution &; only in terms of
CPT maps, we have to assume that the initial state is factorized. i.e. pap = 0 ® £.

The properties of U; imply that & begins with the identity, i.e. lim; ,o4 & = Z, but the second
(group) property of U; is valid for & only in specific cases. Obviously, it is valid whenever &; is unitary
during the whole evolution, i.e. &[g] = e Hpe for all . In general, the inverse transformation
& ! is ill defined, because its derivation from I, ! is based on the assumption that the initial state is
correlated. On the other hand, we can derive the inverse transformation without any relevance to the
system B. We can define £ ' by the relation £ '& = £&;' = Z. In terms of left-right formalism
this corresponds to finding an inverse matrix.

In the orthonormal operator basis O, the time evolution is described by the matrix & with time-
dependent coefficients. For the specific choice of basis with @y = ﬁ]l the first row of the matrix

is fixed, i.e. Eoo(t) = 1,Ek(t) = O for all £. The question of the existence of the inverse matrix is
equivalent to the property det& = det £y # 0. Due to the continuity of &£ the determinant is a
smooth function of time and cannot vanish suddenly. Only for countable number of times ¢ it can
happen that det &, = 0, but these points can be excluded from the evolution (set of zero measure).
However, the main problem is not the reversibility of the matrix £, but the physical reversibility of
the evolution. Note, that matrices & can be mathematically understood as transformations of the
selfadjoint operators, but if we restrict their action only to quantum states S(#), then the inverse
transformation &; ! can easily transform density operators into unphysical quantum states.

In the Bloch sphere for a qubit (d = 2) the time evolution corresponds either to rotations (unitary
transformations), or to compressions of the sphere combined with rotations and shifts. The whole space
of selfadjoint operators with unit trace covers the whole three-dimensional real vector space. That is,
the inverse transformation of £ exists in most cases. On the other hand the inverse of compression is
expansion and the expansion of Bloch sphere results outside the original boundaries of Bloch sphere.
Therefore, inverse transformations lead to unphysical situations and they are “physically senseless”.
Ouly the rotations (unitary transformations) can be reversed. As a result we get that only for unitary
& their restriction to the set of states S(H) can be reversed. Consequently, the general time evolution
of open systems is irreversible. To make it reversible one needs to use the environment as well and
make the inverse operation th_l on a larger system.

Likewise the classical case the irreversibility reflects our lack of knowledge about the details of the
evolution. Irreversibility will disappear if we consider also the environment in our description, or if
we define the inverse transformations £~1 only on the subsets Sg = £[S(H)] of the state space S(H).
Then the evolution will be invertible, whenever the inverse matrix exists. Specific quantum operations
& for which the inverse matrices £~! do not exist are those that map the whole state space S(H) into
a single fixed point, i.e. £ : p — & for all p.
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For the open systems we often use the concept of a dynamical semigroup, which reflects the notion
of irreversibility in the following sense. Instead of a group structure of the time evolution the set of
superoperators £ possesses a semigroup structure. That is, the inverse of & may not be contained
in this set. This requirement relaxes the second property of one-parametric group and defines the
one-parametric semigroup

1. limt%0+ gt =7
2. s =Eps forallt,s >0

It can be shown that general equations of motion generating this type of dynamics has the Lindblad
form [35]:

0t = Gloe] = i[H, o¢] + Z Cap ([6(1) thL] + [Oq0t, @)L]) (4.29)
a,B

where 0, = QI TrO, = 0, Tr0,05 = 45 for @, 8 = 1,...,d> — 1 and the coefficients c,5 form
positive hermitian matrix.
Differentiating the time evolution represented in the left-right form, i.e. g¢ = &[0o], we formally
obtain the following left-right expression for the generators G

ot = Efoo) = E&E7 o) = G=E&T (4.30)

In the specific (but standard) choice of basis (@g = 1 and for k = 1,...,d%> — 1 the operators O
possess the properties mentioned above, i.e. they are traceless, selfadjoint and form an orthonormal
basis of the operator space) these generators take the form

G= ( 2, %T > (4.31)

In what follows we will discuss the case of qubit in detail.

4.3.1 Qubit

The qubit is the most simple example of a quantum system when the dimension of the corresponding
Hilbert space H is two, i.e. dim(#) =2 . The vector space of all hermitian operators A : H — H is
four-dimensional N2 = 4 and every basis has four elements oq,01,02,03. According to the previous
section instead of considering an arbitrary basis we will use a very specific one. The first element
of the basis is the identity operator o9 = 1 and o;,j = 1,2, 3 are Pauli operators that are traceless,
selfadjoint and mutually orthogonal, i.e. Troo4 = 2§ (for all j,k = 0,1,2,3). In order to normalize
the Pauli operators properly, we must put ©; = o,/ v 2 (j =0,1,2,3). However, the Pauli operators
are very well known and extensively used. Therefore, we shall use them too. If we redefine the operator
scalar product

(AB) = %TrA*B (4.32)

then the general state of the qubit takes the form

1/2
aq
a2
a3

1
0= 5]1 + Zajaj & Ty = (4.33)
J

with a; = 1 Trgo; and everything above remains valid.
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Consequently, any evolution of qubits, which has the properties of a dynamical semigroup, can be
written as

3

. . 1
o= —i[H, o] + 5 > ik ([0, 000k] + [0 01, 94]) (4.34)
J,k=1

where H = 2321 hjo; and h; are real parameters. Moreover, the hermitian matrix c¢;; can be
rewritten as cj = djr —iej, where djp = 3(cjr+cp;) is a real symmetric matrix and ejy, = i3 (cjr—cx;)
is a real antisymmetric matrix. The differential equation Eq.(4.34) takes the form

0 0 0 0 0 1/2
0:61 _| 910 911 912 913 o1 (4.35)
a2 g20 g21 g22 9g23 a2
a3 g3 931 932 933 Qs

where the coefficients g;; of the generator G can be calculated directly from the Eq.(4.34) and can be
expressed in terms of the parameters c;; and h; as follows

1
9ik = (95|Glox) = 5Tro;Glow] (4.36)
which reads
1
ik = 2Zl:€jklhl + i(ckj +cjk) — 21201153'1: (4.37)
gro = 2i Z €j1kCaf (4.38)
il

More explicitly, the matrix G can be expressed using d’s and e’s

0 0 0 0
4623 —2d22 - 2d33 2d12 - 2h3 2d13 + 2h2
4esy 2d19 + 2h3 —2dq1 — 2d33 2ds3 — 2h
4612 2d31 — 2h2 2d32 + 2h1 —2d11 — 2d22

One can derive also the inverse relations. If the generator G is given in the left-right form then the
coefficients d’s, e’s and h’s can be expressed as functions of g’s

— 932—923 — 913—931 — 921—gi2
hy = 4 ha = 4 hs = 1

dyy = —922—933+911 diy = g12+921
- 4 - 4
don = —911—933+922 dog = 923+932
4
d __ —g911—g22+g33 d _ 13i 31
33 = I 13 = 1

For a qubit we have derived the relation between two different expressions for generators. Using this
relation we can switch between these two expressions at any time. It is important to note here that
this relation enables us to exhibit not only dynamical semigroups, but also time evolution of qubit in
the Lindbland-like form. In this general case the coefficients c,3 will not be constant, but will depend
on time. In this way we can derive more general master equations describing not only Markovian
dynamics.

95



4.3.2 Example

Consider the controlled dynamics, where qubit is coupled to a harmonic oscillator and the Hamiltonian
evolution is given by the following rule

U, =) e @) (| (4.39)
=0

Then the evolution & of the qubit in the left-right form is given as

1 0 0 0
o s g0 o

“=1 0 = 70 0 (40
0 0 0 1

where f(t) = 32, |aj|” cos 2wjt, g(t) = 3, |a;|? sin 2w;t and the initial state of the harmonic oscillator
is |E) = > ajrj). Calculating the generator G of this dynamics we can use the derived formula

G = &&7! to obtain

0 0 0 0

1 0 ff+99 —fg+49f O
G=—" ! : : A 4.41
P92 | 0 +fg—gf ff+g9 O (4.41)

0 0 0 0

and consequently, the master equation reads
. _ . af—1fg ff+99

=i 19 5 o) - 2 (5 00, — 4.42
Ot ? 2(f2 + gz) [U Qt] 2(f2 + 92) (0 0o Qt) ( )

4.4 Quantum homogenization process

Suppose, we have a qubit in an unknown state gg and many qubits prepared in a state £. Let the
number of them be N and call them reservoir R. We shall call the single qubit in the state gg a system
qubit. The system qubit evolution is driven by its interactions with the qubits from the reservoir and is
described by the unitary transformation Ugg. Suppose the mutual interaction is composed of bipartite
qubit-qubit interactions. It means, the system qubit interacts always only with a single qubit from
the reservoir. Thus, the interaction has the form Usg = Ug; ® 1\ ;, where j denotes the j—th qubit
from the reservoir and R j is the reservoir without the j-th qubit. If the total number of interactions
between the chosen qubit of the reservoir and the system qubit one at most, then the evolution of the
system is described by the superoperator 86’“, where k is the number of realized two-qubit interactions
and & is the superoperator induced by two-qubit unitary transformation Ug; € U(Hs ® H;). It
means

Efos] = 0d = Tr;Usiof ™  &,UL, (4.43)
where ggkfl) is the state of the system qubit after the (k — 1)-th interaction. Note, that a collision
model always stands behind the powers of a map £¥. To be able to realize powers of any superoperator
& we need to have the ancilla prepared in a factorized state. The unitary transformation (describing
the interaction process) must have the form of sequentially applied unitaries between a single object
from the ancilla and the evolving system (see Fig.3.1).

Let us now formulate the homogenization problem: After the evolution we want the system qubit
to be described by the “same” state as the original reservoir qubits. Moreover, we do not want to
change the states of the qubits in reservoir. Mathematically, we are interested in transformation
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Figure 4.1: Collision model of quantum homogenization.

PRE®... Q& = ERER...®&. But due to the well known fact of the impossibility of quantum cloning
[31] such transformation is forbidden. Thus, we shall formulate the problem in a different way. The
mentioned sequence of two-qubit unitary transformations induces the superoperator Egk[gs]. After this
transformation we demand that the system is transformed into the state £s, but simultaneously the
states of reservoir qubits change only little. It means that we will take into account some inaccuracy.
Let us characterize our approximation by a real parameter § > 0. Then by the homogenization we
mean the following

D(&f[el,€) <6 and  Vj D(§,€) <9 (4.44)

where D(.,.) is a distance function and §j, = Trg[Ugsros ® §Uf5k] is the state of k-th qubit from the
reservoir after its interaction with the system qubit. Note that qubits in the reservoir are labeled by
its order in the sequence of interactions. The unitary transformation Ugg of the whole system takes
the form Ugg = Uy ... Uy with Uy = Ugg ® 1g\;. Our aim is to find the unitary transformations
that lead the system to become “homogenized” with the reservoir.

We assume that the homogenization is independent of the initial state of the system qubit (g) as
well of the initial state of qubits in reservoir (£). Moreover, if the system qubit is in the same state as
the reservoir qubits, then the transformation U acts as follows

Trs(UE®@EU) =¢ (4.45)
Tr;(UE®EU) =& (4.46)
Let us first discuss the case of pure states. If £ represents a pure state then the condition (4.45) says

that UE ® €U = £ ® £, where £ needs to be determined. However from the second condition (4.46)
it follows that U¢ ® €U = & ® € where & is unknown. Putting the last two results together we
obtain that

Ut U =¢w¢, (4.47)

for any & representing a pure state. From here it follows that the unitary transformation U acting on
the joint Hilbert space H ® H must be of the form

U: [y) @ [¢) = e|y) @ 9), (4.48)

where the parameter ¢ is independent of the state |¢)). Therefore, the action of the unitary trans-
formation on the symmetric subspace of H ® H is fixed up to a phase factor e*?. Neither of the two
conditions (4.45) and (4.46) nor the condition (4.48) tells us anything about the action of the unitary
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transformation U on the antisymmetric subspace of H ® H. This means that the action of U on the
antisymmetric subspace is arbitrary. However, in the case of qubits the antisymmetric subspace is
one-dimensional, and we can proceed further. Because the antisymmetric subspace is one-dimensional
and invariant under the action of the unitary transformation U, we have

U([9)[*) = [ H)w)) = e (I¥)l™) = [ )1w)) (4.49)

where 6 is a constant depending on U. Now the transformation U is given by the equations (4.48)
and (4.49) up to two constants ¢ and 6. If we define the unitary operator U’ to be

U’ = expi(-0-9)/2 U,

then equations (4.48) and (4.49) give us

W) S 02y )
[yty — [y lw)) D OO (lp) gty — ) -

In a more convenient way we can express this unitary transformation U’ with the help of the swap
operation

S = |00){(00] + [11)(11| + |01)(10| + |10)(0L]. (4.50)
Applying it on factorized operators we get
So®&eST =¢w@op. (4.51)
If we define 1 := (¢ — 0)/2, we can rewrite the unitary transformation U’ in the form
U’ = P(n) = cosnl +isinyS. (4.52)

We shall call the unitary transformations P(n) as the partial swap. We can conclude that in the case
of qubits, the partial swap is the only possible operator that (for certain values of 7)) satisfies the
conditions of homogenization (4.45) and (4.46).

After a single interaction facilitated by the partial swap we find the system qubit and the first
reservoir qubit in the states

0F = &lo¥ =20 + 5% + ics[¢, o] (4.53)
& = 520 + ¢ +ics[of), €, (4.54)

where we put ¢ := cosn and s := siny. Applying the sequence of k partial swap operations we obtain
the reccurence relation

o) = of Y + 8% +icsle, o V) (4.55)
& = s%d 7V + e +ics[of Y ¢, (4.56)

Denote ¢ = 7 and ¢ = t. Since in the left-right form the partial swap induces the map @ — @' =
c*il + s>t — 2cst x i, the superoperator & can be represented by the following matrix

1 0 0 0
e | 25, c? 2cst,  —2csty
bg=&p= 2s%t, —2cst, 2 2cst, (4.57)
2s%t, 2csty  —2csty &
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Hence & = (s°t,T). Let us calculate the modification of the state distance caused by the evolution
Ee

4|T7? = 4(c*|F? + 4822 |F x )
4|72 c?(c? + 4s2|t]% cos B)
42|7? = 2 D? (o, 7) (4.58)

D?(Elal, &[7))

A

where § < 7 is the angle between vectors  and 7. The inequality holds due to the facts that || < 1/4
and ¢? + s% cos 8 < 1. Since we have shown that D(&Jo],&[r]) < ¢D(o,7) and ¢ < 1 (except the case
of n = 0), it follows that & is a contractive superoperator. We need to find the fixed point gy of our

superoperator. The condition s%f + ¢2 f — 2¢st f = f is fulfilled for f = {. That is, the fixed point
of superoperator & is the initial state of the reservoir qubits £ and the convergence of the state of
system qubit to the state £ is assured by the Banach theorem.

Of course, not every partial swap operation satisfies the original conditions of homogenization
(4.44) with the defined approximation §. We have ensured the convergence of the system qubit, but
we have not considered the states of reservoir qubits yet. Taking into account the success (parametrized
by §) of the homogenization process, we need to adjust the parameters 7 of the partial swap operation
and the number of required interactions Nj (see [52]).

The discussed process of homogenization describes a physical realization of contractive maps for
each quantum state £. We showed the uniqueness of the partial swap family of unitary transformations.
Namely, the partial swap is the only map satisfying the trivial homogenization (4.47). In this section
we have defined the family of contractive superoperators & realizable by the same interaction.

We remind us that amplitude damping superoperator A,(1) describes a very similar evolution.
It is also contractive with pure states |¢)) being fixed points. But the unitary transformation U
leading to the superoperator A,(1)) depends on this pure fixed state |¢), unlike the homogenization
transformation, which is state (§) independent.

4.4.1 Quantum homogenization as a continuous process

Obviously, the dynamics of the homogenization process is sequential. It consists of subsequent colli-
sions. Anyway, after each collision the state transformation is given by the CPT map Eé“. The set of

all mappings & := Egk (the whole homogenization process) forms a one-parameter discrete semigroup,
if the identity Z = & is added. It is an open question whether the continuous time parameter can
be introduced in a way that the discretized one-parameter semigroup becomes continuous. In fact
any collision model (arbitrary interaction) determines certain discretized one-parameter semigroup of
CPT maps, but not all of them can be made smooth. For instance, the pure swap (n = 7/2) generates
a semigroup consisting only of two maps, Z and &, because £f = 7 for k > 1. Therefore, under the
conditions that the discrete semigroup contains large number of superoperators and, moreover, the
first of them is “close” to trivial map Z, it could be possible to introduce a time parameter ¢ and
define a continuous dynamical semigroup. This smoothed version of the semigroup coincides with the
former one in the time points ¢ = k7, where 7 is the time of the duration of collision.

Note that the derivation of the dynamical semigroup is always tricky and requires approximations,
introduction of the coarse-grained time scale, etc. It reflects the fact that semigroup description of the
evolution is not “valid” in details, but it is reasonably exact. The descriptions of exponential decay,
or spontaneous photon emission, or Pauli master equation are the elementary examples of the usage
of semigroups. The semigroup approximation is generally valid in cases of weak interactions between
the system and the reservoir, when the reservoir rapidly forgets and seems to be memoryless. The
derivation of the master equations is usually done in the so-called Markovian approximation, but we
are not going into details of this large subject of investigation.

Let us get back to the problem of homogenization with a very small value of the parameter 7,
i.e. the interaction is very weak. The figure shows the simulations of the homogenization process in
three different situations of the reservoir state, but always diagonal in the ¢, basis. The initial state
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Figure 4.2: Homogenization process with 25000 qubits in reservoir and the parameter n adjusted to
the value 0.001. Initial state of the system qubit is fixed to be |z) = |0)+[1). The top row corresponds
to the case of reservoir with qubits in state £ = |0). The middle row represents the case of £ = %]l and
the bottom row corresponds to £ = %|0)(0| + %1)(1| The columns represent the x,y,z axis, respectively,
in the Bloch sphere picture.

of the system qubit is fixed to be |z) = (|0) + |1))/+/2 for all the cases. The columns represent the
z,y, 2z axis in the Bloch sphere picture and rows correspond to different choices of the reservoir state.
Qualitatively the behavior can be understood in the following way. The frequency of the damped
oscillations around the z and y axis depend on the initial difference of the z components of the states
os and . Note that the differences in z and y components are fixed for all studied examples. On the
other hand the damping itself seems to be independent of this difference. The question was, whether
the system state exponentially tends to the state of the reservoir, but as we have shown it is not the
case.
The general homogenization map & (4.57) can be always transformed into the simplified form

1 0 0 0
0 c? 2csw 0

b = 0 —2csw 2 0 (4.59)
252w 0 0 &

where the chosen operator basis is Sg in which & = %]l + wS3. Note that the partial swap has the
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same form in all bases. The nth power of the evolution map 85” can be written as

1 00 0
£ = 0 A" 0 (4.60)
2w(l—¢c>") 00 ¢

where A is a squared 2x2 matrix. The above form helps us in the qualitative analysis of the homoge-
nization process. We see that there is always a possibility to choose coordinates of the Bloch sphere
so that in one of them the process is exponential r3(n) = (1 — ¢™)w + ¢*™r3. One can introduce the
continuous time by putting n = t/7 with 7 representing the duration of the single collision. Using the
standard algebraic relations we can write r3(t) = (1 — 2! ¢/7)y 4+ €2¢1n¢/Tp; where Inc < 0, because
¢ < 1, and therefore the parameter r3 tends to a fixed value w exponentially as e */7* with the rate
T, = % The other two state parameters, r; and 79, evolve according to the map ¢"A™. The
following two relations rZ(n) + r2(n) = (r? + r2)(1 — s?(1 — 4w?))"c" and 0 < s%(1 — 4w?) < 1 imply
that the norm of the vector (ry(n),r2(n)) vanishes, and consequently so do the coefficients r;(n) — 0
and r2(n) — 0, too. The transformation of the initial vector (ry,r2) into the zero vector can be
considered as exponential e~*/"2(r,, ;) where the time is introduced in the same way as before, i.e.
n = t/7 but for a new relaxation time T = 71In[1/c(1 — s?(1 — 4w?))]. From the physical point of
view these two times are associated with the “decay relaxation rate” (T1) and with the “decoherence
relaxation rate” (7). Both the relaxation times are in the following relation

T In(1/c)
T, 2In[1/c(1 — s2(1 — 4w?))]

> (4.61)

1
2
where the last inequality is in accordance with the general formula that states 77 > %Tg. The equality
is saturated for the value w = +1/2, i.e. when the initial state £ of the reservoir qubits is pure. As a
result we have obtained that the diagonal elements of the system qubit density matrix (associated with
r3) expressed in the basis Sy achieve a fixed value faster than the off-diagonal elements (associated
with 71,72) manage to vanish (see the pictures).

The oscillatory behavior is hidden in the form of the matrix A. One can easily find out the explicit
time evolution of the system state parametrized by vector ¥ = (ry,rs2,73)

r(t) = Re YT cos(Ot + ¢)
r2(t) = Re YT sin(Qt + ¢)
r3(t) = r3(0)e”/T +w(1l—e /M) (4.62)

where the parameters 71, Ty have been already determined, R = /77 (0) + 73 (0) and ¢ = arctan(r; (0)/r2(0)).
The coordinates r; and r, oscillate with the same frequency {2, because we have shown that the evo-
lution of the length of the vector (R) is exponential. The frequency Q could depend on the initial
states of the reservoir as well as of the system qubit. In particular, the parameters of the matrix A

can be rewritten into the form

. (4.63)
—Sinw COosw

A = /2 1 45202 ( cosw  sinw )
with w = arctan(2ws/c). In the derivation of the above form we have used the identity cosarctanz =
(1 + 22)~'/2. Having such expression of the matrix A one can easily evaluate its powers and the

continuous time n = t/7 can be introduced. Obviously,

n_ (2 2. 2\n/2 (wn)  sin(wn) _ 2 2. 2\t/2r Q) sin(2t)
A" = (¢ +4s0?)" ( —C(s)isn(wn) ios(wn) ) = Ay = (7 + 45" ( —C(s)isn(Qt) (Szos(Qt) )

(4.64)
As a result we have found that the frequency Q = w/7 = L arctan(2ws/c) does not depend on the
initial state of the system qubit. For values of n — 7/2 (s/c — o0) this frequency tends to infinity.
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The explicit form of time-continuous quantum homogenization reads

1 0 0 0
0 e T2 cos(Qt)  e~t/T2 sin(Qt) 0
& = 0 —e U T25in(Qt) etz cos(Q) 0 (4.65)
2w(]_ _ e—t/Tl) 0 0 e—t/Tl

Using the derived formulas, we can write explicitly the master equation that drives the homogenization
process. In particular, the generator takes the form

0 0 0 0

3 0 0 -, 0
9=l o om0 0 (4.66)

w/Ty 0 0 -1T
where

Q = arctan(ws/c)/T (4.67)
Ti = 7ln(l/c)/2 (4.68)
T = rln[l/(? + 4s*w?)] (4.69)

The main point is that the generator G is independent of time ¢ and therefore it can generate the
evolution governed by the Lindblad master equation.

4.5 Quantum generalized measurements

Except the mentioned form of dynamics, quantum theory contains also a kind of state transforma-
tions that cannot be described in a unitary way, and, moreover, they are in deep contrast with the
determinism of quantum evolution. In this section we shall briefly mention the description of the
measurement process in quantum theory. There are two possibilities how to understand any state
transformation occurring during the measurement

1. Ensemble state transformation. On one side to make the measurement valuable it has to be
repeated (in principle) infinitely many times, i.e. on huge number of equally prepared physical
systems. One can consider that measurement transforms the ensemble of particles initially
described by a state g;, into a new state gyyt. The information gain of this process can be
associated with the change of the description of this ensemble. For instance, after performing
the measurement associated with o, the ensemble of particles initially described by a pure state
|¥) = al0) + b|1) will be in the mixture g, = |a|?|0)(0] +|B||1){(1]. Note that states |0),|1) are
eigenstates of o,. If we use the concept of purity of quantum states to exhibit the quality of our
description, then the measurements understood in this way raise impurities in our knowledge.

2. Individual system state transformation. On the other hand, we can make the so-called post-
selection, i.e. we can divide the final ensemble of particles according to the observed outcomes.
In this way we transform the original ensemble into smaller ones and the measurement process
is described by one-to-many stochastic map. The size of these subensembles is given by the
probability of finding the associated outcomes. The description of the state transformation of
an individual particle depends on the chosen model of measurement and does not follow from
the basic principles of quantum theory. However, the usage of the projection postulate enables
us to speak also about the states of individual particles. Using the same example as before, the
original state |1)) evolves either into the state |0}, or |1).

So far we have not mentioned the mathematical description of the most general observation one
can perform in quantum theory. Without going into details, let us define the positive operator valued
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measure (POVM) by the set of positive operators X = {X}, such that ), X; = 1. The real numbers
b label the outcomes of the measurement X. The relation between the abstract mathematical objects
and experimental reality is given by the following probability rule. The outcome b occurs with a
probability P(b, 9) := TrXp. Unlike the case of orthogonal measurements, when the operators X
were orthogonal (mutually commuting) projections, for the general measurement we cannot use the
projection postulate to describe the state of the system after the observation. The Neumark theorem
connects the generalized measurements (POVM) with the orthogonal measurements in the following
sense. For any POV measure defined by X; : H — H there exists a Hilbert space H (H C H) and
projection valued measure Ej : 7 — H such that for all b and for all |1)) € H

Xp|tp) = T[Es]|¢) (4.70)

where IT : H — H is the orthogonal projection of H onto . That is, any POVM can be represented
by an orthogonal measurement in a larger Hilbert space H and X, = II[Es], but such representation is
only formal and non-unique. Therefore, such reduction of POV measures to orthogonal measurements
does not diminish the need for POV measures in the description of physical systems. This relation
between POV measures and projective measurements allows us to speak about the state transformation
of the measured system in the process of measurement. To different enlargements we will refer as to
different realizations of the same POVM with different state transformations.

To summarize, the definition of POVM via positive operators X; enables us to calculate the
outcome probabilities p, (b labels the result of measurement) by the well known trace rule p,(b) =
TroXy, where p is the state of the system before the measurement. However, the concept of POVM
does not tell us anything about the transformation of the state caused by the observation. In fact,
this transformation ¢ — g; depends on the particular realization of the whole measurement process.
Only for the so-called projective measurements the projection postulate determines the canonical state
transformation. If we use the picture supported by Neumark theorem, i.e. the POVM is a projective
measurement on a larger Hilbert space, then we can use the projection postulate to determine the
state transformation also for the case of POVMs. Note, that Eq.(4.70) does not mean that state of
the system after the measurement is described by unnormalized state Xp|e)).

4.5.1 Von Neumann-Liiders measurements

We will widely use the von Neumann-Liiders implementations of POVMs. In this case the state
transformation can be described by the set of operators My, for which MZM,, =Xpand ), M;‘Mb =
1. Then the state transformation is given by the well-known formula

(4.71)

Note that the formal relation M = +/X} does not determine the operator Mj uniquely. Any set of
operators My = UM, represents the same POVM, since (M;})TMZ = MIUZU;,M,, = M;EM,, = X,.
Let us compare the purity (defined as P(g) = 1 — Trg?) of the original state ¢ and the output state
Op, 1.€.

Tr(xb0)2

=1-Trp’ P(gy) =1—Trg; =1-
P(p) ro versus (ob) o (TrX,0)?

(4.72)
For pure state ¢ = [¢)(¢)| we obtain that P(gy) = 0 = P(p). Note that in this case Tr(X;p0)? =
(| Xp[10) |2 = ((4|Xp|1))? = (TrXpo)?. Hence, the pure states remain pure (for any outcome b) after
this type of measurements. In particular, von Neuman-Liiders measurements induce the vector state
(possibly non-linear) transformation

My |1))

A 4.7
Wl (473)

) —

63



But, let us note that not every measuring process is of this type (see section VL.6).

Von Neumann-Liiders measurement can be realized as a projective measurement in the following
way. Let M denote the number of different outcomes, i.e. number of operators X;, or equivalently
M. Let us choose an ancillary system with the dimension equal to this number, i.e. dim#H' = M,
and let the vectors |b) (b=0,...,M —1) form a basis of #'. Define the unitary transformation by its
action on product states |¢) ® |0)

U([9) ®10)) = > My[¢)) @ |b) (4.74)
b

Suppose we perform a projection E, = 1 ® |b)(b|, which is one-dimensional in the sense of ancilla
system H'. When an outcome b is observed then the projection postulate implies that the state of the
joint system is
BURE0) M) e W)
- .
VOIITTBUIN0) ey MMy o)

Tracing out the ancillary system we obtain the above measurement transformation (4.73).

If we are not interested in particular results of the measurement, but only in the state trans-
formation of the whole ensemble caused by the process of measurement, then von Neumann-Liiders
measurement mapping is described by a completely tracepreserving linear map (superoperator)

o= > VXX, (4.76)
b

It is easy to verify that operators M, = /X, are normalized, i.e. Y, MZM;, = >, X, = 1. More-
over, the induced superoperator is unital, because this measurement process does not transform the
ensemble described by total mixture. Sometimes this ensemble transformation is associated with the
pre-measurement process and the measurement alone is related with a wvalue objectification of the
measurement outcome, in which the stochasticity (and non-linearity) takes place.

4.6 Quantum channels and capacities

We have already described the communication via classical channels characterized by conditional
probability pg(bla) and defined the capacity of classical channels. The quantum channel is nothing
else than a tracepreserving completely positive linear map £. It describes the noise occurring during
the transmission of signals encoded into states of quantum systems. We shall use the quantum channels
for transmitting classical information. Suppose we have a source of classical information expressed by
the probability 7(a), where each a represents a message we want to encode into the quantum state
0a- The encoding procedure C is the mapping from the classical set of messages represented by the
alphabet A into the states of quantum system S(H)

{Waaa} - {7ra; Qa} =0= ZWaQa (477)

Thus, the encoding process C corresponds to the superoperator mapping, but the alphabet A represents
the classical system with the states given by probability distributions on A, i.e. S(A) = P(A). The
decoding process D is understood in the same way, i.e. D : §'(H) — B, where B is the alphabet of
the output messages and 8'(H) := E[S(H)] is the image of the set of states after the action of the
channel £.

In particular, the output states of the channel read

0, = €loa] = Y _ CroaCl. (4.78)
k
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In what follows we shall consider that the repetitive input of the channel is described by state oz =
Qo ® ... ® g, with the probability 7z = m,, ...7ay- It means that the encoding procedure is
memoryless. Moreover, we shall assume that the channel is also memoryless, i.e. [0, ® ... ® 0an] =
El0a,]®. .. ®E&[0ay]- The main problem in quantum case of communication is the decoding procedure,
because we need to perform a suitable measurement, unlike the classical case, where the measurement
is considered to be perfect.

Let us describe the encoding C by the probabilities 7,, the channel by the superoperator £ and
the decoding by POVM {X,}. For the conditional probabilities we have

p(bla) = Tr(XpElea]) (4.79)

and we can use the formulas derived for the Shannon information I(A, B, w,£) to compute the trans-
mission rates of quantum channels.However, now the information depends also on the decoding mea-
surement, i.e. I(A,B,n,X;,E). For the capacity of the channel £ transmitting the classical informa-
tion we get

C€) = maxI(A,B,m,Xy,E) (4.80)

T,

Tr(Xp€[0a))
2 meTr(XpEloc])

max Xb: 7o Tr(Xp€[04]) log

where the maximum is taken over all the possible decoding POVMs and all the possible encodings
associated with the probability distributions m,. A.S.Holevo proved in [28], and [29], that this quantity
is equivalent to the so-called Holevo information

O(€) = max | S(E[2) ~ Y maS(Elea) (4.81)

where 9 := ) 7,04 is the average state and S(0) = —Trolog g is the von Neumann entropy. In this
formula we need to perform the maximalization only over all encodings, what makes this formula more
convenient for calculations. Sometimes the capacity of quantum channels is defined also by performing
the maximalization over the choice of signal quantum states g,, but we suppose encoding C is given
by fixed states g,.

4.6.1 Capacity of qubit channels

Now we shall calculate the capacities of qubit channels. It means we will encode messages into the
sequences of qubits that are transmitted via the quantum channel £. Moreover we shall assume, that
the information source produces information encoded in classical bits. It means A = {0,1}. We shall
not consider the possibility that the alphabet 4 contains more elements. The states at the output
of the channel are described by states gf = £[p1] = 7 and o] = E[p1] = M. The average state
0 = &[p] = w7l + mm. Since we know the eigenvalues of the qubit states explicitly, we do not have
any problem with calculating the capacity

C= max [S(mo7t + mm) — meS(7) — m.S(M)] (4.82)

In what follows we will limit ourselves only to unitary encodings C. Consider that Alice obtains
a state p = 7. and she is allowed to choose between unitary transformations U, to encode the message
a into the state g, = U,oU}l. Since the encoding transformation is unitary it does not change the
eigenvalues and entropy, i.e. S(7,) = S(77). We know that the eigenvalues of the density operators of
a qubit depend only on the length of vector 7, namely A+ = § % |7]. In our case |ii| = || = m. Since
in our case A represents the classical bit and a = 0,1, the eigenvalues of the average state w7 + m11M
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are A\ = % + m\/ 1+ 2mm1 (1 — cos @) where ¢ is the angle between vectors 7 and 7. Putting these
facts together in Eq.(4.82) the condition of the extreme g—g requires that the following equality holds

_ m(2m —1)(1 — cos ¢) o 1+my/1+42mo(1 — m)(1 — cos @)
24/1 + 2mo(1 — o) (1 — cos ¢) gl—m\/1+27r0(1—7ro)(1—(:osqS) B

It implies that the maximum is achieved for mg = 7, = 1/2 and we get

C = S(m+/(1+ cos¢)/2) — S(m) (4.83)

with S(m) := —(3 + m)log(3 + m) — (3 — m)log(z — m).
In case of the unitary encoding the length of vectors is fixed. For a given length m the maximum
capacity is obtained for the angle ¢ = 180°, when

C=log2—S(m)=1-5(p). (4.84)

For pure states (m = 1/2) the vectors 7 and m correspond to mutually orthogonal states and the
capacity C' =1 bit is the maximal capacity of the qubit channel.

To obtain the maximal capacity of a qubit noiseless channel with the unitary encoding C Alice
needs to perform unitary transformations Uy and U; that generate the mutually orthogonal states in
pure case, i.e.

($[U1Uol9p) =0 (4.85)

for all |¢)) € H. For a fixed state |¢)) it is not difficult to find such operators Ug, Uy, but in general
case it is impossible, because this task is equivalent to the problem of universal NOT machine. And
we know, that it is impossible to perform transformation |¢)) — [1)1) by a single unitary operation
for all |1). Let us conclude that, if Alice knows the basis [¢), 1)), in which the original states g are
diagonal, then she can apply the unitaries Uy = 1 and U; = S; = |[¢)(¥b| + [¢1) (2| to obtain signal
states

2o o[} (W] + 18I [ ) (v | (4.86)
or = |BPIYW] + ol lpT) (] (4.87)

and the capacity equals C = 1 + |a/?log |a|® + |B]* log |B|*.
Note, that for noisy channels the orthogonality of input states need not achieve the maximum of
the transmitted information [36].

4.6.2 Blind encoding

By a blind encoding we will understand the following problem. Alice has two possibilities: she either
knows the states on which she performs the encoding, or not. To the second (negative) case we shall
refer as to the blind encoding. The main question is, how Alice could make her encoding independent
of the initial (unknown) state and what the maximum information she can transmit to Bob is. We
can consider that Bob knows the state of the qubit and he knows the transformations Alice is going
to perform. That is, the state of the qubit plays the role of public key. To make this protocol work
the decoding transformations should not have the property of covariance with respect to the initial
state. But the security is not going to be discussed in this section.

Let us denote the unitary encoding transformations of Alice by U,. Let us express the initial state
as o = %]l + 7.7. The signal states g, = U,oU} are then given by the three-dimensional vectors 7i,.
For the capacity we can write

C(g) = max [5@ ma)] - 5(0) (4:88)
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where we used the equality S(0,) = S(g) for all a. To maximize the capacity the state 2 : =), 7,04
must maximize the entropy, i.e. g = %]l. In the previous section we could see that it is impossible to
fulfill this condition, if we use digital alphabet, i.e. a = 0,1. We have achieved this maximum only
with the state-dependent unitary encoding.

It may sound counter-intuitive that the maximum can be achieved, if we use a more-valued al-
phabet, i.e. more unitary transformations. Let us choose the following four unitary transformations
Uy =1,U, = 7.6 for k =1,2,3 and 7i;.7; = dg;. That is the vectors 7, form an orthonormal basis
in three-dimensional real vector space. Let us put 7, = 1/4 for all values a and calculate the state @

[
|
s
+
BN
T
X
2
St
B
Qy
=
| IS

1 1
Z ;UaQUI, 4

1 1
= 5]1 + 1 .6 + Y ((fg.N)(f.0) — (7, X (T X 7)) &']
- .l —22(* 7)(7.5) — 2.3 | = 21 (4.89)
= 2 4 k NE.N)\ng.o n.c = 2 .
where we have used the following identities
(A.6)(m.g) = (@.m)1+i(7d xm).& (4.90)
ax(bxd = (@db—(@bye (4.91)
> (i) (fF) = Y (nk)*n®(ny)Pog = ii.& (4.92)
k ko
Z(nk)o‘(nk)B = ¢ completeness (4.93)
k

and (ng)® denotes the a-th component of the vector 7.

From the above calculation it follows that if Alice uses four unitary operations Uy, Uy = 7.6
and the source produces messages a = 0,1, 2,3 with equal probabilities, then the capacity achieves its
maximum

C(o) =1-5(0) (4.94)

We stress once again that the universality (i.e. covariance with respect to the choice of the state
0) cannot be achieved with digital alphabet, but with four-character alphabet it is possible.

4.6.3 Noisy channels

The most trivial example of a noisy channel is the unitary one, which can be regarded as noiseless,
because its action does not change the structure of the input signal alphabet given by C and preserves
the entropy of signal states. The unital channels (nonunitary) cause the entropy of signal states to
decrease. Contractive channels may cause that entropy increases, but they have only one fixed point.
It means that if we use the transmission via contractive channels, the output signal states are all closer
to this fixed point. If the contractivity parameter is small, then the output states are in a very small
vicinity of this fixed point. It follows that channels with more than one fixed point are of importance.
If we use these fixed points as input signal states, then the channel acts like noiseless. Of course, such
channels make sense only if the fixed points are not too close.
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4.7 Quantum dense coding

In this section we shall describe a specific communication protocol, where the entanglement shared
between Alice and Bob plays an important role. It was discovered by Bennett & Wiesner [42]. Let us
briefly describe their example.

Suppose Alice and Bob share a pair of two qubits in a maximally entangled state [¢)ap = [¢T) =
%QOO) AB + |11) ap). In the section 4.2.1 we showed that it is possible to find maximally entangled
states which form a basis. Moreover, they can be generated by local unitary transformations applied
on one of them. In particular, operators o}, ® 1g acting on [p)T) give us the set mutually orthogonal
states [¢pT), |¢T). Let Alice perform unitary encoding C on her qubit by choosing one of these unitaries.
She prepares one of the mutually orthogonal states. We know that there exists a measurement
distinguishing the mutually orthonormal states from a basis with certainty. In this case, the so-called
Bell measurement is an global type of observable. It means neither Bob, nor Alice can distinguish the
states locally. Alice must send the prepared qubit to Bob and Bob will realize the Bell measurement
on both qubits to obtain one of the four possible outcomes. Each outcome of Bob’s decoding D
corresponds to a definite operation of Alice’s encoding £. Thus, Alice and Bob can communicate 2
bits of information by using entanglement and qubit noiseless channel. Remind us that in the previous
consideration the qubit carried maximally one bit of information and now it transmits two classical
bits. We shall call this procedure a dense coding.

The dense coding strategy is interesting also from the point of security. Since for every maximally
entangled state [¢) the Alice’s qubit is described by state Tra|¢)(1)| = 11, the eventual eavesdropper
catching signal qubits sent via channel will always find them in the total mixture. Thus, he is unable
to say anything about the sent message, because Bob’s qubit plays a role of decoding key. Without
this key the sent qubit carries no information.

4.7.1 Dense coding with partially entangled states

We have seen that the dense coding protocol is based on the property of maximally entangled states.
Namely, it is based on the possibility of preparation of the basis consisting of maximally entangled
states just by performing local unitary operations on the Alice’s side. The encoding C used by Alice is
unitary. Of course, the choice of encoding is not unique. As we showed (Section 4.2.1), each collection
of unitary operators Sj, satisfying TrS;S; = 26;; will do the job.

Now we shall try to generalize the mentioned scheme for partially entangled states. We start with
pure states written in the Schmidt basis

[) ap = a|00) + b|11) (4.95)

where {|0), |1)} is an arbitrary basis of the corresponding Hilbert space. Our aim is to find such choice
of four unitary operations U, ® 1p (unitary encoding), for which the capacity achieves its maximum.
Moreover, we assume, that the choice is independent of the initial state |1)) 4p. Without the loss of
generality we can put Ug = 14. Let us denote states forming our alphabet by |¢1) = U @ 15[¢). In
the limit of |¢)) is maximally entangled, we must obtain (Yg|¢;) = TrU;chl = 20;;. In section 4.2.1
we mentioned that this is possible only if Ug = 1 and Uy = Sy = 7.6 with 77 mutually orthonormal
vectors in three-dimensional real vector space.

Consider p4p is a general state on which Alice realizes her encoding strategy & = {Sy ® 15}.
Since operators Sy, satisfy the same relations as oj-matrices we can express the general state in the
operator basis Sy

3
1 — - =
0ap = Jlap +ES©1+18FS+ ) 7uSa ©Ss. (4.96)
a,b=1

and it is much simpler to calculate the alphabet states g for £ =1,2,3

or = (Sip® Jl)g(S:,’c ®1)
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3 3
1 -
= 21+ aSiS)S{ ®1+1®F.F+ > 7asSkS.SL ® S,

4
c=1 a,b=1
1 3 3
= Z]l +1Q® 5.5+ [2akSk - &S] ®1+ 21)_21’7]91,8]9 ® Sp — ;1 YabSe @ Sp

where we used the identities

SaS!I = 8,8k = (714.0) (7i-0)
= ﬁa-ﬁk]l + i(ﬁa X ﬁk)a = (Sak]]- + Z.Ealcmsm (4'97)
SiSeSr = 204:Sk + 0krSe- (4.98)

We remind us that 7iy are mutually orthonormal three-dimensional vectors which implies that the
vector product of two of them is proportional to the third one.

Since the maximum of the capacity is achieved for maximally entangled states with 7 = 1/4, we
shall use such encoding also for general case. For the average state p we get

3
1 1 |
7 = = =141 S=2I1 . 4.
0 4k§_09k i A®B.S 514 ® 0 (4.99)

where op = Troap = %]l + Eg Finally, we find out that the capacity is equal to
C

= S(0) — S(ean) =1+ S(eB) — S(0as) (4.100)

because S(04 ® op) = S(04) + S(op) and S(314) = 1.

4.7.2 Remarks on dense coding

Remark 1. Mazimal capacity

It is still an open issue whether we can increase the capacity of the dense coding by utilizing larger
set of coding unitaries. We address this question in the next section concerning the qudits.

Remark 2. The asymmetry of dense coding

Let us note, that the obtained capacity of noiseless qubit channel using the dense coding strategy is
not symmetric with respect to the exchange of Bob and Alice. Suppose the same situation as before,
i.e. Alice and Bob share a pair of qubits in a state p4p. If Bob sends the messages to Alice (using
dense coding strategy) we will obtain

Cpsa =14 S(0a) —S(oa) #1+ S(oB) — S(0aB) = CasyB (4.101)

since in general S(04) # S(og)- In fact, there is no reason to expect the equality, since Bob and Alice
use different signal states.

Remark 3. Beating the classical bound

It is well known that classical single-bit communication channel cannot be used to transmit more than
one bit of information per usage. That is, the capacity with classical resources is always less or equal
to one. However, as shown above, in the quantum case single-qubit channel can be used in that way
and the transmission rate is greater than the classical bound. We usually use the dense coding to
exhibit the nonclassical property of quantum theory. In what follows we will refer to this capacity of
dense coding protocol as C?ense,

Remark 4. Correlations are crucial

To compare our result (4.100) with the previous example (4.84) of the capacity of noiseless qubit
channel without using dense coding strategy, we see that always C'¢¢"s¢ > Cmermal  Both of these
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scenarios use a unitary encoding C in order to generate the input signals according to information
produced by information source. The choice of the scheme to be used depends on Alice and Bob. It
means that the comparison of these two quantities is not only formal, but reflects real possibilities.
In particular, the difference

Cats — Ca%p = CER% — CE%R = S(0a) + S(es) — S(eas) = C(A, B) (4.102)

tells us that not the entanglement, but correlations are crucial in dense coding scenario.

Remark 5. Dense coding in classical settings

Consider the following classical scenario. Alice performs unitary encoding on total mixtures. It means
the states she is getting from the source are uniformly distributed. The source produces either bit
value 0, or bit value 1 with probabilities p(0) = p(1) = 1/2. Obviously, Alice is unable to encode any
information, because on the Bob’s side the bits will have random distribution, too. But let the source
produce two bits described by the joint classical state p(00) = p(11) = 1/2 and p(01) = p(10) = 0.
One of them is sent to Bob and the second one to Alice. Note, that Alice’s bit is in the same state as
before, i.e. is randomly distributed. Let the Alice’s encoding consist of two operations. If she wants
to send the message 0, she will do nothing, and if the message is 1, then she performs classical NOT
on her bit. That is, if she obtains a bit of the value j, then she will send a bit of the value j @ k, where
k is the message she wants to send. Bob will receive her bit and compare it with the original one
he obtained from the source. If their values coincide, then he knows Alice sent him message 0. If he
finds difference between the bits, then he will know that Alice performed NOT and the sent message
is 1. Thus, Alice and Bob can communicate using the dense coding strategy. In this classical picture
it is more illustrative, that Bob’s bit plays a role of a secure key. Formally, the classical and quantum
situations are the same. The main difference is on the sender (Alice’s) site, because in the classical
case Alice may perform only two operations on the classical bit at all. In quantum settings, Alice can
choose among infinitely many unitary operations.

Remark 6. Information flow

In both the classical and quantum scenarios of dense coding the really transmitted particles from
Alice to Bob were in the total mixture irrespective of the encoding transformation selected by Alice.
That is the particle sent via the channel has carried no information. Obviously one can ask: How
is the information transmitted from Alice to Bob? Where is it hidden during the transmission? The
answer is transparent - the information is “hidden” in correlations (quantum or classical) between
communicating parties. Consequently, any correlations can provide us a “safe”, where the information
is stored and only person who has the “key” can enter and read the information. It seems that the
main difference between the two discussed protocols is in the process how the information behaves
during the transmission. In the standard protocol it is attached to the transmitted particle, whereas
in the dense coding it is partially hidden in mutual correlations. One can say, that the example of
dense coding reflects the non-locality of the information. As we shall discuss in the next paragraph,
the non-local transfer can be utilized for secure communication.

Remark 7. Security

In this remark we are going to open the question of security of the dense coding (correlation-assisted)
communication protocol. Before starting we must somehow determine the conditions, under which
the communication is considered to be secure. By secure we intuitively understand those protocols,
in which the information is hidden in such a way that no other users except for legitimate can read
the message. In what follows we will not care about the detection of various attacks of a potential
eavesdropper (Eve). We assume that our eavesdropper does not have any ambition to stay in total
illegality. Her aim is only to acquire the secret message and simply to intercept all the information sent
by Alice, but she does not bother about her presence being detected. Eve just breaks the channel and
intercepts all qubits sent by Alice. It is clear that if Alice and Bob use the standard communication
protocol, then Eve can acquire the same amount of information as Bob, i.e. Ig = Ig = 1 — S(p)
where p is the state of the system that Alice obtained from the source. We will quantify the security
S of the protocol by this direct eavesdropper attack as the fraction of the information that remains
hidden to Eve, ie. S = (Ip —Ig)/Ip = [C — 14 5(0)]/C, where C denotes the capacity (information
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rate) of the transmition between Alice and Bob. As a result we find that the standard communication
protocol is totally insecure, i.e. § = 0. From the definition it is clear that security can vary from zero
to one, i.e. § =1 indicates the highest security, when Eve acquires no information, I'r = 0.

Earlier we have discussed two specific cases of correlation-assisted communication protocols, in
which the transmitted qubit (bit) is in a total mixture. In the classical scenario it is more illustrative
that Bob’s bit plays a role of a secure key. In fact, the classical correlation-assisted coding protocol
is equivalent to the use of the Vernam code between Alice and Bob. The Vernam code is known
to be unconditionally secure and therefore the communication is as secure as it can be. To send a
message written in n bits we use the Vernam code represented by a string of n bits known only by
Alice and Bob. In our setting it means that the source produces pairs of bits of the same value.
One qubit of each pair is sent to Alice and the second one to Bob. That is, initially the ensemble
of pairs of bits is described by the maximally correlated state. Alice and Bob have the same register
of n bits. Alice transforms her register according to the message she wants to send by performing a
logical (mod2) addition of the message with the register of bits obtained from the source. Then the
encrypted message is sent to Bob, who can decode it using his register of bits by the same logical
(mod2) addition. In this way Bob obtains the original message. It is clear that the correlation-
assisted communication protocol with mazimally correlated state is equivalent to the communication
with the established Vernam code and the security of such communication is maximal. In this case
we obtain § = [C?"**(0ap) — 1+ S(04)]/C?"**(0aB) = [S(0a) + S(0B) — S(0aB)]/C*"**(0aB) =
C,(A, B)/C%m%¢(g4p). That is the security of the correlation-assisted coding communication protocol
is proportional to mutual correlations C,(A, B) between Alice and Bob. This is apparent because
in the dense communication protocols the information is transferred via correlations between Alice
and Bob and therefore it is unreachable by Eve. To achieve the mazimal level of security it is
enough to utilize correlated bi-partite states such that Alice’s particles are in a maximally mixed state
described by the density operator p4 = %]l. In such case the information acquired by Eve vanishes, i.e.
Ig=1-S (%]l) = 0. Formally, the classical and quantum communication schemes are the same, only
the existence of the potential eavesdropper is more difficult to detect in classical case. The problem
of much clever attacks (in the sense of Eve’s detectability) is out of the scope of this thesis.

4.8 Coding with qudits

Qudits are d-dimensional quantum objects. Following the same line of reasoning like for the qubit
case, our aim is to show the possibility of the choice of unitaries U,, for which the following equality
holds

1
2= mUwUl = 1 (4.103)
a

because in this case the capacity of the noiseless qudit channel approaches its maximum. Note that
for qudits the capacity reads

C = max[S(2)] - (o) - (4.104)

The following lemma [17] will be useful.
Lemma. Consider d> operators Fy,...,Fg on a d-dimensional Hilbert space H. Then the following
conditions are equivalent
1. TrFIFy = 04y
2. 3 F,AF! = Tr(A)1 for all A
Proof: The condition 1 simply says that the operators F, form an orthonormal basis with respect to the
scalar product (A|B) = TrA'B. Therefore, the following completeness relation holds Y- |F,)(F,| =
Z, where we used the notation |A) to distinguish elements of the operator’s Hilbert space from the
standard ket vectors |¢) of the original Hilbert space H. Note that Z denotes the identity on the
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operator Hilbert space £L(H), i.e. Z[A] = A for all operators A. Then the following sequence of
equalities can be done

(Py[Py) = Y (Py|F.)(F2[Py) = > (Y[Fo|¢)(8[FL¢) = (¥ [Z Fz|w><¢|FL] |¢)  (4.105)

T T

Because the left side of this equation can be written as (Py|Py) = (¢|[(#|¢)1] |¢) and the equality
must be valid for any |1}, |¢), we get the operator identity

D FL[YNBIFL = (@]6)1 = Te(|9)(g)1 (4.106)

On the other hand any operator A can be written as a linear superposition of the operators of the
type |1){¢|. Therefore, the same equality holds for any operator A, i.e.

> F,AF! =Tr(A)1, (4.107)

and this equality ends the proof. ¢

To use this lemma for our purposes we have to change the conditions a little. Since we need that
operators F, = U, are unitary, the first condition cannot be satisfied, because TrU,U! = d instead
of one, i.e. the unitary basis is not properly normalized. However, this “complication” can be easily
undergone by introducing operators F, := %Ua. Using this notation the second condition of the
lemma takes the form

1 1
= > U,AU} = S(TrA)L (4.108)

which is exactly the second condition, i.e. this condition must not be changed. Assuming that 7, = 1/d
for all a and comparing the last equality with the Eq.(4.103) we see that mutually orthogonal unitary
transformations enable us to perform a blind unitary encoding with the maximal transmission rate,
ie.

C=5(2) - S(e) =1logyd - 5(e) (4.109)

Using the same reasoning like for the qubit case we derive that the capacity of the noiseless qudit
channel using the dense coding strategy is given by the formula

Ciense = max[S(aap)] — S(ean) =logy d + S(er) — S(ean) (4.110)

because 045 = Y, (Us ® 1)oap(U, @ 1) = 11 ® 05.
Remark 1 Mazimal capacity

The obtained result is very useful and completes the question of the maximality of the dense
coding strategy. In particular, we opened the question whether a larger set of unitaries can lead to
the increasing of the transmission rates of dense coding scenario. But, it is impossible to find such set
of local transformations that are mutually orthogonal (TrUaUZ = dd,p) and consequently the average
state 45 cannot be proportional to identity.

The derived formulas for capacities with qudits allow us to generalize directly all the previous
results.
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Chapter 5

Quantum processors

In theory there is no difference
between theory and practise,
but in practise, there is.
S.D.Poe

5.1 Programming the evolution

Coherent control over individual quantum systems is one of the most exciting achievements in physics
in the last decade. The possibility to control quantum dynamics has far reaching consequences for
quantum technologies, and in particular for quantum computing. In the theory of coherent quantum
control it is assumed that the control of the dynamics is realized via external (“classical”) parameters
(such as intensity of laser pulses, or duration of the interaction). These external parameters can
be viewed as classical information available to experimentalists who use them to achieve the desired
control.

In this chapter we will study different type of quantum control. We will assume that the information
about the quantum dynamics of the system under consideration is not represented by classical external
parameters, but rather is encoded in the state of another quantum system. Generally speaking we
want to design programmable quantum device (quantum processor) which would allow us to simulate
completely positive maps (i.e. quantum mechanical process) on quantum systems.

Schematically the classical computer is a device with a fixed piece of hardware called the processor
(“black box”) with the input and the output represented by the register of bits. Part of this register is
associated with the input data and the rest bits encode the program we want to implement. That is,
the register of bits is divided into data register and program register. The processor action is fixed and
causes the transformation of the data register according to a program written in the program register.
In accordance with this picture of classical processor we shall study its quantum version.

By programs in quantum settings we will understand completely positive tracepreserving linear
maps. The Kraus representation theorem implies that any such map can be realized as a unitary
transformation G acting on a larger Hilbert space providing that the ancillary system is in the state
|0){0]. If we change the state of the ancilla, then (in general) the system evolves in a different way.
That is, the states of the ancilla system determine the evolution of the system. This evolution is
induced by the fixed unitary transformation G that describes the interaction between the system and
the ancilla. In accordance with the classical case the transformation G can be considered as quantum
processor and the ancilla system can be associated with the program register. The system represents
the data register.

In what follows by the processor we will understand a fixed unitary transformation G acting on
two systems: data system and program system. The input of the quantum processor will be described
by a factorized state g4 ® &,, where the state &, encodes the program. The output is described by a
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general state of S(Hq ® H,). From the mathematical point of view the set of processors is the set

of all unitary transformations defined on the Hilbert space with the defined tensor product structure.

Different types of processors with respect to this structure will be investigated in the next section.
There are two basic questions

e Given a set of programs C we want to implement. Does there exist a processor G that is able
to implement this set of programs?

e Given a processor G. What is set of all implementable programs C?

5.2 Basic formalism

5.2.1 Pure program states

Let |¢)4 be the input state of the data register, |=), be the input program state and G be the unitary
operator that describes the action of the array of quantum gates. If {|j),|j = 1,... N} is a basis for
the space of program states, then we have that

2

G([¥)a ®|E) Z pp{7|G(|¥)a ® [E)). (5.1)

If we define the operator A;(Z), which acts on the data register, by

A;(E) e = p(IG([¥)a ® [E)p), (5.2)

then we have that N
G([9)a ®[E)p) = D Aj(E)$)a ® 1)y (5.3)

j=1

This means that the output density matrix of the data register is given by
ZA )a alw|AL(E). (5.4)

The operator A ;(Z) depends on the program state, but it can be expressed in terms of operators that
do not. Define the operators

Ajr = Aj([F) = p(i|GIk)y, (5.5)

where |k) is one of the basis states we have chosen for the space of program states. We have that for
any program state |=)

N
i(5) Z » (5.6)

This means that the operators A j; completely characterize the processor in the case of pure program
states. We shall call these operators the basis operators for the processor.
These operators have the following property,

N N
ZA}klAJ‘ka = Z<k1|GT|J')<J'|G|k2) = Lk k, - (5.7)

=1

In order to prove this it is enough to consider the decomposition }_; |)(j| = 1,.
An obvious question to ask at this point is whether any set of operators satisfying Eq. (5.7)
corresponds to a quantum processor. The following construction allows us to show that this is the
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case [2]. Given a set of N 2 operators acting on Hg4, we can construct an operator, G, acting on the
product space Hq ® H,, where #H,, is an N-dimensional space with basis {|k),|k =1,... N}. We set

G= ) Aj®|iyplkl. (5.8)

k=1

It is now necessary to verify that G constructed in this way is unitary. Noting that

N
Gt= 3" Al @ k)il (5.9)
J,k=1

we see that Eq. (5.7) implies that G'G = 1, so that G preserves the length of vectors and is unitary.
It is possible to express the basis operators for closely related processors in terms of each other. For
example, if {B,|j, k = 1,... N} are the basis operators for Gf, then from Eq. (5.9) we see that B, =

AL i If G, and Gy are two processors (unitary operators) with basis operators {ASE)| Jk=1,...N}

and {Aﬁ) |7,k =1,... N}, respectively, then the basis operators, C;j, for the processor corresponding
to the operator G; G, are

N
Cir=Y AAL). (5.10)
n=1

This follows immediately if both G; and G. are expressed in the form given in Eq. (5.8) and then
multiplied together. If we apply this equation to the case G; = G and G, = G, and note that

GG = 1, we have that
N

ZAMJ'AI:Z]' = ]]-(skﬂcz' (511)

=1

It is clearly possible to generalize Eq. (5.10) to the case when there is a product of more than two
operators.

5.2.2 General program states

Let the program is represented by a mixed state o, = >, Ru|k)(I|. Then for the induced mapping
we have

07" = Y RuAmioi" Al Tr|m)(n|
klmn

= ZRk!AkadAInl‘ (512)
klm

Earlier we have found that the class of all possible superoperators Cg realizable deterministically by
using some fixed processor G is fully given by the set of operators Aj; defined by Eq.(5.5). The
number of these operators is equal to the [dim(H,)]*> and in some sense they create a basis for the
class Cg. We have seen that the mapping associated with the processor G maps the space of program
states S(Hp) onto the class of superoperators Cg, that is a subset of all possible superoperators.

5.2.3 Correspondence between pure and mixed program states

Let us investigate the case of mixed program states in more detail. In particular, we will address the
question whether it is possible for a given class of superoperators Cg which can be realized by a fized
processor G, to find another processor G’ that realize all superoperators in Cg only by using pure
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states? We know that each state can be purified, but the purification is not unique [8]. Let us define
the purification in the following way

0p =Y Alxe) Ol — 1®)y =Y VAklxr)p ® [F), (5.13)
k k

where g, is written in spectral decomposition. We define the action of the new processor by the
identity

G :=Ggl. (5.14)

The dimension of the program system #,s is equal to 2M, where M is the dimension of H,. Now
we have to check whether by using only pure program states of the processor G’ we shall obtain the
same class of superoperators Cg.

Consider the state g, and its purification (5.13) |®), (i.e. opr = |®)(®|) . Then we have to analyze
the validity of the equality

TrpGod ® 0pG' = Try G'04 ® 0y Gt (5.15)

for all gq. The right-hand side of this equation can be rewritten as

Trp Glog ® % Gt Trpy

> VAN (Gea @ [xk) (ulGT) © |k)(l|]
kl

> VAT, [(Gea ® xi) (|G 8]
kl

Goa ® <Z )\k|Xk><Xk|> GT]
k

= Tr,Gpoq® QpGJr , (5.16)

Trp,

which proves Eq. (5.15). This result allows us to “mimic” mixed program states for a given processor
by introducing a larger program system “P’” and a new processor mapping G' = G ® 1.

Let us summarize:
e We can mimic each mixed program state by a pure pure program by using the mapping G' = G® 1
as a processor.
e For a given processor G the class of all possible superoperators Cg is fully given by the operators
A, that corresponds to some fixed orthonormal basis |j), of Hp.
e For any two superoperators ¥ and ® given by the processor mapping G and pure states |¥), and
|®), the identity

> MIN; = (2]¥)1 (5.17)
k
holds, where My, = (k|G|®) and N}, = (k|G|¥) are any operators representing the given superopera-
tors.
5.2.4 Equivalent processors

We shall regard two processors, G1 and G2 as essentially equivalent if one can be converted into the
other by inserting fized unitary gate arrays at the input and output of the program register, that is if

G2 = (1@ Up1)G1(1g @ Upa), (5.18)

where U, and U, are unitary transformations on the program space. If this equation is satisfied,
then the processors defined by the two gate arrays will perform the same set of operations on data
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programs superoperators

Figure 5.1: We figure the relation between the set of program states S(#,) and the set of all data
superoperators induced by the action of the processor mapping G4p. The image of the programs form
the subset Cg of all superoperators. Moreover, it can be seen that the induced map is not bijective,

since to a superoperator A there exists the subset Sy C S(#,) containing programs that implements
A.

states, but the program states required to perform a given operation are different, and the outputs of
the program registers will be different as well. If Eq. (5.18) holds, then for the basis operators Agzk)
(1 = 1,2) associated with the two processors we have

N
Aﬁ) = Z (Upl)jm(Up2)nkA£r1L2L- (5.19)

m,n=1

Therefore, we can regard two processors whose set of operators Agzk) are related by the above equation
as equivalent.

A special case of this type of equivalence occurs when the two processors are simply related by a
change of the basis in the program space, i.e. when Uy, = U;zl. It is possible to derive conditions
that the basis operators of the two processors must satisfy if the processors are to be equivalent in
this more restricted sense. These follow from the fact that the trace is independent of the basis in
which it is taken. If Uy = U;zl, then Tr,(G1) = Trp(G2), which implies that

N N
1 2
YA =3 A (5.20)
j=1 j=1

We also have that Tr,(G7) = Tr,(G%), which for the case n = 2 gives us

N N
1 1 2 2
> ARAL =D ARAL. (5.21)
i1 =1

Clearly, by taking higher values of n we can derive more complicated equivalence conditions.

5.2.5 Measuring the output program register

We now make a measurement

M= al®Q, (5.22)
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of the program system, and, in particular, we shall be interested in the influence of such measurement

on the data system. The operators QQ, are projections, i.e. Q, = Q£ Q2. The measurement will be
called successful if we obtain the eigenvalue a = 1. Once we obtain the outcome reflecting our success,
the resulting state (we assume that the realized measurement is orthogonal) of the data system is
given by the following rule (projection postulate)

~(out) 1 A . .
py = @ZZ E)v)a alW|AL (E) »('|Q5)y- (5.23)

The normalization factor p(s) plays the role of the success probability (finding the result a = 1). It is
given by relation

N N
=2 > awlAlE) A (E))ar(iIQLI")s (5.24)

j=1j'=1
In the case when Q = 1, (no measurement) we obtain the Kraus representation of the quan-

tum operations caused by the unitary map G. In this case (j|Q|j'), = d;; implies p(s) = 1
(32, AlE)A;(E) = 14) and 57" = 35, A (E)[¥)a(WIA}(E).

If we use the definition of G via operators A the success probability can be rewritten in the form

$)= > ahaw Qi (AL Ay (5.25)

Ji' kK

with Q= (j|QI5) and a; = (j|Z).

Consider that the data register is initially in a pure state |¢). In what follows we will show that
the output data register (after measuring an outcome) is still described by a pure state. Therefore, the
whole transformation (induced by processor plus measurement) can be understood as a linear map A
acting on the Hilbert space of the data register H4. In fact, the unitary transformation followed by a
measurement is associated with the set of operators {M,} (a labels different outcomes), i.e. with the
POV measure on H,4. That is, each quantum processor can be used to implement generalized quantum
measurements described by POVMs. We shall turn back to this problem in the Section VI.7. Anyway,
when the outcome a is observed then the data register evolves according to transformation

Ma Qian

Qin Qout TI'Q,'nFa

(5.26)

with F, = M!M, being positive operators. Calculating the trace of the squared output state we
obtain

Ma@inM};MaginMg — ’I\r(ginFa)z
[TrginFa]Z [TrQinFa]2

Tro?,, = Tr (5.27)

Assuming that g;, = [¢)(1| is in a pure state the above equation gives us that Trg2,, = 1. It proves
our statement that the output data register is in a pure state providing that the input state is pure.
Note. This statement has an interesting consequence. It can be applied also to orthogonal measure-
ment of the joint data+program system described by a pure state |Qin)ap = [¢)¢ ®|Z)p. Consequently,
the output state |Q,)qp must be pure. The subscript a labels the outcomes of the measurement. Apply
the same reasoning only to data register initially in a state |¢))4 the output must be pure state, too.
Let us denote this output data state by |1,). Note that the measurement understood on data register
is not orthogonal, but it is described by POV measure. Nevertheless, combining these two results we
obtain that the output joint state |Q,)q, must be factorized, i.e. |Qg)ap = |¥a)d ® |¢a)p. That is, any
measurement of the joint system providing that the systems are initially pure and factorized results
in a pure factorized state. Note that entangled states can be obtained only if the initial states are not
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pure, or not factorized. This result does not depend on the choice of the unitary transformation G
(before the measurement) and on the choice of the performed measurement as well.

There are several questions that could be stated. Essentially, we have three free “parameters” (we
assume that the processor G is fixed): the input data state, the input program state and the choice of
the measurement. Employing these three tools in different configurations we obtain different sets of
questions and problems. On the other hand our motivation is to study the possible transformations of
the data system. Therefore, the input data state is arbitrary. This decreases the number of parameters
we would like to control. We are allowed to prepare an initial program state and choose an arbitrary
measurement in order to realize some transformation of the data system. To this problem we will refer
as to probabilistic implementation of quantum processor and it will be discussed in more details latter.
In the next sections we shall investigate the above picture without performing the measurements, i.e.
deterministic implementation, where the only free parameter is the initial state of the program system.

5.3 Classes of processors

In this section we will introduce several classes of quantum processors. We do not have a handle
how to characterize all possible processors so the classes presented below are probably incomplete.
Anyway, they give us a deeper insight into what we can do with programmable quantum processors
and what are the resources (in terms of properties of program states) required. We will address the
question of the properties of the set of realizable programs Cs by a processors G belonging to the
listed classes of processors.

5.3.1 Local processors

This is the most trivial class of processors defined by the relation G = Uy ® U,. These processors
are only able to implement single unitary transformation. That is, the set Cg contains only a single
element, namely Uy.

Any unitary transformation can be defined by its eigenvectors and eigenvalues. For example the
unitaries belonging to local processors are given by the basis defined in H4 and H,, separately. In
the following we shall define different types of processors based on the type of their eigenvectors. We
start with the case when all the eigenvectors are separable, i.e. [¥u)ap = [dp)d ® |Xu)p-

5.3.2 U-processors

To obtain the so-called U-processors we fix the basis in the program Hilbert space H,. Thus the
eigenvectors are given by

[Yu)ap = |ak)dp = |Pak)a @ |K)p- (5.28)

In this case the operators A j; = d,,U; are unitary. We remind ourselves that the dimension of #, is
equal to the number of unitary operators we are able to perform by such processor. This means that
the processor can be defined by the relation

G([¢)a @ [5)p) = (Ujl)a) ® |3)p (5.29)

where the set {|j)p},; form a basis in #,. The equation (5.29) holds for all data states |1)4. For a
general pure program state |®), = 3~ a;[j), the encoded superoperator @ is given by the expression

Plod] = X 1]’ U; gdU;r.. In the case of mixed program state ¢, = >_,; R;k|j)(k| the data system

evolves according to the equation ®[g4] = 3=, RjjUjgdU;r-. Comparing these two different cases we
can conclude, that we can always mimic the mixed program state by the pure one. For this purpose it
is enough to set a; = y/R;;. Hence, for this type of processors it is enough to consider pure program
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states without any loss of generality. In other words the class of all possible superoperators Cg is fully
given by pure program states. Since for all program states |®),

1 1 1
1] = > |aj|2UjE]lU} =1 (5.30)
J

one can see that each element of Cg is unital.
Example: CNOT gate
In accordance with the classical controlled NOT gate transforming the bits in the following way

0000 10—-10 01—11 11—01 (5.31)
the quantum version of the CNOT operation is given by the relation
CNOT =1 ® |0){0| + 0 ® [1){1] (5.32)

As a result of this transformation the first qubit (data register) is transformed with respect to the
state of the second qubit (program register). In particular, if program qubit is prepared in the state
|0), then the data qubit remains unchanged. If the program qubit is in the state |1), then the data
qubit evolves according to unitary map o,. The general program state &, induces the evolution known
as z-Pauli channel, i.e.

0d = 0y = e’ 04 + |B° 02 0402 (5.33)
with |a|? = (0/£,]0) and |B8]* =1 — |a|?. That is, set Cg coincideswith the set of x-Pauli channels.

5.3.3 Y-processors

Another possibility how to choose a set of separable eigenvectors is to fix a basis |k)q in Hg, i-e.

|¢H>dp = |a)d ® |Xak)p- (534)

In this case the processor is given as G = ) |a)a{a| ® U,. Assuming the orthonormal basis {|x)p}
in H, we obtain

Ajk p(X3Glxk)p = D la)(al (x;[Ualxs)

= > (Ud)jkla)al. (5.35)

a

We can also check the unitality, that is

DA AL, = D0 (Ud)ik (U})jeaa) (alb)

j ab
= D (Ua)jk (Uh)saslaal
= Ok D _la)a] = Gl (5.36)

We have found that the Y-processors realize only unital superoperators. In particular, consider general
program state £&. Then the data register evolves according to relation

0a = oy =Y _|a){a'|(aleala’) Tr, (€U, U,) (5.37)

a,a’

Obviously, if we put gq = 1, then g, = 1 as well.
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5.3.4 Intersection of U-type and Y-type

It is obvious that local processors belong to the intersection of U and Y processors. However, in this
paragraph we will show that also another type of processors can be found in this intersection.

The CNOT processor used in our previous example has an interesting property. Namely, it belongs
to the intersection of the U-processors and Y -processors, but it cannot be written as a tensor product,
i.e.

CNDT_ZU ® )| = Zm (K|@ V., #0T0V, (5.38)

where j =0,1, Ug =1,U; =0,, k=+,— and V. =1,V_ = g,. Note that vectors |£) are defined
as [t) = %(|O) +11)). It is easy to see that elementary operations {U;} ({V.} as well) commute. In
general, let us assume that the unitary mapping G acting on two systems (processor) can be expressed
in the form

G =2 U; el (5.39)

and that the unitary operators {U;} are pairwise commutative ([U;, U] = 0 for all j,j'). Then this
transformation can be written also in the form

G = Z |£) (k| @ Vi (5.40)

where vectors {|k)} form an eigenbasis of each of the unitaries U;. On the other hand, the vectors
{|7)p} are eigenvectors common for all unitary transformations V.. These facts follows directly from
the following sequence of implications. Mutual commutativity of the set {U;} means that the each
of them can be written in the spectral form U; = Y e'®i=|k)(k|, where {|x)} is a fixed orthogonal
basis of the Hilbert space Hg4. Introducing this into the expression of G we obtain

G =) e k) (k| @ |i)(j] (5.41)
IR

It follows then that V. =}, e@ix|j)(j| are unitary transformations. As a result we can formulate
the following implication
Lemma
Pairwise commutativity of the operators {U;} (or {V}) is a sufficient condition for G to be a mem-
ber of the intersection of U- and Y-processors.
We note that it is not clear whether there exists some other type of processors with separable eigen-
vectors. Next we will discuss classes for which the eigenvectors can be entangled.

5.3.5 U’ - processors

Let us consider a simple modification of the U-processor. Using this new processor (which we will
call the U'-processor) we are able to implement unitary transformations, too. But in this case, the
eigenvectors are no longer separable. Let us define the mapping G by the relation

G=> Ui®|k)y(k| (5.42)

where {|k),} and {|k'),} are complete orthonormal bases of the program space #,. We remind us
that if |k) = |k') for all k, then we get the U-processor. Firstly, we need to show that Eq. (5.42) really
defines a unitary transformation. The following calculation

GG' = Y U.U] @ k) I') l|—ZUkU*®|k> (k|

k,l

148 Y |k)p(k| = 14, = GIG (5.43)
k
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confirms the unitarity of G. What will happen if we use |®), as the state of the program register?
We obtain

Glv)a ® [®)p = > ar(Uklt))a) ® |k} (5.44)
k

where |®), = Y, ai|k’)p, i.e. oy := (k'|®). Evidently, preparing the program register in the state
|k")p the induced superoperator is unitary. Namely,

0d — Uk QdU,TC. (545)

Let us call these program states as elementary. Unlike the U-processor, the program register trans-
forms as |k'), — |k)p, and therefore the eigenstates are not separable. But the action of G on the
elements [1)q ® |k'), preserves the factorability of these states. It means that elementary program
states do not entangle the program and the data. Only in such situation we are able use the processor
G to implement unitary transformations.

For general program register g, = Ry;|k'){l'| we obtain the map

¥[oa] = TryGoa ® 0,G' = Z Ry Uy oqUl. (5.46)

This means that the set of realizable superoperators is the same as in the case of the U-processor
with |k) = |k'). From this point of view, there is no difference between the U-processors and the
U’-processors. Nevertheless, U’ processors specify two different bases of the program register: the
basis of the input (elementary) program states {|k'),} and the basis associated with the output states
of the program register {|k),}. If we compare the operators A ;; and A’ associated with these bases,
respectively, we find

Ajr = (jIGIR) = > (jlm)(m'|k) Uy, = (§'[k)U;, (5.47)
and
= GIEY =D ' Im)(m! [K) U = (§'[k)Uy. (5.48)

Evidently, the operators in these bases take different forms, i.e. Aj, # A . We remind us that for
the U-processor we have (j'|k) = (j|k) = d;x, because the two bases c01nc1des Note that two bases
are different, if they are composed from the same set of vectors, but ordered in different way. For
instance bases {|¢), |¢),|zi)} and {|£), [¢), |¢)} are different.

5.3.6 Y’-processors

In what follows we shall generalize the Y-type of processors in the similar way as we have generalized
the U-processors. It means we define the unitary transformation by

G =) la)d|® U, (5.49)

where again {|a)4} and {|a’)q} are two complete orthonormal bases in H 4. We only verify the unitality
of induced superoperators. For the operators A we obtain

Aji, = (j|Glk) = Z|a (d'|(U (5.50)
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The unitality condition

ZAjkl A}kQ = Z |a)(a' ") (B (Ua) ks (U}
J J,a,b
= Z la){a|(U kz]( Jkl = Ok ko Z |la)(a
= 5k1k2]]-d (551)

is fulfilled and therefore the implemented superoperators are again unital.
Unlike the U and Y-processors both the U’- and the Y’-processors have entangled eigenvectors.
Moreover, if we denote by G’ the U’-processor and by G the U-processor, then we can write

ap = Gap(la ® Up) (5.52)

where U, = |k)(k'| and similarly for the Y-processors. That is, these processors are the same up to
local unitary transformation performed on the program register (see the discussion in Sec. VI.1.4.).
Let us denote by U,) the sets of U-processors and Y-processors, respectively, and by U’',)’ the
sets of U'-processors and Y'-processors. Since prime processors are generalizations of the non-prime
processors, we can write

UcU and Y c). (5.53)

The sets of implementable superoperators Cg,Cq for G € U,G' € U' coincide. More precisely,
to each processor G the processors G' = G(14 ® U,) realize the same set of superoperators, i.e.
Cg = Cqr. The case of Y-processors is different. Let G € ), G’ € )'. Then the sets of superoperators
Cg and Cgr (with G’ = G(Uy ® 1,,)) are different, since to an arbitrary superoperator ® € Cg there
corresponds a superoperator ® o Uy € Cg where Ug[pa] = UgoaU}.

If we define the suitable relations of equivalence among the processors then, in the mathematical
sense one can say that the non-prime processors are quotient sets of the prime processors, that is

G~ G, if G=G'(10U,) = U=U., (5.54)
GG, if G=G(Uye1) = V=), (5.55)

In this case for the general processor G the processors G = G(1®U),), or G; = (1®U,)G, realize the
same set of superoperators, i.e. Cgr = CG; = Cg. On the other hand the processors GI. = G(Ug ® 1),
or G} = (Ug ® 1)G implement the superoperators ® oy, or U o ®, where ® € Cg and U, are defined
above. Unlike in the previous case, the sets Cq; # Cg, since, in general, [Ug, ®] # 0. This result is
obvious, because a unitary transformation performed on the program register cannot affect the state
of the data system, but the unitary transformation of the data register changes the action of the prime
Processors.

5.3.7 Nonunital processors

All the discussed classes of processors possess one common feature. The sets of all implementable
quantum operations Cg contain only unital maps. To complete our discrimination of processors
with respect to structure of eigenvectors and the type of programs we introduce the class of nonunital
processors which contains all other processors which do not belong to the mentioned classes. However,
we shall not go into the details.

5.3.8 Covariant processors

Another class of processors that may be of interest are covariant processors. These have the property
that if the processor maps the input data state g;n, = |¥)q 4(%|, which we shall assume is a qudit, onto
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the output density matrix pyye, then it maps the input state Uly)q onto the output density matrix
Up,ut UL, for all U € G, where G is a subgroup of SU(D), for some set of program states S. This
relation 1mp11es that if |=) € S, then the operators A ;(E) satisfy the relation

ZUA (E)omAl(E ZA Ui U AL(Z), (5.56)

for all U € G. Let us now consider the case G = SU(D). If we take [¢)4 to be a member of an
orthonormal basis and then sum both sides of the above equation over all basis elements, we find!

ZUA 2AlE)U = ZA (5.57)

Because this holds for all U € SU(D), Schur’s Lemma implies that

N

> A;BALE) =1, (5.58)

j=1

where c¢ is a constant. Taking the trace of both sides of Eq.(5.58) we find

N

> A;BANE) | N=cTr@@) =cN, (5.59)
so that ¢ = 1. Because this relation holds for any program state, we have that

N
ZA]'IU A;kg = 5k1k2]]-' (560)

This last equation defines the so-called unital superoperators that leaves the total mixture unaffected.
Note that this is not the same constraint as Eq. (5.7) because it must hold for any processor.

We showed that if the processor is covariant, then all superoperators implemented by it are unital.
But the opposite implication does not hold. Let us assume a processor that is able to implement
some unitary operation V. Then from Eq. (5.56) we obtain the condition UV|¢y)4 = VU|¢)4 for all
U and |¢)4, that is [U, V] = 0 for all U. Applying Schurr’s lemma we get V. = 1,. Therefore we
conclude that the processor which is able to perform a nontrivial unitary transformation V cannot
be covariant for an arbitrary program state. As a result we get that processors from the U’ class
cannot be covariant with respect to the group G = SU(D). The question of the existence of nontrivial
covariant processor remains still open.

On the other hand, we should note that for a restricted set of program states (i.e. the subset of
implementable superoperators) the given processor can behave in a covariant fashion. As an example,
let us consider a processor provided by the quantum information distributor (see Section VI1.5.2). The
program state of this device consists of two qubits and the data state is one qubit. The unitary
operator, G can be implemented by a sequence of four CNOT gates. A CNOT gate acting on qubits j
and k, where j is the control bit and k is the target bit, is described by the operator

Djx|m)j|n)e = m);|m & n), (5.61)

1n fact, we note that this is equivalent to consider g;, = %]ld, Here is the point where the implication “covariance
implies” cannot be reversed, and we loose the equivalence relation between the following equations and Eq. (5.56)!
Moreover, since all unitary operations performed on a total mixture leave the total mixture unchanged, it is not
surprising that the covariance requires unitality. Consequently, we would not need the arguments bellow.
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where m,n = 0 or 1, and the addition is modulo 2. If we denote the data qubit as qubit 1 and the
two program qubits as qubits 2 and 3, then the operator G for this processor is

G = D31D21D13D12. (562)

We remind us that such defined G is the U-processor, which cannot be covariant in the previous sense.
Let the set of implementable superoperators be specified by the following states of the program
register

|Z) = al|Zg0)23 + B|®)23, (5.63)
where
Z00) = %(|o>2|o>3+|1>2|1>3)
®) = %|o>2<|0>3+|1>3), (5.64)

and « and J are real, and o® + 8% + af = 1.
If the data register at the input is described by the state vector g;,, then at the output of the
processor we find the data register in the state
2
s 1.

Pout = (1 — ﬂQ)Qi" + 2

From this equation, it is clear that the processor is covariant with respect to SU(2) if the program
state is given by Eq. (5.63). We say, that the subset of superoperators F C Cg (determined by the
processor G and the subset of program states {|=)}) is covariant, if for any unitary transformation,
U € SU(D), the relation

(5.65)

3[U0;, U'] = U[g;]U" (5.66)

holds for every ® € F and for all g;. Equivalently, we can say that the processor G is F-covariant.
In the left-right formalism the above condition corresponds to the commutativity of matrices U (as-
sociated with unitaries U) and ® € F.

5.3.9 Maximal processors

We have mentioned that given processor G determines the set of all programs Cg. From the math-
ematical point of view, it induces mapping G : S(H,) = Licp(Hq) from the set of states of program
register S(H,p) into the set of all trace-preserving completely positive linear maps (superoperators) of
the states of data register Lip(#Hq). The image of this mapping is the set of all realizable programs by
the given processor, i.e. Cg = G[S(Hp)] C Licp(Ha)- Till now we have studied the following problem:
Given a processor G. What is the image of the program state space Cg?

Next we shall investigate the question of the existence of such mazimal processors G, for which
the induced mapping G is injective. That is, each program state encodes different superoperator and
the set Cg contains as many elements as it can providing that the size of the program space is fixed.
We have seen that for U’-processors the mixed program states are irrelevant, i.e. the mapping G is
not injective in this case. For Y'-processors the injectivity of G is questionable, but it should depend
on the specific processor G.

The question on the existence of maximal processors is not so trivial as it may seem. Consider the
following example that answer this question in the positive way. In the previous chapter we discussed
the process of homogenization. In this process the main result was that the evolution of the system
depends on the initial state of the reservoir. For different states £ the system evolves differently. In
more details, it evolves into the state & given by the reservoir. Take as a processor G the partial swap
operation, i.e.

G = cosnl + sinnS (5.67)
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where S =3, |kj)(jk| is the swap operation. The program and the data register are associated with
single qudit. To prove that different states of the program &, generate different superoperators we
shall use the contractivity of the induced mappings. However, in the previous chapter we proved the
contractivity only for qubits and now we need to generalize our previous proof.

The induced superoperator is given as

Eeloa] = o4+ s%¢ +ics[oq, €] (5.68)

with the standard notation ¢ = cosn,s = sinn. Let us introduce the distance function D(g,0) :=

\/m . For the given distance we obtain
D*(&fol, &le) = Tr(c*(e— o) +icslo— o', €])?
= ('Tr(o—0')? — 25’ Trfo — o', €
= ¢*'D%*(o,0") — 2¢s*Tr{(0 — 0')¢}?
+2c%52Tr(o — 0')?¢?
= ¢'D*(g,0) +%¥vaggnm

—2c%s? Z MeAm|{m|o — o' k)|

k,m
= ¢'D*(o,0')
+s CQZ Ak = Am)?[(mle — o' |k)I?

< c4D2(9, 0) (5.69)
where we have used the expression Y5, . (Ax — Am)?|(m|e — ¢'|k)[> > 0. In this calculation we have
assumed & = >, Ax|k)(k| to be written in its spectral decomposition. The last inequality in Eq. (5.69)
implies that the superoperator & is contractive. Since evidently £¢[€4] = &g is the fixed point of the
superoperator & and the Banach theorem ensures its uniqueness, it follows that & # & (if € # &').
Therefore, the partial swap processors belongs to the class of maximal processors. Different program
states &, encodes different superoperators . In the context of homogenization problem the above
proof enable us to generalize the homogenization process also to qudits.

The crucial step in the proof of the "maximality” of processors is to show the difference between
the superoperators. To be sure that two superoperators are different we need some canonical way of
their expression in which each superoperator has a unique form. The expression via Kraus operators
is not unique, but the left-right expression is.

5.4 Processor design

In the previous sections we have studied sets of superoperators that a given processor can perform. We
would now like to turn the problem around and suppose that we have a given set of superoperators,
and our aim is to construct a processor that will be able to execute them. Here we will ask more
modest question: Under what circumstances we are able to find a processor G that will perform
some set of superoperators? In particular, suppose that we have the superoperators Ay, where the
parameter 6 varies over some (possibly continuous) range, and that these operators have a Kraus
representation {B;(6)|j = 1,... M} such that

M
Aglo] =) " B;(6)eBl(6). (5.70)

j=1
Our aim is to find a unitary operator, G, and a set of program states |=2¢)p, where

Aolea) = G(ea ® |Z6)p p(Eo) G (5.71)
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programs superoperators

Figure 5.2: Given the set F of superoperators. We figure the problem of finding the processor G,
that enables us to implement every superoperator A € F.

The operators A;(Z) that represent the action of the processor on the data states when the program

state is |Z), are now functions of # and we shall denote them as A;(#). Our processor then transforms

the input data state gg4 into the output state, ,Q(om)

plet) = ZA 8)04A}(0). (5.72)

We shall find the condition that the operators in the Kraus representation of the superoperator
must satisfy in order for such processor to exist. We first note that the operators {A;(#)|j =1,...N}
constitute also a Kraus representation of the superoperator Ay. The Kraus representation of a
superoperator is not unique. Any two different Kraus representations of the same superoperator,
{Bjlj=1,...M} and {Cj|j =1,... N}, where N > M, are related as [2]

N
C; =) UiBy, (5.73)

where the coefficients Uy; form a unitary matrix. It is understood that if N > M, then zero operators
are added to the set {B;|j =1,... M} so that the two sets of operators have the same cardinality.

In what follows we will present some processors which simulate specific quantum channels and can
be programmed with the help of quantum program registers.
1. Universal quantum processor

Universality of devices is a very valuable and desired feature. Universal quantum processor should
be able to implement any superoperator. The first step to achieve this objection is to implement any
unitary transformation. If we succeed, then the implementation of all superoperators is straightfor-
ward. The Kraus theorem implies that any superoperator can be imagined as a unitary transformation
on d?-dimensional Hilbert space, where d = dim #H4. Therefore, if we are able to implement any uni-
tary transformation on d? Hilbert space, then we are able to realize also any superoperator on our
d-dimensional data register. This problem was firstly considered by Nielsen and Chuang [44].

Consider that such universal processor exists. If |¢)4 is the state of the data register and |Zy),
is the state of the program register that implements the operation U, the processor carries out the
transformation

G([¥)a ®[Eu)p) = Ulh)a ® [Eyy)p (5.74)
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where |E’U’¢)p is the state of the program register after the transformation G has been carried out.
The subscripts U and v indicate that this state can depend on both the operation U and data state
[#))a. The linearity of G implies that |Z;, ) is ¢-independent, i.e. [E;).

Consider two programs |Zg) and |Ey ) that cause operations U and V, respectively, to act on data
register. This implies that

G([¥)a ®[Eu)y) = Ulp)a®[Ey)p (5.75)
G([¥)a®[Ev)y) = VI)a®[Ey)p (5.76)

The unitarity of G implies that

p(EVIEU), = aW IV UW)a »(EY [E0), (5.77)

and if (E|Zy)p # 0, then

AUV U, = 2EVEU (5.78)
P(‘_'V ‘_'U)p

The left-hand side of this equation depends on [1)4 while the right-hand side does not. The only way
this can be true is if

ViU =¢“1 (5.79)

for some real 1. This means that operators V and U are same up to a phase. If we want these
operators to be different, then necessarily ,(2i,|Z},)p, = 0, which implies that ,(Zv|Z¢), = 0, too.
Therefore, the states of program registers corresponding to different unitary transformations must be
orthogonal. This implies that the dimension of the program register must be greater or equal to the
number of different unitary transformations that can be performed on data register.

Alternatively, this can be proven by using the following statement (see Sec. VI.2). If two super-
operators ® < {M,}, ¥ < {IN,} are realized with the same processor G, then

> MIN, = (3|¥)1 (5.80)

with the operators M, = (u|G|®) and N, = (u|G|¥). Unitary transformations U,V contains only
one operator in their Kraus representation, i.e. U and V respectively. If they are implementable
by the same processor G, then necessarily V™'U = cl where ¢ is some constant. The unitarity of
U # V lead us to the solution that the parameter ¢ must be equal to zero, i.e. ¢ = 0. This parameter
¢ corresponds to the scalar product between the associated states of the program register (|Z¢), |Zv)).
Hence, we obtain the same result as before. Program states must be orthogonal.

Consequently, no universal quantum processor exists, since its existence implies that the program
space is uncountable and therefore the corresponding Hilbert space is not separable. One can use
the generalized eigenfunctions (d-distributions) to represent the desired programs, but the physical
relevance of such device is questionable [50].

2. Phase-damping channel.

We mentioned that phase damping channel is a specific example of Pauli superoperators. Tt is given
by operators My (p) = /T — pll and M, (p) = ,/po. where both, the o, and 1 are unitary operators.
Hence for the mapping C(p) we have

C(p)[ed] = (1 - p)leal + po.04o?. (5.81)

Simply we can define the processor (U-type) by the equation

Gapl9)a ® |k)p = (Uk|d)a) ® k), (5.82)

88



where k = 0,1 and Uy = 1,U; = 3. The state |®(p)), = /p|0)p + /I — p|1),, represent the program
state, in which the required transformation P(p) is encoded. It means we are able to encode the
parameter p into the program state and we can execute the whole one parameter set of superoperators
C(p)-

3. Amplitude damping channel

We have already mentioned this type of superoperator given by the parameter p and the operators
Mo (p) = [0)(0] + /1 —p|1)(1|,M;(p) = /p|0)(1]. For a fixed p such mapping can be realized by
introducing one qubit and apply the transformation

Gap = [00)(00] +[11)11|
+/I=p(110)(10] - [01)¢ 01])
+4/p(|01)(10] + |10)¢01]) (5.83)

Unfortunately such realization doesn’t serve our purposes, because the processor mapping itself de-
pends on the value of the parameter p, i.e. Ggp = Ggp(p), and the program state is fixed, which is
not the situation we wanted. In our scenario we want to encode the value p into the state of program
register and simulate the amplitude damping by the given processor.

So the question under consideration is: Are we able to find a processor independent of p which
executes the whole set of superoperators P(p)? Of course, we can do it for a finite number of val-
ues p. As we have already mentioned, for any two superoperators Ps ¢ {N,} and Py < {M,}
implementable by the processor mapping G, and pure states |¥), and |®), holds the identity

> MIN, = (¥]®)1 (5.84)

To satisfy this property for any two parameters p, p', we must let N; = 0, Ny = 0,N3 = My(p), Ny =
M; (p) to be Kraus operators of the program P (p) and N} = Mo (p'), Ny = M; (p'),N§ = 0,N}, =0 to
represent the program P(p’). Then trivially ), NLN;c = 0 and the identity (5.84) holds. In principle,
we can construct the processor Gy, realizing both superoperators for two different values of p,p'. In
order to realize the uncountable set of parameters p we need the Hilbert space with uncountable basis.
(We remind us the case of universal processor).

However, the question of a realization of all amplitude damping channels is still open, because
to single superoperator there exists many different Kraus representations. What we now must do is
to try to find a Kraus representation for this channels that does satisfy Eq.(5.84). In particular we
assume that

Co(p) = Y U (0)M,(p) (5.85)

where coefficients U, (p) form an N x N unitary matrix, and M,(p) =0 for p =2,..., N — 1. Note
that N represents the number of Kraus operators representing the same channel (fixed p) as operators
Mo (p), M;(p). In addition we demand

> Clp)Cu(ps) = f(p1,p2)1, (5.86)

where f(p1,p2) is a function whose magnitude is less than or equal to one. We will show that there
is no such Kraus representation with N finite. If the last equation is to hold, then the coefficients of
|0){0| and |1)(1| must be the same.Inserting the explicit expressions for C, (p) in terms of B, (6), this
condition becomes

(1= =p) (T =p2) Y U, (p1)Vou(p2) = vP1P2 D, Ut (p10U1,(p2) (5.87)
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We can now make use of the fact that the rows of a unitary matrix constitute orthonormal vectors and
the Schwarz inequality to show that the magnitude of the sum on the right-hand side of this equation
is less than or equal to one. This gives us that

\/P1P2 (5.89)

|;Ugu(p1)U0V(p2)| S 1_ (1_p1)(1 _p2)

Now we need the following lemma

Lemma. If the set {|v;)} contains N vectors of length 1, and [(v;|vg)| < 1/(N — 1), then the vectors
{|v;}} are linearly independent.

Proof. The vectors are linearly dependent, if there are constants c;, at least some of them are nonzero,
such that >, c;jlv;) = 0. Taking the inner product of both sides with |vx) the assumptions of the
lemma imply that

1
lekl = 1) cjonlo)] < N_1 > el (5.89)
Jii#k Jii#k
Summing both sides of the above inequality over k gives us that

;I%KNI_IZ Y el =Y e (5.90)

k jii#k k

which is clearly impossible. Therefore the vectors must be linearly independent. ©

This lemma can be applied to the first row of the unitary matrix U(p), which we can think of as
an N-component normalized vector, which we shall call ug(p). What we will show is that we can find
arbitrarily many of these vectors whose inner products can be made arbitrarily small. The lemma
then implies that these vectors are linearly independent, but this contradicts the fact that they lie
in an N-dimensional space. Hence, there must be an infinite number of Kraus operators, and the
program space must be infinite dimensional.

In order to study the inner products of the vectors ug(p) for different values of p, we need to
examine the function appearing on the right-hand side of Eq.(5.88)

\/P1P2 (5.91)
1- (1 —pl)(l —pz)

Using the fact that if 0 <p <1, then /T —p < 1 —6/2. we have that

2
< v P1D2 (5.92)
P+ P2 — (P1p2/2)

9(p1,p2) =

9(p1,p2)

Finally noting that for py,p» € [0,1]

p1+ D2 4
< - 5.93
p1+p2— (P1p2/2) — 3 (5.93)
we derive the upper bound
8y/P1p2
) <o 5.94
g(pl p2) = 3(p1 +p2) ( )

Consider now that we would like to realize the set of channels parametrized by values ¢, =
[1/(16M?)]", where n = 1,2,... and M is any positive integer. Putting p; = ¢,, and ps = g, where
m > n the inner product is bounded by

g(p1,p2) < gw (5.95)
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Therefore the set of vectors {ug(gm) : m = 1,... M} have pairwise inner product whose magnitudes
are less that 1/M, and, therefore, they are linearly independent. As these vectors have N components,
if we choose M > N we have a contradiction, because the number of linearly independent vectors in
N-dimensional space must be less than, or equal to N. This implies that the number of Kraus operators
is infinite, and the amplitude-damping channel cannot be realized by a finite quantum processor.

In summary, for amplitude damping channel 4, the condition (5.84) cannot hold for every pair of
parameters p,p’. Consequently, it means that it is impossible to encode the parameter p (rate of the
damping) into a state of the program register.

5.5 Probabilistic implementation

Till now we have described the deterministic implementation, it means with probability equal one we
were able to implement a set of superoperators Cg using the processor Gg,. We have seen that no
universal processor in this scenario can exist. In this section we will investigate what will happen,
if we perform a measurement M of the output program register. Of course, the realization of the
measurement will bring probabilistic features in our description and our implementation becomes to
be characterized by the probability of success.

In particular, we are mainly interested in the realization of unitary mappings, i.e. only in cases
when g(‘mt) = Up,U?. Let us assume that a projection Q is only one-dimensional and projects onto
the state |Q)). Define the numbers ¢; := (Q|j). Then the Eq.(5.23) can be rewritten in the form

|ww|Zj @t

~(out)

(out)

That is, the output state o,/ can be written in the following form g(out) [1p(uD)) (h(out) | where

(v g §jvﬁ_A B | 1¢)a = AE,Q,¥)[¢)a (5.96)

Note that A(Z,Q,%) is not necessarily a linear operation, because it is ¢-dependent.
Define a 9-independent linear operator A(E,Q) := 3_; ¢;A;(E). Then the probability of success
reads

p(s) = (Y|AE, Q)TA(E, Q) ) (5.97)

Further analysis will focus on the conditions under which it is possible to make this probability
independent of the initial data states |1)q, when the performed transformation is indeed linear. Such
requirement means ()| AT A[y) = const for all states |1)) € Hq. Let us fix the vector [1). Then all the
other vectors can be obtained by the unitary transformation V acting on this vector, i.e. [¢') = V|¢).
Then the condition “for all vectors |1))” can be rewritten in the following way

(W|VIATAV|yp) = (y|ATAlp)  VV (5.98)

Since such condition should be independent of the state |¢), then the above equation represents the
commutation relation

[ATA,V]=0 VWV (5.99)

Finally, the Schurr lemma implies that the operator AT A must be proportional to identity operator
1. The solution has the form A = kU, where k is a complex number (|k2 = p(s)) and U is a unitary
operation. That is, we have obtained some restrictions on our choice of the initial program state and
projection (measurement).
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On the other side the data system evolves in the following way |¢) — \/1—)A(E,Q)|z/)). The

p(s

requirement of the unitarity of such transformation leads us to the condition

—AtA =1 (5.100)

what is the same result as we have derived from the t)-independence condition, i.e. AtA = p(s)1. As
a result we can formulate the following theorem:
Theorem. The implemented operation A = ﬁf& is unitary if and only if the probability of success
p(s) is independent of the initial state of the data register.

This theorem limits the possible choices of couples (Z,Q). In other words not all program states
|Z) and not all measurements Q cause the unitary transformation of the data system. Next two types
of questions can be asked:

e Given (fixed) a measurement projection Q. For which program states |ZE) the data system
evolves in a unitary way? Let us denote by Pg the set of all such program states.

e Given a program state |Z). Does there exist a projection Q, such that the performed transfor-
mation of the data system is unitary? Denote the set of all such projections by Mz .

Next we shall be interested in cases when a measurement Q is fixed and the probability of success
p(s) for all programs in Pg is constant. That is, it is not only ¢-independent (the transformation is
unitary), but also E-independent (for |Z) € Pg). With these requirements one can investigate also
the relation between the size of the programs Pg and the value of the success probability p(s). The
last question is the question on the optimality in the sense of the mutual relation “p(s) versus Pg”.
That is we have to aims. On one hand we would like to realize as much unitaries as it is possible, but
on the other hand we would like to preserve the probability large enough.

We are not able to give here an explicit form of projections Q and programs Pg in these most

general settings (with general processor). Consider therefore a very specific case, when ¢; = /p(s)
for all values of j (note that p(s) < 1). The realized transformation takes the form
U=> A, (5.101)
J

We have to show the existence of the one-dimensional projection Q with the required property @ ;;; =
(J1Qls") = gjq; = p(s) for all values of indices j, j'. The property Q? = Q implies

N
Q)5 = D_(Qr(Qryr = Y_p(s)* = Np(s)® = p(s) = (Q)j
k=1

k

where N denotes the dimension of the program Hilbert space H,. The equality Np(s)? = p(s) can be
satisfied only when p(s) = 1/N. For example the state |Q) = LN >_; 7) satisfies such property.

The goal we have achieved is that the success probability with one-dimensional projector can be
made constant and in our case it equals 1/N. If we use a general program state |=Z) and apply the

measurement Q with ¢g; = 1/N , then the data transforms according to map

1
———A;(8) (5.102)
Zj: Ny/p(s)

which is not linear and the probability of success (p(s) # 1/N) depends on the initial data state [¢).
The set of all allowed program states |E) = ), ax|k) € Pq is determined by the condition

> apopAjAly, =1 (5.103)
Jj'kk'
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where the operators A := (j|G|k) are fully determined by the processor mapping G. Of course, the
explicit form of these program states strongly depends on the particular processor G.
Note. Any one-dimensional projection Q = |Q)(Q| can be represented by a constant matrix Q;;; =

1/N. Tt is always possible to find a basis {|k)} in which the vector |Q) takes the form |Q) = —= 3", |k).

Therefore, our above discussion is valid for a general one-dimensional projection. However, the oper-
ators A j; must be defined with respect to this new basis.

5.5.1 Probability of success

Consider a general U-processor G = 7, U; ® [j){j|. Let us denote by |¢,) the basis in which the
measurement M = 7 1 ® |@q)(¢a| is performed. The output state of the data register after the
action of the processor G can be expressed in the following (very convenient) way

MV = D | D (bal)eUsli)a| @ |6a) (5.104)
o | g
= Y A@W)E 6a), (5.105)

where the program state is |E), = 3_; a;[j) and we define the operator A(a) :=3_,(¢alj)a;U;. The
probability of success (i.e. measuring the outcome a) then reads

p(s) = (WAl (a)A(a)ly) =]| Zvajajij)dHQ (5.106)

J
S WVailPlegl? + >0 Vi Vajada(w[UL U jy) (5.107)
j

33" 375"

where the coefficients Vg := (¢,|j) form a unitary transition matrix between the two bases. We have
divided the success probability into two parts. One of them is clearly y-independent and the second
one not. However (as we shall see in the subsequent section) it is still possible (in special cases) to
extract an independent part from this second term.

Note that the projection Q = |¢,){¢a| is one-dimensional. It follows that (Q);; = V,;Va;r. In the
specific case when Q;;; = 1/N (N = dimH,) (now |j) is the basis in which A, = §;,U;) we have
that V,; = 1/v/N for all j. Note that in this case we project onto the vector |¢,) = |Q) = LN 225 1)
Such choice of the measurement outcome implies that

1
p(s) = NWIATAI@ (5.108)
and the initial state |1))4 evolves into the state |1)')4 given by

Ald)a
a(Y|ATAl)q

where we used the notation A = 3. a;U; with a; = (j|E). As we have already mentioned before,
whenever the realized transformation is unitary, the probability of success becomes -independent.
Moreover, in this specific case it is also E-independent and equal p(s) = 1/N.

Another choice can be done so that V,; = d,;. It corresponds to the case when the measurement
basis coincides with the basis of elementary programs, i.e. {|¢,)} = {|j)}. In this case we obtain
1-independent success probability

[)a = [¢")a = (5.109)

p(s) = |aa/® (5.110)
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and the realized transformation is always

[¥)a = [¥")a = Ualth)a (5.111)

whatever the initial program has been chosen. That is, the program register evolves in the same way
irrespective on the choice of the program state. However, the probabilities of success depend on the
particular state |Z),.

5.5.2 Example: CNOT gate

Consider again the CNOT processor. Since it belongs to the intersection of the Y-processors and U-
processors, it follows that its action can be expressed as

[)a@ |+l = [¥)a@|+) (5.112)
[h)a® =)y — ozld)a®]|-) (5.113)

That is, we have the identity (see Eq.(5.38))
CNOT = |0){0| @ 1 + |[1){1| ® 07 = L @ |+){+| + 0, & |—){—| (5.114)

where |£) = %(|0) + |1)). If we apply the general theory (discussed above) onto the CNOT gate,

then we find out that the choice of the projection reads |Q) = |0) = \%(H) +|-))- It is an easy
exercise to show that introducing the CNOT gate into this general evaluation one reproduces the original
example studied by Vidal and Cirac [45]. They showed that in this settings the program states
lay = %(emm) + e7%|1)) encodes unitary operations U, = ezp(iac.).

However, the basis of the program Hilbert space can be chosen arbitrarily and our results are still
applicable. Let us assume the basis |0)p, |1), and the measurement projection |Q) = \/Li(|0) + 1)) =
|[+). What kind of transformations does the CNOT gate implement in this settings? Again we have
Qj; = 1/2. In such case the operators are given by the relation A;(E) := (j|CNOT|Z). The direct
calculation leads us to operation

Eo+E1,

1
rp(s); & =2z (5.115)

where the probability of success p(s) = 3| + Z1|? and E; := (j|E). We see that the implemented
transformation is always trivial. On the other hand, we have no restriction on the program state |=),
but the probability of success p(s) depends on the particular choice.

There can be an interesting question whether for each program state there exists a projection
(measurement) such that the probability of success is 1-independent, i.e. whether each program
state can be used to implement a unitary transformation. The above projection onto the vector
|+) answer this question in a positive, but trivial way (the implemented transformation is always
trivial). Therefore, we will pay our attention to this problem and we would like to know how many
transformations can be implemented on condition that the program state is fixed and projections Q are
varied. One can consider general measurement projecting onto the vector |Q), = cosn|+)+ei? sinn|—).
Then the success probability reads

p(s) = laf* cos?n+ [bf* sin®  +
(|0 |1) cosnsinn{ab*e’® + a*be ¢} (5.116)
where the program system is initially in the state |=) = a|+) + b|—). If we put a = cos&, b = €% sin¢,

then the requirement of 1-independence implies cos(¢ — ¢) = 0, i.e. ¢ — ¢ = £7/2, or cosn =1, or
sinny = 0. Note, that the last two possibilities corresponds to trivial cases of projecting onto vectors
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Figure 5.3: The figure represents the so-called Bloch sphere, i.e. the graphical representation of the
state space of a single qubit. In this case it corresponds to the set of all quantum programs of the
CNOT processor. You can see the relation between the choice of the projection |@Q) and the set of all
programs (line around the sphere), which encodes unitary transformations, i.e. Pg. Obviously, the
plane corresponding to allowed programs is perpendicular to the plane containing the projections |@).
In our case the vectors |+) plays the role of poles and the points in equatorial determines the value
of the relative phases ¢, ¢.

|£). As we know, in that case all program states are allowed and all of them encode the same unitary
transformation 1, or o, respectively.

The condition ¢—¢ = +7/2 is much more of interest. It says that the programs with the same value
of the relative phase ¢ can encode unitary transformations providing that we choose the projection
onto |Q) = cosn|+) + e{™/2+¢) singy|—) with an arbitrary angle 5. Hence, for a fixed program state
|E) there exists a continuum of projections Mz. On the other hand, if we fix the projection Q (the
relative phase ¢ is fixed), then only those programs |E) € Pg encode some unitary transformations,
for which the phase is adjusted according to relation ¢ = +7/2+ ¢. As a result we have found a very
simple relation between the projections and allowed programs Pg, namely

p(s) is Y—independent & ¢ — ¢ = +7/2 (5.117)

Next we look at the unitary transformations we are implementing. Providing that p(s) is -
independent (i.e. ¢ — ¢ = £m/2) the implemented unitary transformation has the form

acosnl +be " sinno, _ |a|cosnl +i|b| sinno,

U= =
\/|a|2 cos? n + |b|2 sin® n \/|a|2 cos? n + b2 sin®n

where we used e#?~ %) = *i"/2 = 44 Tt is clear that for the fixed program state the number of
unitaries form a one-parametric continuum parametrized by 7 determining the projection. Conversely,
for a fixed projection Q the set of allowed programs P is again one-parametric and characterized by
¢ (Ja| = cos§). However, the probability of success p(s) depends on the choice of the program state
|Z) except the case when cos?n = sin® 7 = 1/2. This case corresponds to the original example derived
in [45]. We have shown that this is the only case (of measurement) when the success probability is
also Z- independent (for all allowed programs). For all other choices of measurement the success p(s)
depends on the program state |Z) € Pq.
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5.5.3 U-processors

Let us see how this mechanism might work for a general U-processor. For this type of processors it is
possible to find such basis of the program register {|j)} in which Aj; = ,,U; where U; are unitary
operators. We then have that

G([9)a®|E)y) = Z%’UJW)d ® [4)p- (5.118)

with a; := (j|Z). In order to complete the procedure we apply the fixed (independent of the program
state) projection 14 ® Q, to the right-hand side.

We want this processor to implement the one-parametric set of operator U, = Zj\il zj(1)U; on
|¥) 4, for some coefficients z; (). It implies that the following equality holds
1
m(ﬂd ® Qp)G([)a ® Bu)p) = Uplth)a ® |vp)p, (5.119)
where |v,), is a unit vector lying in the range of Q, and
N
p(s) = 11 ki (W)U, )2 (5.120)
j=1

is the success probability of carrying out the transformation. Let us remind that &; (1) = (@ |7){F|=.)
and we put Q = |¢,)(@q|- Since Q is one-dimensional the vectors |v,) and |@Q) coincide.

Two-dimensional program space

It is useful at this point to look at a simple generalization of the previous example. Suppose that
we have a U processor where the program space is two dimensional. The vectors |t), and |u), are
orthonormal program vectors, and |t), causes the unitary operation T to be performed on the data
state, while |u), causes the unitary operation U to be performed. The action of our processor is then

G([¢)a @ [®)p) = T|¢h)a ® [£)p(t|®) + Ulth)a & [u)p(u|®). (5.121)

The p dependence of & is understood, but not explicitly indicated. In this case our projection
operator can only be one-dimensional, so we set Qp = |w ), p(w. |, for some unit vector |w, ), in the
program space. Note that if |w), is the unit vector orthogonal to |w },, then the projection onto |w),
corresponds to failure. Our object is to take the input data state, |1)4, and to create the output state
(cos uT + sin pU)|¢)q (we assume, that cos pT + sinpU is an unitary transformation). Looking at
Eq. (5.119), we see that we will accomplish our goal if

Qplu)p(u|®) = 2Qp|t) (D) (5.122)

where we use the definition z = tanu. Since Q, = |wi){(w.| the above equation implies that the
vector |w) must be parallel to the vector

1£)p = |udp(u|®) — z[t)p(t| D), (5.123)
From this we can infer that .
{t|®) = — z<<1|;|"u))> (u|®). (5.124)

The normalized program vector, |®),, can then be written as
1 1/2
[(ulw)[? + (I(t|w)|/]2])?

|®)p = (lu)p(ulw) — %It)p@lw})- (5.125)
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The failure probability, py, is just the square of the norm of the projection onto |w), of the output
vector of the processor (see Eq. (5.121)), or we can insert our results into the general formula (5.120)
to obtain

p(f) = Y GG
Jj=u,t
+Hu|@)(@|t) t|w) (w]u) (Y| T U))
(| @)(@u)(ulw)(w[t) (U T|y) (5.126)

Introducing the relation (5.124) the failure probability can be rewritten as follows

p(f) = Y [G12) PG w) ] — 2[(@18) % |ulw) P (I TTU + U T|y) (5.127)

Jj=u,t

To make this probability independent of the initial state of the data system, we need to choose the
operators U, T in a way that either T'U + U'T =0, or T'U + UT = 1.

Let us now make such a specific choice of operators T = 7.5, U = 1.4, such that TTU +U'T = 0.
In this case it is easy to see that T1U + UTT = 21.771. This expression vanishes whenever 7 L 1
and in that case the performed transformation is unitary. The probability of success (failure) is
independent of the state of data system. Note that different choices of T and U require different
processors. The implemented operations are cos u(7.6) + sin p(17.5).

The failure probability is obviously 1-independent, but is it possible to make it also u-independent?
Let us denote a := |[(u|w)|?,b := |(u|®)|?, then the equation (5.124) and the normalization of |®), |w)
implies

1_b:1_a

b 12
e (5.128)

The probability of failure reads
p(f) = (| @) (ulw)[* + |(t[®)*[(t|w)]* = ba + (1~ b)(1 - a)

It follows that we can express b as a function of a, i.e. b = az?/(1 + a(z? — 1)). It corresponds
to a relation between projections and programs (cf. section about CNOT). Note that the parameter
a represents the choice of the measurement projection, whereas the parameter b is associated with
the state of the program register. Introducing this expression into the above equation for the failure
probability we obtain

_a’2’+(1—a)?

p(f) =~ g P (5.129)

That is, in general p(f) depends on the value of the parameter z (u). Only with a specific choice of
projections, when a = |{(u|w)|? = 0,1,1/2 (in this cases b = 0,1, 22/(1 + 2?2)) the probability of failure
(success, as well) becomes to be py-independent. In the mentioned cases it takes values p(f) =1,1,1/2
(respectively). But for instance, in the case a = 1/3 we have p(f) = %ﬁzig For us the result, when
a = 1/2 is of interest, because then the set of performed transformations is largest (in comparison
with choices a = 0,1). In fact, if a = 0,1 then for all program states the processor performs either T,
or U (respectively).

Let us note that the overlap between program states and basis state b = |(u|®)|* depends on
the parameter z (or equiv. ). This behavior is nothing unexpected. Indeed, it is obvious that the
program |®) encoding the unitary transformation cos T + sin U should depend on the parameter
- We remind us, that due to the more convenient notation we omitted to label program vector by
the index . On the other hand if we fix a program state |®) (i.e. value b), then the set of all possible
transformations will depend on the measurements we perform. And the u-dependency will be hidden
in the choices of projections Q.

| 2
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We have shown another example of probabilistic implementation of quantum processor that can be
used to implement one-parametric set of unitaries U, = cos uT + sin pU with probability p(s) = 1/2.
The program states have the following explicit form

|®,)p = cos p|t) + sin p|u) (5.130)
and the successful implementation is associated with the projection onto the vector
1
V2

The verification of this result is straightforward. Note that this one-parametric set do not possess
group properties. That is, we have shown different example of the implementation of one-parametric
set of unitary transformations as it was in CNOT case. It is easy to see (by following the same steps) that
the second possibility, when TUT + UT' = 1, does not result in the success probability independent
of the parameter .

lwi) = —=(lu) +[£) (5.131)

5.5.4 Quantum distributor machine

In this section we shall investigate another important type of quantum processor which can be used
like universal NOT machine, or universal COPY machine [46]. We shall not define the processor mapping
G, directly by unitary transformation, but as the sequence of specific (elementary) quantum gates.
We must first introduce the basis element of our network called generalized CNOT. Originally, the
CNOT gate is defined for two qubits by the formula

1

Doy = Y [K)a(k| ® [m & k)y(m|. (5.132)

k,m=0

where a, b labels the pair of qubits on which the gate is applied. In principle, one can also introduce
an operator le defined as

1
D, = > [kalkl @ |m S k)y(m|. (5.133)
k,m=0

In the case of qubits these two operators are equal, but this will not be the case when we generalize the
CNOT operation to Hilbert spaces whose dimension is larger than 2. In particular, we can generalize
the operator D for dimension N = dim H4 > 2 by defining
N—1
D= Y |k)a(k| ® [(m + k)mod N);(ml, (5.134)
k,m=0

which implies that

N—-1
D |K)a(kl @ |(m — k)mod N)(m. (5.135)

k,m=0

¥
Dab

From this definition it follows that the operator D, acts on the basis vectors as
Dy k)|m) = [k)|(k + m)mod N) (5.136)

Now we see that for N > 2 the two operators D and D' do differ; they describe conditional shifts in
opposite directions. Therefore the generalizations of the CNOT operator to higher dimensions are just
conditional shifts.
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Figure 5.4: A logic network for the universal quantum processor as given by the unitary transformation
(5.138).

In accordance with the definition of quantum computational network (quantum processor) dis-
cussed in the previous section, we assume the network for the quantum processor to be?

de = G123 = D31D;1D13D12 . (5137)

The data register consists of system 1 and the program register of systems 2 and 3. Name the physical
representatives of N dimensional Hilbert spaces by qudits. The output state of the three qudit
system, after the four conditional shifts are applied, reads

[Q)123 = D31D£1D13D12|‘I’)1|E)23 . (5.138)

A graphical representation of the logical network (5.138) with the conditional shift gates Dgp in
Fig. 5.4.

Our first aim is to investigate the type of this quantum processor. The sequence of four operators
acting on the basis vectors gives |n)1|m)z|k)s as

Gias|n)1|m)2|k)s = |(n — m + k)mod N); |(m + n)mod N)s [(k + n)mod N)3 .

We now turn to the fundamental program states. A basis consisting of maximally entangled two-
particle states (the analogue of the Bell basis for spin—% particles) is given by

_ 1 = 2
Emn) = 7 kZ:O exp (zﬁmk) |k)|(k — n)mod N , (5.139)

where m,n =0,...,N — 1. If |Ep,), is the initial state of the program register, and [¥) = 3, a;]j)q
(here, as usual, ), |aj|? = 1) is the initial state of the data register, then follows that

o 2mikm
G123 ®)1[Emn)as = Y —exp Gias|j)|k) |k — n)
Jk VN N
(671 2mikm . .
= Z—exp |7 =)k +5)|k+ 35 —n)
Jk VN N
i
= Y ajep i =) Ema)
jk
= (U|8))[Emn), (5.140)

2the choice is supported by [31, 32]
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where we have introduced the notation
-2t
ulmn) = Z ex ”3m| — n){s|. (5.141)

The last equality implies that Gi23 is the U — processor. It implements the set of unitary operators
U™ which form an orthogonal basis of Hilbert-Schmidt operators, because

Tr [(U(m’"’>)fU<mn>] = N O (5.142)

The programs realizable deterministically are in some sense generalizations of Pauli superoperators
for qudits. In fact, in the case of qubits we get U(ggy) = 1, U = 0, UMY = 55, UMD = o3 and
the corresponding set of realizable superoperators Cp = P(p1, P2, p3) is the set of Pauli superoperators
(see previous chapter).

Now we would like to examine which transformations we can perform on the state in the data
register by using a program consisting of a linear combination of the vectors |Z,,,) followed by the
action of the processor G123 and a subsequent measurement X4, = 14 ® X, of the program register.
Any operator A € T2(H) can be expressed in terms of them

> gmaU™ (5.143)

m,n=0
with ¢n = & Tr [(U(m"))Jr A]. Equations (5.142) and (5.143) imply that

N-—1 1
> lamal? = Tr(ATA) = 1. (5.144)

m,n=0

The most general program vector is given by

[va)es = Z Gmn|Emn)23- (5.145)

m,n=0

The subscript A indicates that this state could be used for the implementation of the operation A.
Application of the processor to the input state |¥);|va )23 yields the output state

To obtain the final result we perform a projective measurement Q of the program register onto the
vector |Q)23 with the property Q;;; = 1/N?, ie.

1 N—
Q)2 =+ S j Zpn) (5.147)
m, n=0

If the outcome of the measurement is positive, then we get the required transformation A = 3° Grmn UM
acting on an unknown, arbitrary input state |¥); and the probability p(s) of achieving the desired
result is the same as the probability of successfully implementing the transformation A

p(s) = ]\12 (U|ATA|T) (5.148)
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The derived theorem implies that the transformation A is unitary only if the probability of success is
1-independent. Otherwise the data register evolves in the way

AlD)

T) = [¥) = ———=—0r
(U|ATA|D)

(5.149)

Hence, only those program states are allowed, for which the operation A =3~ gmn U™ ig unitary.
In this case the probability of success is program independent and equals 1/N2. Otherwise, the data
register transforms in a way determined by the operation A, but the transformation is ¥-dependent
in non-linear way and the probability of its success as well.

Nevertheless, as a result we obtain that we are able to perform any unitary transformation of
the data register with the probability equals 1/N2. This result follows from the fact that the each
unitary transformation can be written via the operators U,,, with the coefficients satisfying the
normalization condition Y, |gmn|> = 1. Therefore, there exists state |va)2s that encodes such
transformation. Moreover, we obtained that the success probability is independent of the choice of
such unitary transformation. Consequently, universal probabilistic quantum processor does exist.

5.6 Probability amplification

In our previous discussion we have introduced one specific example of the measurement Q, for which
the success probability is Z-independent for all program states in Pg. The transformation encoded
in the state |E) is realized with p(s) = 1/N, where N is the dimension of the program Hilbert space
Hp. If we restrict the set of unitary operators (i.e. states |=)) we would like to implement, then it
is possible to beat this general limit and increase p(s). We know that input states |Z) = E?:l a;lj)
(D < N) encode transformations U = EJD 10U;. However since the program space is effectively
only D dimensional, we can use a projection |Q) = \/— yb j=1 ) to realize these transformations. It
means that the probability of success is amplified to p(s) = 1/D.

Is it possible to make the probability much better? Till now the projection associated with the suc-
cessful implementation were always one-dimensional and therefore the probability was limited by the
dimension of program register. Because the dimension is a natural number, it follows that the success
probability is always less than 1/2, i.e. p(s) < 1/2. To increase the probability we need to associate a
multi-dimensional projection Q with the successful realization. As we shall see the generalization of
the previous investigation is not so straightforward and not so trivial as it may seem. In particular,
we shall see that in the case of multi-dimensional (in terms of program Hilbert space) projections Q
the resulting state of the data register may not be pure and the realized transformations cannot be
associated with linear operators on data Hilbert space H4. Note, that this result is not contradictory
to the proven fact that in von Neumann-Liiders realizations of POVMs pure states transform into pure
states. Simply, in this case the projective measurement performed on joint data+program system does
not induce a von Neumann-Liiders measurement. Only, if the measurement can be represented by a
non-degenerate selfadjoint operator, the induced data measurement is of this type.

Let us see the reasons for such statement. The joint state is transformed into an unnormalized
state

) ® [E) = Q) Zam m(E)|Y) ® |fm) (5.150)

where A, (B) = (0| GIE) and a, = (¢ |E). We use a basis in which the measurement is performed,

Qo =2, |om)(dm| and m = 1,... K, < dimH, and ) K, = dim#,. That is, Qg is K,-
dimensional projection. As a result we get a superposition of pure factorized states, i.e. potentially
entangled state |Q,). Only if A,, = A for all m, the resulting state |{),) is factorized and the data
system evolves into a pure state. But if not, then tracing out the program register leads us to a mixed
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output data state

o Zm |am|2Am(E)QdAIn(E)
04 = TeoF, (5.151)

with F, = 3" |om|?Al (E)A.(Z). In this case the POVM operators F, are well defined, but the
state transformation is not associated with an linear operator on the data Hilbert space Hg4, but rather
with a map M,

Mool =) M, oMH, (5.152)

where M, = @ A (E)//TroF,. That is, generally the measurement can be represented by a set of
maps M, such that a convex combination of these maps, i.e. M =3 p,M,, is a trace-preserving
completely positive linear transformation. Note that the particular map M, is linear only if the
probability p, = TrpF, is g-independent. To summarize, let us formulate conditions under which the
transformation M, is unitary. Obviously,the following equality must hold

19 Q.)G(lY) ®|E) = [¥) @ |F) (5.153)

where |¢') = Uly). As aresult we have found that for a multi-dimensional projection the implemented
operations cannot be unitary except the case when A,, = A for all m. Therefore the aim is to find
such decomposition of the projection, in which this condition holds. This is equivalent to introduce
one-dimensional projections for which the realized transformations are the same.

5.6.1 Case studies

I. Cirac and Vidal proposal
What we would like to do is to find a way of increasing the probability of success. In order to get an
idea of how this can be accomplished, first we shall examine a method due to Vidal and Cirac. They
were interested in implementation of one parameter group of transformations, U(a) = exp(iaos) on
a single qubit. They first do this using a single CNOT gate, the data qubit being the control and the
program the target. The program state is

@) = Z5 (€0 + 7). (5.154)
and the probability of success is 1/2. This example was described in the section concerning the CNOT
gate. In order to increase the probability of performing U(a) they consider a more complicated
network consisting of three qubits. Qubit 1 is the data qubit, and qubits 2 and 3 are the program
qubits. The network consists of two gates, first the CNOT gate, with qubit 1 as the control and qubit 2
as the target, followed by a TOFFOLI gate, with qubits 1 and 2 as controls and qubit 3 as the target,
i.e.

G = (TOFFOLI)(CNOT® 1) = |0)(0| ® 1, + [1)(1| ® S, (5.155)

where Sp =(0){1| ® 1 + |1)(0| ® 0. It is easy to see that S, is a unitary operator and therefore G is
the Y-processor. This network is able to implement U(a) with probability 3/4. It turns out that this
is also the U-processor. This can be seen, if we consider the program vectors

1

IZ.) = 5[|00) + 2%|01) + 2[10) + 2°|11)] (5.156)
where z = +1, 4. After a little algebra one can find that
G= ) B(2)®E)E (5.157)

z==%1,+4
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where B(z) are unitary operators of the form B(z) := [0){(0| + z|1)(1].

It is easy to check that among the four unitary transformations B(z) only two of them are linearly
independent. In particular, we can write

142 1—-2
=g Mt
Moreover these four operators form an algebra closed in multiplication and adjoint operation, i.e.
B(2)B(z') = B(z2') and B(z)! = B(z*). It follows that these four operators form a group, since
B(2)"! = B(2)! = B(2*). As a result we obtain that the four operators B(z) are linearly dependent
and commute. This suggests that U-processors in which the operators are linearly dependent or
commute (i.e. belong to the intersection of U and Y processors) can be used to boost the probability
of performing certain sets of operations.

Let us see how their example works in more details. Consider the initial state of three qubits

B(z) (5.158)

[V)a ® |a) ® [2a) = [¥) ® % (e"*00) + e~*|01) + €'*|10) + €?3*| — 11)) (5.159)

In the {|Z,)} basis the program vector state is given as |Z) = ) «.|Z.) with coefficients

a = (E[E1) = i(ewa + et e 4 i)
a1 =(E|E1) = i(ewa +eTia _gla _ B9

a; = (E|E;) = i(eisa — e — jel® 4 jei3¥)
a_; =(E]E_;) = i(ewa — e 4 jel — jei3¥)

After applying the processor action G followed by the measurement projecting onto vectors |00}, |01),,]10),|11)
the resulting states are given as follows

10Qu = (@B +a_B(-1)+aB) +a_ Bl @ 00) = = Vsl @ [00)
10Qu = (0B +aB(-1)—aB() —a B @ 01) = U, ) & o)
16Qu ~ L(@B(1) - aB(-1) +iaB(i) — ia_B(-]l) @ 10) = 1 Ugle) 10
10Qn — %([alB(l) —a_1B(-1) — iaB(i) + ia_B(—i)][) ® |11) = %U,3a|¢) ® |11)

Consequently, if we realize a multi-dimensional projection Q = Qgo + Qo1 + Q10 the data register
evolves into the state U,|¢) and this result occurs with the probability p(s) = 3/4, i.e. the probability
of the implementation of one-parametric set of unitaries U, has been amplified.

The same amount of the amplification can be obtained also in a different way. Due to the fact that
using the CNOT gate the wrong outcome results in the state U_,|1), it is possible to correct the wrong
result by using the CNOT processor again, but with a new program register prepared in the state |2a).
In this case the probability of success can be calculated in the following way p(s) = % + %% = %.
This feedback probabilistic scenario uses always the same processor, whereas the previous way of
amplification requires the usage of a new processor. Cirac and Vidal shows that both these scenarios
can be used to further amplification and lead us to probability p = 1 — 1/2™ where n is the number
of program qubits. If n — oo the probabilistic implementation started to be deterministic. On the
other hand, it is known that infinite number of qubits is associated with an inseparable (=unphysical)
Hilbert space. That is, there is no contradiction with the proven fact that no continuous set of unitaries
can be implemented with a single quantum processor in a deterministic manner. However, the result
that amplification can be done arbitrarily close to unity is of importance. It will be nice to generalize
this result for any continuous set of unitary transformations.
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5.6.2 Conditioned loops

The first aim of our study will be the question whether for all single qubit rotations the feedback
control (conditioned loops) results in the probability amplification. We have shown that any single
qubit unitary transformation can be implemented with the probability p = 1/4 by using quantum
distributor machine (QDM) as the processor. In this case the success is associated with one-dimensional
projection onto the vector |0)|+). In what follows we shall explicitly show how to correct the cases of
wrong results, i.e. projections onto one of the vectors [0)|—), |1)|+),[|1)|—)-

The QDM processor is given by relation

3
G =Y 0;®[Z;)(El (5.160)

where o; are standard o-matrices with o9 = 1. The basis program vectors |Z;) form the standard
Bell basis, i.e.

|Eo)=—(|00) 11)) IEw)I—(l()l) 10))

-5 -
-5 =

12) = E(IOO) -n) 15 = ﬁ(lol) — [10))

The general program state |=(f)), encoding the unitary transformation U; = exp(ifi.d) = cospl +
isin,u’lf.&’ (u = |@]) is given by
sin p — —_ -
(Ba|Za) + 1yl Zy) + p:|E2)) (5.161)

IE(8)), = cos plZ0) +i

All other vectors are irrelevant for probabilistic implementation. Performing the mentioned measure-
ment in the program basis |04}, |0—), |1+), |1—) results in the ensuing unitary transformations

D@+ = )= feosut + S (us + sy, + e lI)a = Vgl (5.162)

M®k>:wn+mefT“

(=Ba0z = pyoy + p:02)||Y)a = 0:Ugo:[Y)a  (5.163)

1 sin
1Y@ |+) : [¢)a — [cospul + Tu(ﬂzo'w — Wyoy — pz02)||0ya = 0. Ugog[)a  (5.164)

18in
‘1> ® |_> : W}) [ (_Nwaz + pyoy — Nzo'z)]|¢>d = UyUﬁoy|w>d (5-165)
where we have used the identity ojor0; = —oy, if k # j. Using the above notation the action of the
QDM can be expressed in the form
[)a @ |E() ZUJU*UJWJ)d@ 17)» (5.166)

where vectors {|j),} form the basis of H, associated with the realized measurement.

That is, each outcome of the measurement indicates different unitary transformation. According to
a specific result we can use the same processor again to correct the wrongly transformed data register
and, consequently, improve the success probability. In particular, in the case of the result j a new
program register needs to encode a correcting transformation Ug-l) = UIjO'jUI-I:O'j. The probability of
implementing the unitary transformation using one conditioned loop is given as p(s) = ¢ + 3 i6 —6
Using more and more conditioned loops the success probability is given by p(s) = n %3 =
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i = %% = 1—(3/4)™ converges to unity, i.e. p(s) — 1 as the number of conditioned

loops n goes to infinity. For instance, thirty conditioned loops result in negligible probability of failure
p(f) =10""%

It seems that there is one important difference between examples of QDM and CNOT. In the case of
QDM the particular results determine the new states of program register, but for CNOT processor the
state (|a)|2a)|4a)|6a)...) can be prepared before the computation starts. However, in both these
cases the next state of the program register depends on the measured outcome. In fact, if for CNOT
we find out the positive outcome, then we cannot use the new program register in the state |2a),.
We must either stop the whole process, or proceed with program state |@ = 0), which encodes the
identity operation on data system.

The example of Cirac and Vidal shows that we are able to replace the feedback scenario with a
probabilistic scenario by using different processors. A big open problem is whether the same replace-
ment can be done in general, or at least for the case of QDM.

Note. Let us consider the QDM processor. For general program state encoding a unitary trans-
formation, i.e. Foy = Ugy is unitary, it follows that for all results the data system is transformed
in a unitary way, because U; = 0;Foy0; is unitary, if Foy is. Moreover in some cases, some of
these unitary transformations U; coincides. For instance, if Fo; = e then 0,Foy0, = Fo; and
oyForoy = 0.Foyo, = Ff+0 = .e*"""m. As a result we have fpund that.for a certain subclasses of
unitary transformations U, = €**?= (the same holds for sets '*v and €*®?=) the probability of im-
plementation equals p(s) = 1/2. It means that the probability of success is greater than 1/4. That is,
using the QDM processor three one-parametric sets of unitaries can be implemented with probability
1/2.

5.7 POVM realization

Till now we were interested in the possibility of controlling the implementation of quantum maps.
But the same scheme can be used to realize POVM. In fact, any measurement of the program system
determines a non-demolishing POVM of the data system. The general POVM is given by a set of
positive operators F, that sum up to one, i.e. >  F, = 1. These operators are chosen in such a way
that the frequencies of outcomes a (for a performed experiment) satisfy the following probability rule

Pola) = Tr(oF,) (5.167)

for all states p. Using the same scenario the probabilistic quantum processor can be used to implement
generalized measurements described by POVM. Note, that in this case we are not interested in a
particular state transformation of the data system, because the crucial point in measurements are
probabilities p,(a). These probabilities (understood as linear mappings on the set of data states)
completely determine the given POVM. That is, two POVMs associated with collections of positive
operators {F,} and {F!} are different, if p,(a) # p,(a) for some state ¢ and some outcome a.

In our settings (U processor) the probability of finding the result a is given as

po(a) = T[> Q§§?Ejj'Uj UL (5.168)
3’

where M = ) al ® Q@ is a projective measurement and initial program state is described by
a density matrix Z with coefficients Z;; := (j|Z|j'). Comparing last two equations we obtain the
explicit form of POVM operators

F, =Y Q\%=;Uly; (5.169)
i3’

Sin?g Z“ Fo=3 .3, Q‘g-;l))Ejj/U;,Uj and ‘Ea Q;‘;,) = djj, it is o'k)yif)us that . F, = 1. The
positivity of each F, follows from the construction, because the probabilities p(a) > 0 for any state .

105



It is enough to realize that p(a) = TrF,0 = (¢|F,|¢) providing that ¢ is a pure state. Each program
state implements a POVM. However, let us look what kind of POVMs can be encoded in program
states. If the implemented transformations are unitary for all outcomes a, then the probabilities are
data-independent. In other words the probabilities p,(a) = p(a) are not functions of initial data states.
It means that such POVMs does not satisfy the main purpose of any measurement, i.e. they are useless
in a state discrimination. The aim of observations is that we would like to gain information about the
system, or more precisely, about the state of the system. In the mentioned case the information gain
vanishes. On the other hand, only in the cases, when this information gain is zero, we can accomplish
a unitary transformation. It follows that there is a relation between the unitarity of physical processes
and the amount of information acquired from these processes. This result is intuitively clear. Unitary
transformations cannot give us any information about the system. If we acquire some new information,
it means that we have influenced the system in a non-unitary way. Therefore all states that are not
interesting from the point of view of the implementation of unitary transformations, starting to be
interesting from the point of view of POVM realizations. And as we can see in the CNOT example the
set of such states is much larger.

A specific type of POVMs are those that enable us to completely distinguish between all possible
states. In this case the state reconstruction (and the information gain) is complete. An example of
such POVM is any collection of d? positive operators A; (summing to identity) forming a basis of the
operator space. That is any state g can be written as a linear combination o = ) y 0;A;. Probability
of finding the result a is then given by relation

DPola) = TrpA, = Z 0; TrA;A, = Z 0;Ljq (5.170)
J J

where we have used the definition Lj, = TrAj;A,. The problem of the state reconstruction then
reduces to solving the system of linear equations p, = )_, 0jLja, where the numbers p; are unknown.
Let us see how such “complete POVM?” of a single qubit can be realized with the help of QDM processor.

5.7.1 QDM processor

Consider a general program state |Z) = >, a;|Z;), and let us assume the same measurement as
before, i.e. associated with the program space basis {|0+),|[0—),|1+),|1—)}. In this case

3

1 . 1oL s S ik x &).G
For = 1 j;o Qoo = le + Z(aoa + apa* +ia* X @).¢ (5.171)
Fo. = 0.Fg.0, (5.172)
F1+ == U:cFO-i—gw (5173)
Fl_ == UyFO—i—Uy (5174)

where we used a* = (a1,az,a3) and @ = (a1, as,as3). Probability of finding the result ae (a = 0,1
and € = +, —) then reads

1 1 - -
plae) = TrgF ;. = Tro, Foy = 1 + §ma€.(a3d’+ aga* +ia* X d) (5.175)
where ¢ = 0o+ = %]].%—Tﬁ(?, Oo— = %]l+az7ﬁ.5’az = %]].-F&’.T_fl()_, 01+ = %]l—#omrﬁ.&’am = %]].-i—(_f’.ml_{_,
and ¢ = 31+ oyM.Goy = 31 + G.m,—. We are using two different abbreviations: double index ae

and simple index j, where the relation among these two notations is obvious

0++<0=0 0—3==z
1+ 1=z 1-2=y

106



It is easy to verify that in the case of the implementation of unitary transformations the above
rule gives us a constant distribution p(ae) = 1/4 (for all 171), because in this case ag = cosp and
a= "Si%(,um,py,uz) and, consequently, Foy = 11.

In the basis of o matrices the operators F,. can be expressed via vectors ¥,.. The linear dependency
of these vectors is equivalent to finding a nontrivial solution, (a,b, c,d) # (0,0,0,0), of the equation

0/170+ + big_ + 0171+ +dv_ = 6 (5176)

Direct calculation shows the explicit form of the vectors

1704— (U},(E,y,Z)

1707 (w7 -z, _yaz)

'171-1- = (U),.’E, -Y, —Z)

- = (w,—x,y,—2) (5.177)

where w, z,y, z stand for suitable expressions. The requirement of a nontrivial solution of the above
equation (5.176) implies that none of the numbers w, z,y, 2z equals zero. In fact, the value of the w
is fixed to be 1/4 for all allowed operators. The three-dimensional vector ¥ = (z,y, z) is given by the
parameters of the program state ag,d@. The explicit relation reads

1 - -
7= Z(04362%— apa* + ia* x @) (5.178)
Consider a particular example. Let us assume that the coefficients «; are real. Then the vector i
can be written in a simpler form 7= 2agd. In this case

11 . 1
F0+ = 5 I:EJ]. + 0400(.0':| = 5@04_ (5179)

where the operator go+ can be associated with the quantum state if |wp@| < 1/2. The same holds
for all F . = %gaé. Moreover, if |apd| = 1/2, then the associated operators g, are one-dimensional
projections and therefore represent pure states. In this case the realized POVM has a nice graphical
representation. In particular, the measurement projections are associated with points on the Bloch
sphere. Due to the normalization of the program vector |E) = 37, a;|=;) (lao|® + a1 |* +|eaz|? +|as|* =
1) the condition |agd| = 1/2 implies ap = 1/+/2 and |@| = 1/4/2. For example, one can choose®
a= %(1, 1,1). In this particular case the operators reads

F0+—%Qo+ = % :%14‘2—\1/3(%4'%4“72)] Hﬁ0+=%(17171)

Fo_ = %go, = % %]l + 2—\1/3(—% — oy +az)] & g = %(—1,—1,1)

| %QH_ = % :%]l+2—\1/§(aw—ay—az)] 1y = 2L\/S(l,—l,—l)

Fi_ = %m— = % %]l + 2—\1/3(—% +oy — az)] .= %(—1, 1,-1) (5.180)

The vectors i, represents the coordinates of pure states g,¢ in the Bloch sphere picture. The (POVM)
measurement consists of four projections forming a tetrahedron? corners on Bloch sphere (see Figure).
Note that angles between these vectors equal = arccos(1/3) = 109.47°. It is easy to check that these

3Note that vectors with zero entries mean that the operators F,. are mutually linearly dependent and therefore the
realized POV Ms in these cases cannot be complete.
4Similar geometric picture is valid also for the structure of the methane molecule
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Figure 5.5: Each point represents different projection operator which is associated with the elements
of complete POVM encoded in the initial program state |Z) = %EO) + 21%(|El) + |Z2) + E3)).

four operators are not mutually orthogonal (in the operator sense), i.e. TrF;Fy # 0 for j # k. It can
be also shown that using QDM as the processor and the same measurement the implemented POVM
cannot contain mutually orthogonal projections. Whatsoever, we have shown the explicit example
how to exploit the QDM processor in realization of the complete (nondemolition) POVM. Of course,
this POVM is not unique and we can perform many different complete POVMs. The result that this
processor enables us to perform the full state reconstruction is valuable on its own.

In what follows we will consider the same processor QDM but use the measurement M = 1 ®
>_; IE;)(E;| where |E;) are the elementary program states encoding the transformations o; on data
register. After observing the result j the whole system transforms in the following way

) ® 8) = 1® |E;}Ej|Gemlv) @ [E) = a;05]¢) ® |E;) (5.181)

In this case the resulting state is o;|¢) without any dependency on the choice of the program state,
only the probabilities of finding the particular result depends on such choice, p(j) = |a;|*>. From the
point of view of POVM realization the class of realized POVM consists of the operators F; = |a;|*1.
That is, the performed POVM is always trivial and cannot be used for state discrimination.

5.8 Deterministic loops

We have already described and analyzed two basic ways how to use quantum processor in order
to realize quantum maps: deterministic and probabilistic regime. We discussed the possibility how
to increase the probability of the implementation using the conditioned loops, i.e. using the same
processor more than twice. To make our analysis complete in this section we will study the case of
deterministic loops, i.e. repetitive usage of the processor without performing a measurement.

From the other point of view, if we have a processor that can realize a certain set of superoperators,
and we wish to realize a greater set, it seems that we have to construct a new, bigger processor. Of
course, this will work, but it might be enough to use the original processor more than once and repeat
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its action without using the new program register. Thus, the output is fed back into the input This
procedure can be repeated many times, and it can considerably enlarge the set of operations that a
given processor can perform.

If we use the processor again, then instead of the processor G we use the processor G2. In general,
the set of induced quantum operations Cg Cg2 can be not only different, but also can have different
size. However, the possibility that Cqz > Cg is not exactly the goal we meant. Instead of the set Cq2
we are interested in the size of the set C% := Cg U Cg2 and to this set we shall refer as to the class
of realizable superoperators by the processor G in two loops. In general, for n loops the quantum
operations form a set C¢ = Cg U...UCg~ and our aim is to investigate the properties of these sets.
There is a hidden assumption in the formulation of this task. In order to be able to perform all
superoperators contained in Cg, we must be able to control the number of realized loops n. Hence,
some additional loop counter is required. Its existence is a nontrivial problem and it is very similar to
a halt problem, but so far we will assume its existence.

data data
[ I
program program

Figure 5.6: How to finish the loops?

The realized program ®¢ , depends not only on the initial state of the program register &, but
also on the number of loops n. In what follows we shall focus our attention onto the implementation
of unitary transformations. Obviously, ®,, is unitary only if ®;,_; is unitary. Since, our aim is
to enlarge the set of realizable unitaries, we shall start our investigation with the use of U’'-type
processors, which are able to implement a countable set of unitaries in a single loop. The realization
of the unitary transformation implies that the output registers are described by a factorable state,
namely ®¢ ;o] ® £;, where the lower index j labels the output program state after the j-th loop
(usage of the processor). Let us denote by B = {|k)} and B’ = {|k')} input and output bases of the
U’-processor. Hence using the program register in the state |k) the data register transforms according
to unitary transformation Uy, and the output program register is described by the state |k'), i.e.

Gl)a®|k)p = (Uklve)a) @ [K)y - (5.182)

If the state |k') belongs also to the basis B, then the new action of the processor causes unitary
transformation, too. But if |k') ¢ B, then the performed transformation is not unitary and new loops
will not realize unitary transformations. Therefore, let us assume, that the bases B and B’ contains
the same elements only the ordering of them is different. That is, the sets B and B’ are ordered and
one can be obtained by permuting the elements of the other. Let us fix the basis B to be the set
on which the permutations are defined. Each bijection ¢ : B — B represents some permutation and
oB = B'. In particular, the action of the processor can be written in the form

G(l¢) ® k) = Ukl¢) @ |o(k)) (5.183)
After n loops we have

G"([¢) @ [k}) = (Ugn-1() - - Ug iy Uk [¢0)) @ |0™ (K)) , (5.184)
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i.e. the state of the program register after the j-th loop is given by relation |k;) = |07 (k)).

For instance, the U-processors are specified by the trivial permutation ¢ = idg. In such case
the set Cg contains only the powers of elementary unitaries Uy, because Ug) = Uigyr) = Ug.
In the case of nontrivial permutations o we are able to implement certain sequences of elementary
unitaries, i.e. Upp = Uy, ... Uyg,. Of course, the sequence is fully determined by the chosen program
state |k) and the number of loops n. As a result, we obtain that the set of implementable unitary
transformations is greater, if one uses the loops. The maximal number of all implementable unitaries
equals to n x dim #H,, where n is the number of loops. Very interesting is the question of the covering
properties of the set of realizable unitaries in the set of all unitaries. In other words, it is an open
question whether this subset is dense, or not. If yes, then in practice we are able to (approximately)
realize any unitary transformation in this scenario.

5.8.1 Example: single-qubit processors with loops.

In order to understand the potential of the multiple application of the same processor, let us consider
a simple example when both the data and the program are represented by a qubit. Hence, the
number of realizable unitaries in one loop equals two. Let us denote these unitaries by U and V,
ie. G=U®|0)(1| + V ® |1)(0]|. Then the implementable unitary transformations take one of the
following forms

Wiy, = U (VU2 (5.185)
Wiy, = V& (UV)/2 (5.186)

where s, = |sin(n7/2)|, n/2 is the integer division, i.e. 5/2 = 2 and 1/2 = 0, and |j) represents
the choice of the initial program state. Since general unitary transformation can be written as an
exponential of a hermitian operator, it follows that VU = e and UV = e?B. In the case of a qubit,
every hermitian operators can be expressed in a convenient form via Pauli matrices, i.e. A = -4 and
B = §-7. In the Bloch-sphere representation each unitary transformation corresponds to a 3D rotation
of this sphere around its center. The vectors 7, § represent the axis of the rotations, respectively.
Their norms, |],|5], are proportional to angles of rotations described by e*A, e’B respectively. The
parameter n/2 represents the number of performed rotations around the fixed axis by a fixed angle.
We can conclude that the points of the Bloch sphere transforms in jumps. The transformations
eiAn/2 and eiBn/2 draws circles around the Bloch ball with respect to the initial state of the data
system. Trivially, the rotations U and V preserve the shapes of these circles and consequently the set
of transformations Ue*A™/2 represents another (transformed) circle. To illustrate the action of the
processor, we can say that the initial state of the data register, represented as a point on the Bloch
sphere is mapped into two orbits (circles) on the sphere. After each action of the processor (i.e. after
each loop) the point representing the data state moves (jumps) from one orbit to the other.

The fact that the set of transformations is dense is exhibited by the property that each initial point
travels (approximately) around the whole Bloch sphere. In our case, starting from any point we are
able to cover maximally two circles (orbits) on the Bloch sphere. The rate of covering of these orbits
depends on the angle of single rotations (one jump caused by one action of the processor).

Let us generalize the previous scheme by introducing a larger program space. Let us denote its
dimension by d. In this case the realized unitaries are

Wlk),n = Ua.j(k) .. .UkeiA’“n/d (5.187)

Likewise before, we can use the Bloch ball picture to illustrate the transformation of the state of
the data register. Starting from any given point (state) in each loop we jump among one of the d
circles. If we want to cover the whole sphere, then the number of circles must tend to infinity together
with the dimension of the program system. To be able to realize all unitaries we must increase two
parameters: the dimension of program space and the number of loops. Note one possible disadvantage
of considering the loops. On one hand for specific transformations the realization is exact and fast,
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but in general the realization strongly depends on the number of loops and therefore long time is
required. In all previous regimes, the time plays no explicit role and every process took us the same
time.

5.9 Conclusion

The field of the so-called quantum processor is quite large, because the formulation of the problem
is common for many other seemingly unrelated areas. The results from this field can be useful in
measurement theory, in decoherence problem, and mainly in quantum dynamics of open systems.
Basicly the study of quantum processors is equivalent to the study of the quantum dynamics. In this
chapter we have concentrated on different settings in which a fixed unitary transformation plays a
central role. Let us now summarize briefly this chapter.

Quantum processor is nothing else as a fixed unitary transformation acting on two different systems,
which are called (in accordance with computer terminology) data and program register. It is commonly
believed that the most general quantum evolution can be associated with a unitary one realized on a
larger system (Kraus theorem). The effect of nonunitarity of the evolution of the systems is caused
by mutual interactions between the system and its surrounding. In a sense, the properties of the
environment determines the evolution of the systems and vice versa. The aim of the quantum processor
is to control and determine dynamics of systems in a programmable way by using existing fixed unitary
transformation. We have discussed two basic regimes: deterministic and probabilistic (or stochastic).
We used these regimes to implement quantum maps and also generalized measurements (described
by POVM). In particular, we studied the properties of the realization of quantum maps of a single
qubit. We also studied the inverse problem, whether any set of quantum maps can be realized in the
framework of these models. We showed that in a probabilistic way the universal quantum processor
can be constructed. Moreover, by applying conditioned loops the probability of successful realization
of any map can be made arbitrarily close to one.

There is clearly a lot more to do here. One question is how to improve the probability of success
in a similar way as it was done by Vidal et al. in the case of one-parametric group U, = exp(iao;)
by using larger quantum processor. In other words to find out some relation between the conditioned
implementation and unconditioned one with a new quantum processor. This is an object of the future
study and even the existence of the solution is an open question.
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Chapter 6

Multipartite entanglement

The present is yours.
The future, for which I really worked is mine.

N.Tesla
6.1 On the bipartite entanglement and correlations
We shall differentiate among the following types of bipartite states:
State Name Correlation  Entanglement
0= 04 R 0B factorized state C,(A,B) =0 E(p)=0
0=13,Pros ®0F separable state C,(A,B) >0 E(p)=0
0= kakg;? ® 0P  correlated state C,(A4,B) #0 E(p) =0
0# Y . Proy ® 0P entangled state  C,(A4,B) #0 E(p) #0
where
Co(A,B) = S(0a) + S(eB) — S(0aB) (6.1)

is the measure of correlation between the systems A and B. The function E(p) stands for a measure
of entanglement. We have introduced a new (probably non-standard) subset of quantum states called
correlated states. Note that the notion of a correlated state means that C,(4, B) > 0, but E(gap) = 0.
That is, correlated states are not entangled, but only “correlated”. It does not mean, that entangled
states are uncorrelated in the standard sense (of C,(A4, B)). In fact, the correlation is a statistical
notion independent of the physical theory we use. Therefore, in a sense the notions like classical,
or quantum correlations can be used only to label the theory in which the correlations are studied.
However, we shall use these names to distinguish subsets of quantum states, for which the correlations
have different “quality”. In particular, one can require that these two correlations should sum up to
total correlations measured for instance by the function C,(A4, B). Moreover, the classes of states can
be made more subtle, if we define also the classical states of quantum systems, and consequently, we
shall require that only these states contain “pure” classical correlations. Then there exist separable
states, for which the correlations are not only classical, but also quantum (without entanglement).
Let us remind the definition of the classical states of quantum systems. The state p4p is classical, if
in its spectral decomposition gap = >, Ak|tr) (k| the pure states |¢)ap are factorized. All these
definitions are disputable and without an introduction of the measure of a “classical” correlation, or
a “quantum” correlation, this discussion does not have a big sense. The main point of the definition
of the “classical” (or “quantum” correlations) is to shift the border between the quantumness and the
classicality beyond the existing line of separable and entangled states.
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To understand deeper the concept of entanglement we must clarify its relation to the existing
concept of correlations. Elementary steps to leading further in the analysis of this phenomenon are
the creation (or destruction) of the entanglement and its detection. In the next paragraph we will pay
attention to the creation of entanglement and correlations.

6.1.1 The creation of entanglement and correlations

Hamiltonian dynamics of classical theory is deterministic in the sense that pure states remain pure
during the whole evolution. In quantum theory the Hamiltonian dynamics is associated with unitary
transformations. Due to the nonexistence of correlated pure states in classical theory, it follows
that during the Hamiltonian dynamics no correlation can arise. However, in quantum case there
exist entangled pure states, for which C,(A,B) # 0. Therefore the creation of the correlations
(from uncorrelated states) governed by a unitary (Hamiltonian) evolution is possible, because any two
pure states are related by (many) unitary transformations. Moreover, we can say that the genesis
of entanglement is conditioned by the presence of interactions between the systems. Due to the
reversibility of Hamiltonian dynamics, the same holds also for the entanglement destruction. It is an
interesting question on the capability of a given quantum operation (not only unitary) to create (or
destroy) the entanglement, but this problem is out of the scope of this thesis.

The creation of entanglement (or correlations) from the initially mixed state is a little bit more
complicated. The following example shows that a unitary transformation can be used to create
correlations without entangling the systems. Consider the factorized state of two qubits |0)(0] ® 11.
Applying a global unitary transformation given by [00) — (|00)+|11))/+/2 and |01) — (J00)—|11))/v/2,
we obtain the state 045 = %(|00)(00] + [11){11|), which is known as the maximally correlated state.
For this state C,(A,B) = 1, but entanglement vanishes. This quantum example cannot be used
to answer the same question stated in the field of classical theory, because it transforms factorized
states into entangled (non-classical) ones. Anyway, the same result can be obtained by using unitary
transformation [00) — [00) and [01) — [11), i.e. |[0)(0] ® 21 — £(]00)(00| + |11)(11|). This unitary
transformation can be understood as a classical reversible transformation with two classical bits.
Therefore, the correlations can be created by reversible (Hamiltonian) dynamics in both theories.

What is interesting is that the reversible (unitary) dynamics of quantum systems cannot create an
arbitrary amount of the entanglement between the systems. Its value is limited by the initial state,
namely by its purity (or entropy). This follows from the fact that unitary transformations preserve
the joint entropy of states (purity), but the entropy of subsystems can be changed. In particular,
the maximally entangled states (E = 2) are pure (entropy equals zero), but the total mixture (state
with maximal entropy and zero entanglement) is preserved under unitary transformations. It means
that starting with states that have maximal joint entropy S = 2, no entanglement can be created by
unitary evolution. On the other hand any pure state can be transformed into maximally entangled
state. These are the two extremes of the mutual relation between the entanglement and the joint
entropy.

If we look at the classical systems, then the production of the correlations does depend on the
entropy of the initial state. However, the relation is completely different, because the correlation is
maximal for the state (of two bits) with the entropy S(gap) = 1, when the total mixture has entropy
S = 2. Therefore, the correlations raise together with the initial entropy up to the value S = 1 and
then they get down to zero, when the initial state is the total mixture. But such behavior is valid
only in classical theory, because in quantum theory the maximally entangled states are also maximally
correlated (C, = 2). In quantum theory the correlations decrease, if the joint entropy increases, and
they vanish only for total mixture. In particular, the correlation function of two qubit system equals
Cyo(A,B) = S(0a) + S(e) — S(0aB) = 2 — S(0aB), where the last equality is valid, because it is
possible to find such states, for which the subsystems are described by total mixtures for all values of
the joint entropy. For instance, Werner states |u) = u|EPR){(EPR|+ 1—Z‘i]l are of this type. By unitary
transformation we can always transform the given state into one of the Werner states parametrized
by u. Of course, during this process the mutual correlations (entanglement) between the subsystems
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can change. The answer to the question whether Werner states maximize also the entanglement (for
a fixed joint entropy), depends on the entanglement measure we use [55].

We have seen that there are differences between the concepts of entanglement and correlations.
Therefore, it is often misleading to use analogies. However, it is often very instructive to have a
correlation analogy in hands. Most of the examples, in which the entanglement plays a central role,
have their “correlation” (classical) analogy. These analogies help us to better understand and specify
the properties that make the entanglement so interesting.

6.2 Classes of multipartite entanglement

The mathematical definition of the bipartite entanglement is clear. In the same way we can define the
entangled state of a composite N-partite system associated with the Hilbert space H = H1 ®...Q Hy.
The factorized states are all states of the form g; v = 01 ®...® on. In accordance with the definition
of the bipartite entanglement we say that the state p;. n is entangled, if it cannot be expressed as
a convex sum of factorized states, i.e.

01..N =pr’f®...®g’f\,. (6.2)
k

Otherwise, the state will be called separable. These definitions divide all quantum states into two
basic groups of states: entangled and separable (= not entangled).

Likewise the bipartite case, a pure state is entangled whenever it contains some correlations, i.e.
it is not factorized. We can use the function

CQ(AIJ"'7AN) = ZS(QAJ') _S(QA1,---,AN) (63)

to quantify the “total” amount of correlations in quantum states. For pure states the second term
(entropy of the state of the whole system) vanishes and the degree of entanglement (of pure states)
can be identified with the presence of correlations, i.e. it is given as the sum of entropies of all
subsystems E = Cy(41,...,An) = >2;5(04;). This correspondence between entanglement and
correlation C,(A, B) is inappropriate in the case of mixed states. Simply, the function C,(A,B)
measures the correlations and does not discriminate separable and entangled mixed states. However,
the entanglement of formation can be defined by the following formula

E¢(p) = min PCyp (A1,..., AN) (6.4)
0=, Prlt) (¥ ;

The existence of the multi-tensor structure makes the state space more complicated and interesting.
For instance, it is commonly accepted that there exist at least two different (nontrivial) types of pure
state entanglement shared between three qubits. The extremal examples (and typical representatives)
of these two classes are the GHZ state and W state.

The Greenberger-Horne-Zeillinger state |GH Z) is in a sense a generalization of the EPR pair of
two qubits. In particular

1
V2
The entanglement in this state cannot be reduced to entanglement shared between two qubits. In
fact, all three couples of qubits are described by the maximally correlated state 1 (|00){00| + [11)(11]),
which is obviously not entangled. Sometimes we say that GHZ contains only a pure three-partite
entanglement.

The second type of the three-partite entanglement is exhibited by the W state
1
V3

IGHZ) = —=(|0) @ [0) @ [0) + [1) @ [1) @ [1)) (6.5)

W) (10) ®10) @ 1) +]0) @ [1) ® |0) +[1) & |0) ® |0)) (6.6)
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Figure 6.1: Figure describes ten possible configurations (with respect to shared correlations) of three
qubits. Solid lines correspond to existing entanglement and dotted lines represent the possible corre-
lations, if no entanglement is shared.

Unlike the GHZ state in this case all the couples of qubits are entangled. Moreover, the shared
entanglement between each pair has the same value. Under the symmetry requirements it can be
shown that the value of shared bi-qubit entanglement is also maximal (in terms of the concurrence it
equals C' = 2/3).

6.2.1 Graph representation

In this section we shall study the entanglement properties with respect to all bipartite splittings. That
is, we will use all bipartite entanglements to characterize the multipartite entanglement. The most
simple type of investigation is based on the analysis of the amount of entanglement shared between
each pair of particles. In this case one can draw a simple graph representation of quantum states (see
Figure), where vertices correspond to particles and lines exhibit the presence of entanglement between
the particles. In cases when the vertices are not connected by a line the two particles are not entangled.
Roughly speaking, entangled graph is a graphical representation of the bipartite entanglement shared
between N particles. However, the couple of non-entangled particles can be still correlated, i.e. the
correlation function C,(A, B) # 0 can be non-zero even if the entanglement vanishes. The existence
of purely correlated (not entangled) pairs will be drawn in by dotted lines.

6.2.2 Three qubits

In this paragraph we will analyze the simplest multipartite example of three qubits to see explicitly
the state representation of all graphs. The three qubits can form one of the following entanglement-
correlation arrangements. If we are interested in both: the correlations and the entanglement, there
exist ten different graphs (see Figure). In the case, when we consider only the entanglement the
number of graphs is reduced to four. It is obvious that the set of quantum states can be divided into
subsets determined by these graphs, but the question is, whether for each configuration this subset is
nonempty. Thus the existence of the quantum state g representing a given graph is questionable.
Consider that only the entanglement is taken into account, i.e. we have four types of graphs
(with zero, one, two and three lines). The problem of the existence of such mixed states has been
already solved in [25]. We shall not repeat the arguments given there, but rather we shall study the
existence of the pure state representation of these graphs. Obviously, the trivial case of the graph
with no entanglement is fulfilled by factorized states [Yapc) = [¥)a ® [¢¥)B ® |¢)c. However, also
the entangled GHZ state |GHZ) = %QOOO) +|111)) belongs to this class of states. The so-called W
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state [W) = \/Lg(|001) + |100) + |010)) is a typical representative of the graph with all the three lines,
i.e. in this case each pair of qubits shares the entanglement. The state with a single entangled pair
[¥)aBc = ) aB ® |1)c represents the configuration with a single line.

The last case of the graph depicting two lines might sound (in some sense) counterintuitive. It
corresponds to a system of three particles, where one of them is entangled to others, but the other
two are not mutually entangled. Let us give a simple example that such situation can occur in the
framework of classical correlations. Consider three random variables, where the third of them is simply
a summation of the first two. In the Dirac notation the state of three bits can be written as

oaBc =Y pulk)(k| ® [1){I| & [k @ I)(k @] (6.7)
kl

where the first two qubits are statistically independent, i.e. px; = prp; and the state of the first two
qubits is given by formula pap = (3, pilk)(k|) ® (3, pi|l)(!]). The states of the other two couples of
qubits is obviously correlated, because the reduced state pac = Y, pepi|k) (k| ® |k ® 1) (k ® | cannot
be written in a factorized form. Note that k,I = 0,1 and 1@ 1 = 0. However, the entanglement is
quite far from being a correlation and therefore one cannot expect that similar property will hold also
for entanglement.

Consider the following state of three qubits

|E)apc = % (1010} |+) + [1)[+)[1)) (6.8)

where |+) = %(lO) + [1)). It is easy to check that in this case gpc = (|0+)(0+ |+ | + 1){(1 + ),
i.e. the systems B and C' are not entangled. Direct calculation shows that the reamining two pairs of
qubits are entangled. This state is only a special example of the general class of states that we shall
study later on. Note that, if one considers four qubits, then this kind of graph can be obtained much
easier. Simply imagine that the system consists of two Bell pairs. Take a couple of the qubits (not
described by a Bell state) and denote these two qubits as a single system A. Then the system A is
entangled to other two systems (qubits B and C), respectively and, moreover, these two systems (B
and C) are not entangled. Let us now summarize the results in the following table

Graph State Esp Eac Egc
Olines |Y)a® |P)B® [€)c 0 0 0
\GHZ) apc o 0 o0
1line |EPR)ap®|¢)c 1 0 0
2 lines IZ) aBC 12 12 0
3 lines W) agc 13 1/3 1/3

where Ej;, denotes the entanglement between jth and kth qubit (j,k = A, B, C). Note that the values
are only illustrative.
“Correlated” graphs

The division of the state space according to these four graphs is not sufficient in order to say
that states belonging to one subset have the same quality (or type) of entanglement. Obviously, the
factorized states and GHZ state have completely different entanglement properties. Therefore, we will
add dotted lines into the graphs that correspond to correlated, but not entangled states. Let us denote
different graphs by (j,k) , where j represents the number of entangled (full) lines and k represents
the number of dotted lines. The following table shows the relation between the graphs with “only
entangled” lines and “correlated” graphs (7, k).

“entangled” graph “correlated” graph

zero lines (0,0) (0,1) (0,2) (0,3)
one line (1,0) (1,1) (1,2)

two lines (2,0) (2,1)

three lines (3,0)
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Our aim is to find a pure state representatives of all correlated graphs. Using the results of the
previous paragraph the state representation of types (0,0), (0,3), (1,0) and (3,0) is already known
(see the table bellow). The existence of all other graphs is an open problem that we are going to solve
now. First consider the graphs with one dotted line, i.e. (k,1) type. Let us assume that qubits B and
C are in a separable correlated state

oBc = A0Y)(0] + (1 = A)|p1)(¢1] (6.9)

where 1)) and |@)p are arbitrary vectors. Next we would like to purify this state by adding only
one qubit. This requirement of the single qubit purification implies that the rank of the state pap
must be less or equal to 2, i.e. rank(osc) < 2. Therefore, the above state is the most general we can
consider. Its single qubit purification takes the form

|®) apc = VA|009) + /1 = M1¢1) (6.10)
The reduced states of the particular couples read

0AB Tre|[®)(®] = A00)(00] + (1 — X)[1g){1| + e~ (1|1h)/A(1 — X)|00) (1| + c.c. (6.11
eac = Trp|O)(T| = A0Y)0y] + (1 = N)[11){11] + e~ (0[¢) v/ A(L = A)[0y)(11] + c.c. (6.12
eo = A0g)(0¢]+ (1 - A)[41) (41 (6.13
Note that the phase factor e? can be included into the complex parameters of states |¢) g = a|0) +b|1
and [$)c = al0) + BI1).
Graph (1,2)
Instead of solving the entanglement properties of pap, 04c in general, let us make the following
simplification. Let us assume that |¢))c = |0)¢ and |@)p is arbitrary. In this parametrization we get

~ = ~— ~—

oas = M00Y{00| + (1 — \)|14) (14| (6.14)
oac = A00){00| + (1 — N)[11)(11| + a/A(L — N[00)(11] + c.c. (6.15)
opc = Al00){00] + (1 — A)[p1) (1] (6.16)

It is easy to see that the states pap and gpc are not entangled. To see whether pa¢ is entangled
or not we check the positivity of partially transposed matrix gﬁ%. Direct calculation determines that
the eigenvalues of o', are {\,1 — ), |a|, —|a|}. Due to the negativity of eigenvalue —|a| (if a # 0) we
can conclude that the qubits A and C are entangled. As a result we obtain that states

| Z1 2) = AJ000)(000| + a(1 — A)|101) + b(1 — X)[111) (6.17)

(with @ # 0 and |a|? + |b]> = 1) represent the graph (1,2). In the special case of a = 1, this state
corresponds to graph (1,0), because the state pac = 0%, is pure and entangled, and the qubit B (in
the state |0)) becomes to be factorized from the systems A and C.

Graph (2,1)

We use the formulas derived for the concurrence of specific states (3.44) in order to calculate the
value of the entanglement in states p4p and pac Applying a local unitary transformation these states
can be transformed into the generic form (3.44). It is enough to change the labels 0 «» 1 to obtain
the desired form

2lap = A10)(10] + (1 — A)[0){0¢| + (1[¢r) v/ A(1 = A)[10)(0¢] + c.c. (6.18)
ac = A0 0¢'| + (1 — A)[10)(10] + (0]¢) v/ A(1 — A)[04")(10] + c.c. (6.19)

where |¢)') = a|1) 4+ 8|0). The matrix elements |01){10| completely characterize the amount of entan-
glement. As a result we obtain the following values for the shared entanglement

Cas = BBV =N (6.20)
Cac = |laa]/A(1 = A) (6.21)
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where o = (0f¢)), 8 = (1|¢)), a = (0|¢) and b = (1]|¢). In the specific case of § = 0 we get the
previous example of the graph (1,2). In particular, in this case Cyp = 0 and Cac = |a|/A(1 = A).
In conclusion, the states of the type (6.10) can be represented by the graph (2,1), if a,b, a, 8 # 0. Let
us denote all such states by |Z21).
Other graphs

The three of the remaining types of graphs contain a single factorized (uncorrelated) pair, let us
say that the BC one, i.e. ppc = o0 ® ¢ In order to fulfil the condition that the rank of the operator
can be maximally two, one of the states (say gc) must be pure. To preserve the purity of the whole
three-qubit system the couple AB has to be pure, too. Consequently, there can exist only one line
in the graph representation of such states. Therefore the graphs (1,1), (0,2) and (2,0) cannot be
associated with pure states of a three-qubit system. The last graph (0,1) does not exist, because it
contains two factorized pairs and from the previous it follows that the the dotted line between A and
B must be described by a pure state, but the non-entangled pure states are always factorized.
Graphs with mixed states

To complete our discussion of three-qubit states let us briefly analyze the mixed states representa-
tion of graphs. It is obvious that all types (0, k) exist. The problematic might be the graph (0, 2), but
the example given above (see Eq.(6.7)) proves its existence. Except the graphs (1,1) and (2,0) the
existence of all the other has been proved, because they exist for pure states. Consider the following
mixture

1 1
QABC = /\|EPR>AB<EPR| ® 5]]. + (1 — /\)51 ® |EPR>Bc<EPR| (6.22)

and calculate the reduced density operators

0aB = MEPR)(EPR|+ (1-))1 (6.23)
oac = 1 (6.24)
osc = (1—=))|EPR){EPR|+ A\ (6.25)

(6.26)

where 1 := 11 is the state describing the total mixture and |EPR) = %QOO) + |11)). The state gac
fulfils the condition that systems A and C are factorized. Moreover, the states p4c and gpc belong
to the family of the so-called Werner states |u) = uPgrpr + (1 — p)1, where Pgpg is the projection
onto the maximally entangled state |[EPR). These states are entangled, if the parameter p > 1/3.
In our case we are looking for A from the intersection of the intervals A > 1/3 and 1 — X > 1/3, i.e.
1/3 < A < 2/3. In this case both couples AB and BC are entangled, i.e. the state papc can be
associated with the graph (2,0). Moreover, if A is outside the allowed region, then only one of the
pairs is entangled and the other one is correlated. For instance, if A < 1/3, then the state gap is not
entangled, but the correlation function Cy(A, B) = 2 — S(pap) does not vanish. The state gpc is
entangled, because in this case py=1— X > 1/3.

We have shown that all the graphs can be represented by a mixed state of the three-qubit state.
Let us summarize our results (together with the pure state case) in the following table.

Graph 0,0) (01 (0,2 (03) (1,0) (L) (12) (200 (21) (30
Mixed State  yes yes yes yes yes yes yes yes yes yes
Pure State yes no no yes yes no yes no yes yes
Example  [000) — — |GHZ) [0)|EPR) — |Zip) — |Zox) W)

6.2.3 Arbitrary pure states of three-partite systems

In this section we will see that the pure states of three qubits and pure states of arbitrary three
particles have different properties from the point of view of their graph representation. Namely, we
are interested in the possibility to construct graphs of the type (0,1), (0,2), (1,1) and (2,0) by pure
state of general three-partite system. These graphs cannot be done by a pure three-qubit states.
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Obviously, the graph (0,1) cannot exist, because it requires that one party is completely factorized
from the joint system. On the other side the purity of the joint state implies that the other two systems
must be described by a pure state and therefore they must not be correlated without being entangled.
Both graphs (1,1) and (0,2) contain a subsystem (say A) which is correlated (not entangled) with
the system B, but uncorrelated with the system C|, i.e.

oac = O_pild)alil) ® O alk)c (k) (6.27)
j k

Due to the orthogonality of the basis |j)4 ® |k)c the joint pure state can be written in the Schmidt
basis

|¥)asc = /PiGkli)a ® |ik)s ® |k)o (6.28)
I

where vectors |jk)p form an orthonormal basis of Hp. Tracing out the system A we obtain the state

oBc = Y Div/anaw|ik) s (K| ® K)o (K| (6.29)

j?kﬂkl

The basis of the Hilbert space Hp is labelled by the double index (jk). Formally we can introduce
a tensor structure into this Hilbert space by putting |jk)p = |j)B, ® |k)B,. Using such notation the
state ppc can be rewritten into the form

eBC = (ZPJU)BI () ® > Vakdw |kk) .o (K'F'| = 08, ® [v) B0 (Y] (6.30)

K.k’

where [¢) = Y, \/@k|k) B, ® |k)c. Obviously, the entanglement between the system B and system C
is governed by the correlations contained in the pure state 1) p,c, i.e. all correlations are associated
with entanglement. The same result can be derived also for the state p4p5. In conclusion, the graphs
with one uncorrelated and one correlated line ((1,1) and (0,2)) cannot be designed by pure states of
arbitrary three systems.

The last graph (2,0) can be easily constructed in the following say. The joint system will consist
of four qubits A;, Az, B and C. We have already mentioned that the state

|¥)apc = |[EPR) A, ® |EPR) .c (6.31)

is of the type (2,0), because the parties B and C are described by the factorized state 1.

The following table summarizes the results obtained for arbitrary three-partite systems. We have
found that in comparison with the three-qubit state the graph (2,0) can be designed by a pure state
of general three-partite system.

Graph 0,00 (01) (02) (03) (1,0) (1,1) (1,2) (20) (21) (30)
Mixed State  yes yes yes yes yes yes yes yes yes yes
Pure state yes no no yes yes no yes yes yes yes

6.2.4 Multipartite systems

The number of graphs associated with multipartite states increases rapidly. Each (uncorrelated)
graph is given by the set of double indices I = {kj}, where (kj) corresponds to existing line between
the vertices k and j, i.e. the particles Ay and A; are entangled. The question of the mixed state
representation of a given graph (without the dotted lines) has been solved by W.Diir [41]. He proposed
a multi-qubit state

or = 2 3 wuslbes) s (6.32)
I
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where |¢)g;) = [ )r; ®100.. Yrest, M = > xp; and |¢p),; is maximally entangled state of two qubits
k and j. It is easy to verify that such mixture of entangled states has the required properties. In
particular, the concurrence Ciupy = Tmn/M if mn € I and Cppy = 0 if mn ¢ I. The same question for
the pure states has been solved by M.Plesch [57].

Introducing the correlated lines into the multipartite graphs the state space will be divided into
much more subsets. The question of the physical representation of all these graphs is very interesting,
but it is a content of another work.

6.3 Local unitary equivalence

Entanglement has divided the state space of composite quantum systems into two basic subsets:
entangled and nonentangled states. Given a state 9. An elementary question, whether this state is
entangled or not, has not been solved satisfactorily and only partial results are known. However,
the story continuous and modified questions are being solved with the objective to better understand
the structure of the quantum state space. From the physical point of view the entangled states can
have different “entanglement properties”. Of course, the differences depend on the situation we are
interested in. For instance, two states can be represented by the same graph (without dotted lines),
but the first one is factorized and the other one is entangled, or one of them is pure and the second
one is mixed.

In this section we shall pay attention to a basic property of entanglement. If two states ¢ and &
of multipartite systems contain the same amount of entanglement, then they must be locally unitarily
equivalent, i.e. o = UEUT with U = Uy, ® ... ® Uy,. Our aim is to find a criterion that would
enable us to answer the question whether two states are locally unitarily equivalent (LUE), or not. In
what follows we are going to show several approaches how to deal with this mathematical problem.

6.3.1 Invariants of local unitary transformations

Firstly we will investigate the invariants of local unitary transformations, i.e. necessary conditions of
LUE. After that we shall try to reverse the implication to find out the sufficient conditions.

Let us simplify the problem a little bit . It is easy to see that the solution of the bipartite LUE will
enable us to answer also the multipartite LUE problem. Simply, we can always divide a multipartite
system into a bipartite. Then apply a yes/no criterion. The positive answer means that we can split
both subsystems into new subsystems and apply the criterion again. The negative answer means
that the states are not LUE. The bipartite splittings are being applied recursively until the system
is divided into original particles. The last positive answer gives us the result that states are LUE.
The described algorithm enables us to solve the multipartite LUE problem just by using the bipartite
criterion. Let us now list some invariants of bipartite local unitary transformations

1. Unitary equivalence. It is well known that the necessary and sufficient condition for two states
to be unitarily equivalent is that they have the same set of eigenvalues together with their
multiplicity. The multiplicity of a given eigenvalue A, is represented by the dimensionality of
the associated projector P; (Q;) in spectral decomposition ¢ = 3>, \;P; (£ = 32, e Qx). Let
us denote by the set of eigenvalues of the density matrix ¢ eig(g) = {A1,...}. Then

¢ =UpU', iff eig(¢) =eiglo) & dimP; =dimQ; (6.33)

2. Unitary equivalence of the reduced states. The reduced density matrices px and gy change under
the action of the local unitary transformation Ux ® Uy as follows: for all Ux and Uy

¢&x = Try I:UX®UYQUE(®U{{|:UXQXUTX,

& = Tix |[Ux®UyoUk @ U}| = UyoyU}. (6.34)
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It is obvious that under the action of the local unitary transformation the reduced states of o
and £ are unitarily equivalent, i.e. the sets of eigenvalues coincide

eiglox) = eig(éx),
eigloy) = eig(fy). (6.35)

. Unitary equivalence of the reduced eigenprojectors. Let U = Ux ® Uy and ¢ = >, APy,
then ¢ = UpUt = 3, \tQx, where Py and Q; = UP,U' are eigenprojectors belonging
to the eigenvalue Aj. Since the unitary transformation under the consideration is local, i.e.
U = Ux ® Uy, we obtain the implication

£ =UpU!  then dim(P}) = dim(Qy)
eig(Try Py) = eig(Try Q)
eig(TrxPy) = eig(Trx Qx) , (6.36)

where dim(P},) denotes the dimension of the projection Py, defined as the number of its non-zero
eigenvalues.

. Partial transposition. We shall use the following operator identity
(Kx ® LyoMx ® Ny)T = Kx @ N "My @ LT (6.37)

to prove that under the action of local unitary transformation also the partially transposed oper-
ators are related by a local unitary transformation. Introducing the local unitary transformation
Ux ® Uy we obtain

O = (Ux®UyoUl o U™
= Ux® (UJ{,)TQTYUE( ® UlT/
= Wolvwt (6.38)

where W = Ux ® (UT)1 is a local unitary operator, because the transposed unitary operator is
still unitary. And this proves our proposition, i.e. if two states are locally unitarily equivalent,
then also their partial transpositions are. It follows that we can apply the above properties to
verify the LUE of partially transposed operators in order to obtain the LUE of original states.

6.3.2 Bipartite LUE sufficient condition

For pure bipartite states the condition of local unitary equivalence is trivial. We know, that each pure
bipartite state can be written in the Schmidt-decomposed form

¥) Y Valk)x @ [k)y
k

> ViklE ) x @ [K)y . (6.39)
k

|4)

From the equality A\ = pg (for all k) the validity of the second invariant property follows. That is,
the reduced states contain the same eigenvalues, namely {);}. The first invariant property is fulfilled
trivially for pure states. Moreover, let us define local unitaries by equations Ux|k)x = |k')x and
Uy|k)y = |k')y. Then the states (6.39) are locally unitary equivalent and |¢) = Ux ® Uy |¢).

Theorem 1

Let us consider two pure states [¢) and |¢) of a bi-partite system. These states are locally unitary

equivalent if and only if their coefficients in the Schmidt decomposition are equal, i.e. two sets of
eigenvalues of reduced states coincides.
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Unfortunately, the Theorem 1 is valid only for pure states and cannot be used for arbitrary impure
states. In what follows we will show a simple counter example. The idea behind this example is that
we cannot create entanglement by local unitary transformation and that the spectral decomposition
of a density matrix is unique. It means the separable eigenstate in spectral decomposition cannot
evolve into entangled one.

Example 1.(Counterexample)

Let us consider two states pxy,oxy of a bi-partite system Hy ® Hy where dimHy = 2 and dimHy =
8. It means the system of four qubits is divided into a one-qubit and a three-qubit subsystems. Let
the set of eigenvalues be the same

| W

5 1

?

-

eigloxy) = eigloxy) = {

and the corresponding eigenvectors of pxy are

77 (10,1) +10,2) +|0,4) +]1,0))
|1,7)

Z(L1) +11,2) +1,4))
and for oxy we have
I1,7)
Z5(0,7) +11,3) +10,5))
Vel ’ ’ 6.42
0,0) (6.42)
10, 1)
It is easy that for these states also the sets of eigenvalues of the reduced states coincide, i.e.
, . 11
ciglex) = ciglox) = {53}
. . 3 511
eigley) = eigloy) = {ga 164 E} (6.43)

So for the state under considerations the conditions of the Theorem 1 are satisfied. On the other hand,

in the contradiction with the general properties of local unitaries, we see the violation of the property

that the entanglement creation is prohibited by local unitary transformation. In other words, the

condition of the same set of eigenvalues of the reduced eigenprojectors (invariant 3) is not fulfilled.
It is not clear whether the invariants presented in previous section provide the final answer for the

problem of the local equivalence for mixed states. To see the difficulty of the problem we formulate

the following theorem

Theorem 2

Suppose two non-degenerate states o and o of a composite system X +Y are given by the relations

0= > Me|r) Vil o=k k| Pr) Pk (6.44)

where A\, # N, pr # i for k # 1. Let us express the vectors |i1) and |¢1) in their Schmidt
bases and fix these two bases on Hx ® Hy. If for each k, A\ = pr and the coefficients of the
corresponding eigenvectors [r) = 3, ak  |mn) and |¢r) = > mn k Im'n')y (where |[mn),|m'n')
are the previously mentioned fized bases) coincide, i.e. ok, = Bk then the states o and o are locally

unitary equivalent. The local unitary transformation is given by Ux|m) = |m') and Uy |n) = |n').

From the construction it is clear that the theorem is valid, but in some sense its content is trivial.
We have mentioned this theorem only to illustrate how difficult the problem of LUE is.
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6.3.3 Geometric analysis of equivalence classes

In this section we will calculate the number of parameters that must coincide to be sure that two
states are LUE. From the mathematical point of view the local unitary transformations determine
equivalence classes on the manifold of quantum states S(H). Since states belonging to the same
equivalence class are mutually reachable by a local unitary transformation, we say that classes form
orbits of the action of the group of local unitary transformations Uj,e C U(D). Let d; = dimH; be
the dimension of Hilbert space of the system A;. Then the quantum state of the composite system
0 € S(H) is parametrized by D? — 1 real numbers, where D = d; ...dy is the dimension of composite
Hilbert space H = Ha, ®...® Ha, - It means that the manifold of states is a subset of the real space
RP*~1. The action of the group element U € Up,. on the space S(H) is given by the conjugation
Ulo] := UpUt.

For instance, in the Bloch-sphere representation of qubit states the orbits of all unitary transfor-
mations correspond to the spheres with different radiuses. In that case the ball represent the manifold
of qubit’s states and the orthogonal rotations SO(3) of this ball correspond to actions of unitaries
SU(2). Note, that the irrelevance of the global phase allowed us to consider SU(D) transformations
instead of U(D), since U(D) = SU(D) x U(1). In more dimensional cases the action of an unitary
transformation U € SU(D) represents an orthogonal rotation SO(D? — 1), but the converse state-
ment does not hold. That is, the set of representatives of SU(D) in SO(D? — 1) form just a specific
subgroup of SO(D? —1).

Local transformations form a Lie group. The associated Lie algebra contains operators of the form
AIRL®... 01N, 11 ®A®...Q1N,...,il; ®...® An, where A; are hermitian operators acting
on the Hilbert space H;. Choose a basis X; in the Lie algebra u(dy x ... X dn). Then the general
local unitary transformation U can be expressed as U = e*4, where A = > Xy It is well known
in differential geometry, that each element of the Lie algebra A determines the vector field Va on the
manifold S(H) by the relation

Palf(@)] = Zf (e 0 itM)]|1g (6.45)

ot
where f : S(H) — C. The span of vector fields at the point ¢ € S(H) associated with the whole Lie
algebra forms a tangent space to the orbit of local unitaries and so the dimension of this tangent space
gives us the orbit’s dimension at this point. That is, the number of local parameters. To calculate the
dimension of LUE classes at the fixed point g, we need to investigate the linear dependency of vector
fields associated with the basis elements of the Lie algebra u(d; x ... x dn).
For example, consider the system of two qubits. Let us make the following choice of the basis

Xg) =0,®1, and xff) =1; ® 0. (6.46)

The general state can be expressed in the form ¢ = §1+akx§j) +ka,(CZ) + Yo ® op and the associated
vector fields read

= 0 0

VXS) = jzmakjm (aj% + ;’Yﬂm) (6.47)

— a a

szcz) = Z&Tkjm (bJW + Z’Ylj W) . (648)
jm m l m

Consider firstly the collection of vectors V.

<@ - The condition ak]_}x(l) = 0 holds for all ¢ only
k k

if ap = 0. That is, vectors v

< are mutually linearly independent. The same result holds for the
k

second collection of vector fields ﬁx(z). Mutually these two collections are also independent. Hence,
k
the dimension of the orbit of a generic density operator of two qubits is 6 and the number of non-local
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parameters is 15— 6 = 9. We have seen that the dimension of the orbit in the general case was equal
to the number of generators of the associated Lie algebra su(2) x su(2), because for a general state o
the associated vector fields are linearly independent.

In the general case of the composite system of arbitrary subsystems with arbitrary dimension the
situation is similar [40]. The basis of the Lie algebra of local unitary transformations is given by

operators Xl(j) = G)l(j) ® 1n\;j- The general quantum state takes the form

N d?—l
1 N
b =214 T X0+ Y 16 s 00, (6.49)
j:1 =1 ll,...,lN

Similar consideration as in the two qubit case show, that the associated vector fields l_i’x(j) are linearly
1

independent. Hence, the dimension of orbits for the general case is d? + ... + d% — N, that is, the
number of generators of u(d; x ...x dy). Consequently the number of non-local parameters A" equals

N=][&-DY d&+N-1. (6.50)
J J

We have derived the following theorem.

Theorem
General state o of a multipartite system is characterized by D? — 1 real parameters, where D =
dy...dy and d; = dimH;. The number

N

N =) (df 1) (6.51)

j=1

of them is preserved under the action of local unitary transformations and the rest

N=][d->Y d&+N-1 (6.52)
i i

parameters characterize the non-local properties of states.

To answer, whether two given states belong to the same orbit, we need to compare their local
parameters, that uniquely determine the orbits. Any invariant of local unitaries must be a function of
these parameters. How easy, but we did not say, which of the parameters are local. And this problem
is the aim of the future investigation [37, 38, 39, 40].

6.3.4 Another equivalence relations

In different applications different equivalence relations can be of interest. Let us denote by T the
group of transformations that factorizes the state space into the equivalence classes. In the quantum
theory of entanglement one can meet with the following types of sets 7: all unitary transformations
T = U(H) = U(D) = SU(D), local unitary transformations 7 = Uj,e = U(dy) X ... x U(dn) (see
[37]-[40]), stochastic local transformations (SLOCC) T = SL(d;) x ... x SL(dn) (see [41]) and local
operations with classical communications (LOCC).

It is known (see Ref[41]) that according to SLOCC each pure state of three qubits must belong
into one of the six equivalence classes (orbits)
1. A-B-C factorizable states, i.e. [¢)) apc = |000) aBC
2. AB-C factorizable states, i.e. [¢)apc = |¢)aB ® |0)¢
3. A-BC factorizable states, i.e. |¢)apc = |#)Bc @ |0)a
4. AC-B factorizable states, i.e. [¥)apc = |¢p)ac ® |0)5
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5. W type states, i.e. W =1010) + |001) + |100)

6. GHZ type states, GHZ = |000) + |111)

We remind us that SLOCC operations are given by invertible linear transformations of the type
A ® B® C with det A = det B = det C = 1. Note that the local unitary transformations cannot
change the graph representation of the state, but the SLOCC transformations can. In fact, the
divisions of the state space made by graphs and by SLOCC are not compactible.

6.4 Quantification of multipartite entanglement

Several times we have mentioned that the measures of bipartite entanglement are known, but their
evaluation is usually very difficult. Therefore, we cannot expect that the multipartite measures will be
different. However, the task is not only to quantify the entanglement, but rather to verify and identify
some features of multipartite systems. In this section we shall study the multipartite entanglement in
multi-qubit physical systems.

6.4.1 Three-partite entanglement and correlations

Not only the question of the three-partite entanglement, but also the field of three-partite correlations
have not still be satisfactorily investigated. For example, consider that Alice, Bob and Carol share
three qubits described by GH Z state. Let them know the individual qubit states only. It is obvious
that in this case they do not have any information about the entanglement or correlations of the
joint state. But let them know also the bipartite states. Are they able to say anything about the
shared entanglement? In the case of GHZ state no pair shares entanglement, so it seems that it is
reasonable to conclude that their three qubits contain no entanglement at all. And, of course, this
is not true, because we know that the overall state is pure and the couples are mutually correlated.
Any occurrence of correlations in pure states implies that the state is not factorized, but entangled.
The aim of this section is to understand the mutual relations between the bipartite and three-partite
correlations and entanglement. Can the entanglement be shared in an arbitrary way, or not?

The example of GHZ state provides us with a curious phenomenon of three-partite entanglement.
Despite of the nonexistence of bipartite entanglement the joint state is entangled. We shall refer to
this property as to intrinsic three-partite entanglement, because it cannot be reduced (in any sense)
into the bipartite one. The various functionals (entropy, purity, determinant, concurrence) defined on
quantum states will be important in our analysis. For instance, one can derive the following inequality
[22].

CKW inequality

To calculate the tangle T4p (= square of the concurrence) we need to calculate the eigenvalues (A2 >
A2 > A2 > )A3) of the operator Rag = 04 (0y ® 0y)0aB(0y ® 0y). In particular, T4p = [max{0,A\; —
A2 — A3 — A1 }]2. We remind us that the entanglement of formation is connected with the tangle by
the formula Ef(0a) = Hpin(3 + 2v/T— 7ap) where Hy;,(z) = —zlogz — (1 — z)log(1l — ) is the
binary entropy function. For the special cases, when g4p is pure, the tangle is proportional to the
determinant of the reduced state g4, i.e. Tap = 4det 94. In our case the fact that the state of three
qubits is pure implies that the matrix R4p can have maximally two nonzero eigenvalues, i.e.

TAB = ()\1 — )\2)2 = )\% + /\3 —2M A2 = TrRap — 2\ A2 < TrRap (653)

The same can be done with 74¢ to get the inequality 74c < TrR 4¢. Combining these two inequalities
we obtain

7aB + TAc < TrRap + TrRac (6.54)

125



Let us calculate the matrix R4p for a general three-qubit pure state [¥) =3, ; ¥;rjkl). Introduc-
ing the antisymmetric matrix with elements €g; = —€19 = 1 and €gg = €11 = 0, the trace of the Rap
reads

TrRAB = Y UjmWhmiCmm’ Ennr Uiy iyt ki€t j€R1 (6.55)

because the elements of the matrix g, ® o, can be expressed via the antisymmetric matrix (o, ®
Oy)mn,mn = (Mnjoy ® oy|m'n') = € €nn. Using the identity €ppi€pp = OnpOn/k — Onkdnrpy the
above equation can be rewritten as

TrRap = 2det pa — Tro% — TroZ (6.56)

Because the following identity Trp? = 1 — 2det g holds for two-dimensional matrices with unit trace,
we get

TrRap = 2(det g4 + det pp — det o) (6.57)
By the symmetry also
TrRac = 2(det g4 + det oo — det op) (6.58)
Combining the last two equations we obtain the CKW inequality
TAB +Tac < 4detoa (6.59)

The right hand side of this inequality can be used as a measure of entanglement shared between the
qubit A and the rest two qubits, i.e. T4Bc) = [CA(BO)]2 :=4det oy4.

This inequality together with its generalization to multi-qubit systems takes name by their inven-
tors Coffman, Kundu and Wootters, i.e. CKW inequality. The validity of this inequality has been
proved for three-qubit system and it was conjectured that it should be satisfied also for multi-qubit
system. Let us denote by () the concurrence between the jth and kth qubit, and by C. = the con-
currence between the jth qubit and rest of the composite system. Let us now formulate the CKW
conjecture:

Conjecture( Coffman, Kundu, Wootters)
Consider the system composed from N qubits in a pure multi-qubit state. Then
(a) the inequality

Y ¢ < c3- (6.60)
k,k#j
holds for each qubit j
(b) the difference
Aj =05 - > C (6.61)
k.k#j

has the same value for all j.

Note that the (b) part of the conjecture did not appear in the original formulation of the conjecture.
However, for three qubits this part is also fulfilled. Moreover, if one wants to use this difference in
order to quantify the intrinsic entanglement (= the entanglement shared in multipartite systems which
is not shared in bipartite way), then it is reasonable to require such property.

In what follows we shall analyze the states of pure three-qubit states with respect to CKW in-
equalities. The |GHZ) state corresponds to graph with no lines, i.e. the bipartite concurrencies
vanish, but the entanglement between each qubit and the rest qubit pair does not, i.e. C,- > 0 and

353
consequently A; > 0. Therefore, it seems that the difference A; can be used to measure three-partite
entanglement. On the other hand the second typical representative of three-partite entangled states
is the |W) state, for which one can easily verify that Cap = Cac = Cpc = 2/3 and, consequently,
the CKW inequality is saturated, because 74 = 8/9 = C% 5 + C%.-
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Figure 6.2: CKW inequality

6.5 Saturation of CKW inequalities

6.5.1 Basic observations

At the end of the original paper [22] it is stated that states in the subspace covered by the basis
{|1); ® |0®N _1)]—.} saturates the CKW inequalities. The question of the most general state for which
the saturation holds is well defined mathematical problem. Unfortunately, the solution is far from
being known. In what follows we will give arguments why any state of the form

N
[¥) = a0|0®N) + " ay(1); @ [0 1) (6.62)

=1

saturates the CKW inequalities.
The bipartite density matrices of the state under consideration takes the form

a d e 0
@ b f O

0= 1 ¢ f ¢ 0 (6.63)
0 0 0 O

and only one element determines the concurrence of such state, namely
C?(0) = 4Aff*. (6.64)

It follows that only the matrix element standing with the |01)(10| term will be important for us. Direct
calculations lead us to the following value f = ajaj for the pair of qubits (jk). The corresponding
square of the concurrence between j-th and k-th qubit equals

Cjz = 4|O£j|2|0£k|2 - (665)

In the next step we evaluate the tangle between the j-th qubit and the rest of the system. The state
of single qubit is described by matrix

2 2 *
0; = ( [0l + 2z el o] ) (6.66)
Qjhyg |
Now it is easy to check that
Tj = 4det o; = 4|Oéj|2 Z |ak|2 = ZCJQI: (6.67)
k#j k#j
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and therefore the CKW inequalities are saturated, i.e. Aj =17, =3 C3, = 0 for all j.

Next we will show that part (b) of the CKW conjecture is no longer valid for multi-qubit pure states
(for N > 3). For instance, consider the state of four qubits |®) = [0) ® |GHZ) = %OOOOO) +(0111)).
In such case it is easy to show that A; = 0, since the first qubit is separated from other three. But, if
we evaluate A, we obtain a nonvanishing value. In this state all bipartite concurrencies are zero, i.e.
C]?k = 0, but the tangles are different. For the second qubit its tangle equals 72 = 1. It means that
Ay =1 =1 # Aq. Tt proves that the part (b) of the conjecture does not hold for more than three
qubits.

The last result a little decreases the valuability of the difference A; for the characterization of the
multi-partite entanglement. In what follows we will assume that a state g saturates CKW inequality
only if A; = 0 for all values of j. Our class of states |¥) can be generalized in the following way. Any
state of multi-qubit system of the form

o) = [0°N"") @ [@,,) (6.68)

saturates the CKW inequality. We used the notation, where |¥,) is the state defined in Eq.(6.62) for
n qubits, whereas the state |¥) describes N qubits. The saturation of such state can be easily verifies.
Next consider the factorized state of two states of the form (6.62), i.e.

1) = [¥,) ® [Un—n) (6.69)

Denote the set of n qubits by symbol A and the rest qubits by B. Such states again saturate the
CKW inequality. The proof is straightforward. We can divide the set of N qubits in as many parties
as we want. If each of them is described by the state of the form (6.62), or it is in factorized state,
then the whole state saturates CKW inequality, because all its sub-parties do so. Another kind of
generalization uses the concept of local unitary equivalence between two states. Since tangles and
concurrencies are invariant under local unitary transformations, it follows that also the difference A;
is invariant. Therefore, if one of the states (say |¥)) saturates CKW, then also the second one (|®))
does.
In conclusion each state of N qubits

[U) = |0p,) ®...Q |¥y,,) (6.70)

where |¥, ) are states locally unitary equivalent to state (6.62) saturates CKW inequalities. The
question of the general class of states, for which CKW saturation holds, we left open.

6.5.2 Multipartite entanglement in collision processes
A. Homogenization

Within the context of our investigation it is very natural to ask, what is the nature of the entanglement
created during the process of homogenization. In this section we will address several questions related
to this issue. Let us consider a specific initial state of the system and the reservoir: [¢)o = |1) and
|€); = |0). Note that the partial swap P, is invariant according the local unitary transformations of
the type U ® U. That is, it takes the same form in any basis (of a single qubit) we choose. It follows
that our further calculations remain valid for any mutually orthogonal states, not only for |0) and |1)
and this makes our calculations much simpler.

With the given initial conditions, we easily find the state vector describing the whole system after
n interactions:

n
[T,) = c"[1)o ® 0)N + > [1), ® |0)®N [isc' = (c +is) N !]
=1

The state [0)®7 denotes a state in which all qubits except the Ith one are in the state |0). For a
general pure system state 1)) = a|0) + 3|1) the input state of the whole system [1)) ® |[0®V) evolves
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after n interactions into the state
|20) = al0®™HD) 4 6| T,,) (6.71)

In what follows we will find out the explicit expression for all bi-qubit and single qubit states
during the process of homogenization and then apply the definitions of concurrence and tangles to
find the value of shared entanglement. It is easy to see that the joint pure state |{2,) is of the form
(6.62), for which the values of all concurrencies can be given explicitly.

(n) _amp2_J 0 for n<k<N
Tik® = [Cjk "= { 4B*s420HE=2)  for k<n<N (6.72)
(n) _ w2 _ ] 0 for n<k<N
Tor. = [Cox | = { 4lﬂ|482c2(n+k71) for k<n<N (6.73)
(n) _ 2 _ | 0 for n<j<N
T, = [ij] —{ 4818220V (1 — 2c20-D)  for j<n<N (6.74)
n” = [Copl = 4pl'en (1~ &) (6.75)

Moreover, the form of the state guarantees that during the whole process of homogenization the CKW
inequalities are saturated, i.e. A; = 0.

These results show that system qubit acts as a mediator of entanglement between the reservoir
qubits, which have never interacted directly. It is obvious that the later the two reservoir qubits
interact with the system qubit, the smaller the degree of their mutual entanglement is. Nevertheless,
this value is constant and does not depend on the subsequent evolution of the system qubit (i.e., it
does not depend on the number of interactions n). On the other hand between the system qubit
and j-th reservoir qubit (j is arbitrary) the entanglement monotically decreases with the number of
interaction steps.

B. CNOT-ization

In what follows we will use the same model of particle-reservoir dynamics, only instead of the partial
SWAP we shall use the partial CNOT, i.e.

P, = cosnl + isinnCNOT = c1 + 4sCNOT (6.76)

Note that the action of the CNOT operation can be understood in two nonequivalent ways. In the first
case the system qubit plays the role of the control qubit and in the second case the reservoir qubits
are the control ones.

Let us start with the first, i.e. CNOT = |0){0|® 1 + |1){1| ® 6. The joint system of the control and
target qubits evolves according to rule

0®¢ = o E+ 5 {000Poo ® €+ 011P11 ® 0z60,}
+5° {001 Po1 ® €0y + 010P1o ® 0,€}
Fisc{[e, Poo] ® £ + [P11 ® 02,0 ® £]} (6.77)

with Pj, = |j)(k| and g;r = (j|o|k). Then for the subsystems it follows

(n) %o K"Qo1
=1 _ 6.78
0s ( K" 010 011 ) ( )

with

K= ce' + se” Mo, )e (6.79)
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where (0;)¢ := Trfo, denotes the mean value of the x-spin component and
& = €+ 5”000 + 570110280, (6.80)

Hence, in this case the CNOTization leads the state of the system into its diagonal form, i.e. the
system qubit decoheres. On the other hand the qubits in the reservoir are described by the same
physical state £’ = ¢} in each step.

Next, let us assume that reservoir qubits are the controlled ones, i.e. CNOT = 1®|0)(0|+ 0, ®|1)(1|.
In this case the evolution leads the qubits into the states

Q(S") = %o+ 526000 + s%£110, 00, (6.81)
and : ;
' 00 K&o1
—( ¢ 6.82
¢ ( k&0 &n > ( )

with k = se'{0,), + ce™.

Consider the initial state [Qg) = (a|0)+3|1))®|0®N). If the reservoir qubits play the role of control
qubits, then the evolution is trivial, i.e. |Q,) = |Q). In the second settings, when system qubit is
the controlled one, the state |Q,) = (|0®(" 1)) 4 g[18(n+1)) & |0®(N=7)) je. the resulting state is
of GHZ type. Therefore, we can conclude that the “type” of entanglement created in this process is
completely different in comparison with the homogenization. Simply, in this case all bipartite states
remain separable (contain no entanglement) and the difference A; = 4|a|?|8|? for j < n. For j > n
the difference vanishes.
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Conclusion

As we have already mentioned the problems studied in this thesis can be divided into four groups:

[y

. Quantum processors

[\V]

. Quantum dense coding

W

. Quantum homogenization

W

. Multi-partite entanglement

Quantum processors were analyzed in the Chapter V., where we explicitly constructed the processor
(QDM) that implements all unitary transformations in the probabilistic regime. The same processor
was exploited to realize the complete state reconstruction of the data system. We indicated several
classes of quantum processors with similar features (U-processors, Y-processors, covariant processors,
mazimal processors, etc.). We investigated the possibilities of deterministic implementation of one-
parametric sets of quantum maps, where we have found a useful relation that must hold between
any two quantum maps realizable by the same quantum processor. We used this relation to show
that there cannot exist a universal quantum processor, and that the rate of the amplitude damping
channel cannot be controlled by a fixed quantum processor. Finally, also the case of the probability
amplification was studied. We have shown that conditioned loops are possible and they enable us to
improve the probability. However, we have left open the question, whether such conditioned loops can
be replaced by the action of a new processor (with a larger program space) that does the same job.

The second problem of the quantum dense coding continues and extends my Diploma Thesis, where
I was studied this quantum communication protocol for different types of quantum qubit channels
in detail. In this thesis I have paid attention only to noiseless quantum channels, because I have
been interested in the general properties of the entanglement and correlations in the information
transmition. I have found that the quantum dense coding can be understood as a generalization of
the only secure protocol called one-time pad. Also the relation between the derived capacities and the
measure of entanglement has been given in a clear way. The formulas for the qubit channel capacities
have been generalized into the case of qudit noiseless channel.

The quantum homogenization is a physical process originally introduced in [52]. We have found
many interesting properties of this simple model of the interaction between a single qubit and a
reservoir of qubits. This single qubit evolves according to the model of homogenization and finally
all qubits are described by the same state, which is equal to the original state of the qubits in the
reservoir. We have shown that only the partial swap interaction satisfies the conditions given by the
model. Different aspects of the homogenization can be found in different chapters of the thesis. The
model was introduced in the Chapter IV. Homogenization process is discrete. However, we have shown
that it is possible to introduce continuous time to describe it. Moreover, this continuous extension
possesses semigroup properties. Partial swaps belong also to a specific class of processors, for which
each program determines different quantum operation, i.e. there is no redundancy in the program
space of such processor. Namely, each state £ of the reservoir determines a contractive map with
the fixed point £. Also in the last chapter the homogenization has its representative. The study of
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the entanglement properties of the states generated by the homogenization process leads us to the
following result. During the whole process, the shared entanglement shows similar features, namely,
the CKW inequalities are saturated.

The entanglement of the multi-partite system is the central notion of the last chapter. The meaning
of the entanglement in composite system is still a very vague concept. In this chapter we introduced
the graph representation of quantum states, where also correlations (without entanglement) was in-
volved. We paid attention to the analysis of three-partite systems in order to show, which of the
graphs could be represented by quantum states. Very few results are known about the multi-partite
entanglement. The mentioned CKW inequality demonstrates that entanglement in multi-partite pure
states cannot be shared freely. The problem of local unitary equivalence has been solved only partially.
However, its difficulty is famous. So far, only a few features of multi-partite entanglement have been
studied. The relation between the graph representation and entanglement properties of multi-partite
system is trivial, but it can be that some deeper relations could exist. In these days the graph theory
is not applicable into the problem of entanglement and we use graphs only as illustrations of differ-
ent entanglement configurations. To introduce a reasonable graph theory one needs to specify the
properties of entanglement, some new inequalities, etc. This is an open problem left for the future
investigation.

132



Bibliography

[1] A.Peres, Quantum Theory: Concepts and Methods (Kluwer, Dordrecht, 1993)

[2] J.Preskill, Quantum theory of Information and Computation see
http://www.theory.caltech.edu/people/preskill

[3] J.Pisit, V.Cerny, V.Gomolédk, Uvod do kvantovej mechaniky (Alfa, Bratislava, 1983)

[4] B.Rietan, T.Neubrunn, Tedria miery, (Veda, Bratislava, 1992)

[5] P.Béna, “Extended Quantum mechanics”, Acta Phys. Slovaca 50, (2000)

[6] D.Blochincev,Osnovy kvantovoj mechaniki, (Nauka, Moskva, 1967)

[7] J.Blank, P.Exner, M.Havlicek, Linedrni operdtory v kvantové fyzice, (Karolinum, Praha, 1993)
(8]

8] M.A.Nielsen and I.L.Chuang Quantum Computation and Quantum information (Cambridge Uni-
versity Press, Cambridge, 2000)

[9] R.F.Streater, “Classical and quantum probability”, J.Math.Ph. 41, 3556-3603 (2000)

[10] A.S.Holevo, Probabilistic and statistical aspects of quantum theory, (North-Holland publishing
company, 1982)

[11] G.Alber, T.Beth, M.Horodecki, P.Horodecki, R.Horodecki, M.Rotteler, H.Winfurter,
R.F.Werner, A.Zelineger Quantum information-an introduction to basic theoretical concepts and
experiments Verlag, Berlin, 2001 (Springer Tracts in Modern Physics vol.173)

[12] John S. Bell, “On the FEinstein-Podolski-Rosen paradoz”, Phsysics, 1, 195-200 (1964)
[13] R.F.Feynman, Kvantovomechaniceskoje EVM, Uspekhi Phys. Nauk 149:4 671-688 (1986)

[14] V.Vedral and M.B.Plenio, “Entanglement measures and purification procedures”, Phys.Rev. A
57, 1619-1633 (1998)

[15] K.G.H.Vollbrecht and R.F.Werner, “Why two qubits are special”, LANL preprint archive
quant-ph/9910064

[16] K.G.H.Vollbrecht, R.F.Werner, “Entanglement measures under symmetry”, LANL preprint
archive quant-ph/0010095

[17] R.F.Werner, “All teleprotation and dense coding schemes”, LANL preprint archive
quant-ph/0003070

[18] A.Peres, “Separability criterion for density matrices”, Phys.Rev.Lett. 77 (1996), LANL preprint
archive quant-ph/9604005

133



[19] S.L.Woronovicz, “Positive maps of low dimensional matriz algebras”, Rep.Math.Phys. 10, 165-
183, (1976)
S.L.Woronowicz, “Nonextendible positive maps”, Commun.Math.Ph. 51, 243-282 (1976)

[20] M.Horodecki, P.Horodecki, R.Horodecki, “Separability of mized states: necessary and sufficient
conditions”, Phys.Lett. A 223, 1-8 (1996), LANL preprint archive quant-ph/960538

[21] P.Horodecki and A.Ekert, “Direct detection of quantum entanglement”, LANL archive
quantu-ph/0111064

[22] V. Coffman, J. Kundu, W. K.Wootters, “Distributed entanglement”, Phys.Rev. A 61, 052306
(2000).

[23] W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits”. Phys. Rev.
Lett. 80, 2245 (1998).

[24] M. Koashi, V. Buzek, and N. Imoto, Phys. Rev. A 62, 050302(R) (2000),

[25] W. Diir, “Entanglement molecules”, Phys. Rev. A 63, 020303 (R) (2001), LANL archive
quant-ph/0006105

[26] M.J.Donald, M.Horodecki, O.Rudolph, “The uniqueness theorem for entanglement neasures”
LANL preprint archive quant-ph/0105017

[27] B.M.Terhal, “A family of indecomposable positive linear maps based on entangled quantum states”,
LANL preprint archive quant-ph/0010091

[28] A.S.Holevo, IEEE Trans. Inf. Theory 44, 269 (1998).

[29] A.S.Holevo, “Quantum coding theorems”, Russian Math. Surveys 53:6 1295-1331 (1998), Uspekhi
Mat. Nauk 53:6 193-230 (1998)

[30] M.Raginsky, “Strictly contractive quantum channels and physically realizable quantum comput-
ers”, Phys.Rev.A 65, 032306 (2002), LANL preprint archive quant-ph/0105141

[31] V. Buzek and M. Hillery, “Quantum copying: Beyond the No-Cloning Theorem” Phys. Rev. A
54, 1844 (1996).

[32] V. Buzek, S. Braunstein, M. Hillery, and D. Bruf}, Phys. Rev. A 56, 3446 (1997).

[33] Peter Stelmachovi¢ and Vladimir Buzek, “Dynamics of open quantum systems initially entan-
gled with enviroment: Beyond the Kraus representation”, Phys.Rev.A 64 (2001), LANL preprint
archive quant-ph/0108136

[34] Mério Ziman and Peter Stelmachovi¢, “Quantum Theory: kinematics, linearity and no-signaling
condition”, LANL preprint archive quantu-ph/0211149

[35] G. Lindblad, On the generators of Quantum Dynamical Semigroups, Commun. Math. Ph. 48,
119-130 (1976)

[36] Ch.Fuchs, “Nonorthogonal quantum states can mazimize classical information capacity”,
Phys.Rev.Lett. 79, 1162-1165 (1997), LANL preprint archive quant-ph/9703043

[37] A.Sudbery, “On local invariants of pure three-qubit states” J.Phys.A 34, 643-652 (2001), LANL
preprint archive quant-ph/0001116

[38] H.Barnum and N.Linden, “Monotones and invariants for multi-particle quantum states”, LANL
preprint archive quant-ph/0103155

134



[39] M.Kus and K.Zyckowski, “Geometry of entangled states”, Phys.Rev.A 63, 032307 (2001), LANL
preprint archive quant-ph/0006068

[40] N.Linden, S.Popescu and A.Sudbery, “Non-local properties of multiparticle density matrices”,
Phys.Rev. Lett 83, 243-247 (1999), LANL preprint archive quant-ph/9801076

[41] W.Diir, G.Vidal and J.I.Cirac, “Three qubits can be entangled in two inequivalent ways”,
Phys.Rev. A 62 (2000), LANL preprint archive quant-ph/0005115

[42] C.H.Bennett and S.Wiesner, Phys.Rev.Lett. 69, 2881 (1992)

[43] M.Ziman, V.Buzek, “Equally distant partially entangled alphabet states for quantum channels”,
Phys.Rev 62 (2000), LANL preprint archive quant-ph/0009075

[44] M. A. Nielsen and I. L. Chuang, “Programmable quantum gate arrays”, Phys. Rev. Lett. 79, 321
(1997).

[45] G. Vidal, L. Masanes, and J.I. Cirac, “Storing quantum dynamics in quantum states: A stochastic
programmable gate”, Phys.Rev.Lett. 88 047905 (2002), Los Alamos arXiv quant-ph/0102037.

[46] S. Braunstein, V. Buzek, and M. Hillery, “Quantum Information Distributor:Quantum network

for symmetric and anti-symmetric cloning in arbitrary dimension and continuous limit”, Phys.
Rev. A 63, 052313 (2001).

[47] M.Hillery, V.Buzek, M.Ziman, “Programmable quantum gate arrays”, Forstschritte der Physik
49, 987-992 (2001)

[48] M.Hillery, V.Buzek, M.Ziman, “Probabilistic implementation of quantum processors”, Phys.Rev
A 65, (2001) LANL preprint archive quant-ph/0106088

[49] M.Ziman, V.Buzek, P.Stelmachovi¢, “On the local unitary equivalence of states of multi-
partite systems”, Forstschritte der Physik 49, 1123-1131 (2001), LANL preprint archive
quant-ph/0107016

[50] A. Yu. Vlasov, “Aleph-QP:Universal Hybrid quantum processors”, LANL preprint archive
quant-ph/0205074

[51] V.Scarani, M.Ziman, P.Stelmachovi¢, N.Gisin, V.Buzek, “Thermalizing quantum ma-
chines:Dissipation and Entanglement”, Phys. Rev. Lett. 88,097905 (2002), LANL preprint archive
quant-ph/0110088

[52] M.Ziman, P.Stelmachovi¢, V.Buzek, M.Hillery, V.Scarani, N.Gisin, “Dilluting the quantum in-
formation”, Phys.Rev A 65, 042105 (2002), LANL preprint archive quant-ph/0110164

[53] M.Hillery, M.Ziman, V.Buzek, “Implementation of quantum maps by programmable quantum
processors”, Phys.Rev A 66, 042302 (2002), LANL preprint archive quant-ph/0205050

[64] Mdrio Ziman and Vladimir Buzek, “Correlation-assisted communication”, to appear in
Phys.Rev.A (2003), LANL preprint archive quant-ph/0205078

[55] T.Wei, K.Nemoto, P.Goldbart, P.Kwiat, W.Munro, F.Verstraete, “Mazimal entanglement versus
entropy for mized states”, Phys.Rev A 67, 022110 (2003),

[56] M.Ziman, P.Stelmachocic,V.Buzek, “Quantum homogenization:Saturation of CKW inequalities”,
J.Optics B (2003)

[57] M.Plesch and V.Buzek, “Entangled graphs:Bipartite entanglement in multi-qubit systems”, Phys.
Rev. A 67 012322 (2003), LANL preprint archive quant-ph/0211020

135



