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Chapter 1

Introduction

Electron confined in a semiconductor quantum dot is a promising system for
potential applications in quantum information processing. The vast progress in
semiconductor technology over last fifty years has made it possible to manu-
facture and manipulate systems small enough to reveal their quantum nature.
Especially the spin degree of freedom in quantum dots has attracted attention
for two reasons. First, the electron spin provides a natural quantum two level
system, suitable for encoding the information bit. Second, the spin is less coupled
to the environment than are electron orbital degrees of freedom, thus providing
longer coherence time. This is crucial for a quantum processor to work – the
time it takes to do a desired manipulation, such as a controlled spin flip, has to
be much smaller than a time after which the information initially encoded in the
spin is lost in the environment.

Up to now the best experimental achievements show we are still far away
from the desired goal of controlling the quantum dot spin qubit to the extend
that it can serve as a qubit in a quantum computer. The problem is that when a
system is decoupled from the environment (such as the spin in a quantum dot),
and consequently the leak of the information is slow, it is also decoupled from
possible means of control, making the manipulation time long. And vice versa –
a system which is easy to manipulate, since it is strongly coupled to the outside
world, is also strongly coupled to all kinds of fluctuations out of our control.

This work follows an idea specific to semiconductor quantum dot spin qubits,
where the information is stored in the electron spin, which is decoupled from
the fluctuations to a large degree. Easily accessible orbital degrees of freedom
are used for a spin manipulation. This manipulation is possible due to spin-
orbit interactions, present in certain semiconductor structures, which couple spin
and orbital parts of the electron wavefunction. We study the influence of spin-
orbit interactions on various properties (energy spectrum, relaxation rates, and
frequency of induced coherent oscillations) of a single electron quantum dot qubit,
having in mind a possible exploitation of the spin-orbit as a mean of control over
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2 Chapter 1. Introduction

the electron spin.
In the first part, we study the energy spectrum of the quantum dot. The

differences of eigenenergies give frequencies of inherent oscillations of eigenstate
superpositions (such as tunneling in symmetric double quantum dots, or spin
precession in magnetic field). Resonant frequencies in manipulation of the states
by resonant oscillating field techniques (Rabi oscillations) are also given by the
eigenenergies. Apart from the possibility of tuning these frequencies by the spin-
orbit interactions, more importantly, the spin-orbit interactions make such fre-
quencies spin dependent. This can be used, for example, for spin manipulations
or spin to charge conversion schemes.

Second area of our research is the electron relaxation time induced by phonons,
where spin-orbit plays important role. From the perspective of quantum compu-
tation, it is desired to keep the relaxation (and even more importantly the deco-
herence) time as large as possible. The anisotropy of the spin-orbit interactions
leads to a modulation of the relaxation time. The goal is to specify conditions,
when the relaxation time is maximal.

Third, we inspect the role of the spin-orbit interactions in a coherent ma-
nipulation of an electron by resonant oscillating fields. Similarly as before, the
anisotropy of the spin-orbit interactions can be used to control the effectiveness
of electric and magnetic fields in spin and orbital electron manipulations.

Throughout our work we pay special attention to spin hot spots, which are
anti-crossings induced by the spin-orbit interactions. The reason is that the elec-
tron wavefunction is drastically changed at such anti-crossings. More precisely,
the spin orientation of the anti-crossing states is qualitatively different compared
to other states. This has profound consequences on all kinds of spin dependent
characteristics of the system, for example, the spin relaxation is enormously en-
hanced at spin hot spots.

We describe the single electron in a GaAs/AlGaAs quantum dot using the
effective mass approximation. The lowest spin dependent corrections, due to
couplings to other bands, are included in form of the Bychkov-Rashba and cubic
and linear Dresselhaus spin-orbit Hamiltonians. When considering phonons, we
describe them as bulk plane waves, while including deformation and piezoelectric
potentials of acoustic phonons for the electron-phonon interaction. The reso-
nant oscillating electromagnetic fields are described as classical monochromatic
waves. We do all the computation numerically using an exact diagonalization
technique (Lanczos diagonalization), fast Fourier transform, and numerical inte-
gration. Apart from that, we derive analytical formulas using suitable approxima-
tions. Several problems we address were already studied in single dots; however,
the exact numerical technique we use allows us to study them also in double dots,
without relying on the Fock-Darwin solutions, being usually the basis chosen by
other authors.

In the following three chapters we will discuss the role of the spin-orbit inter-
actions in three main areas we studied: energy spectrum, relaxation rates, and
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Rabi oscillations induced by resonant fields. The last chapter gives conclusions
and a discussion of possible extensions of the work.





Chapter 2

Spectrum of a single electron quantum
dot

In this chapter we study the energy spectrum of a single electron in single and
double quantum dots in zero and finite perpendicular magnetic field. We first
introduce the effective mass approximation that allows us to use a single particle
description. We comment on the origin of spin-orbit interactions, stemming from
this approximative description. Taking an explicit model of GaAs/AlGaAs quan-
tum dot, we shortly review the most interesting results of other authors, after
what we present our contribution. There we first study the spectrum of a single
dot, concentrating on the spin-orbit influence on the g-factor. We then continue
with a similar analysis of the double dot, separately in zero and finite magnetic
field. Here we focus on the spin-orbit influence on the g-factor and the tunneling
energy. We construct an effective tunneling Hamiltonian which incorporates the
results in a simple form. At the end we derive an effective spin-orbit Hamiltonian
and perturbative eigenfunctions which will be used in next chapters.

2.1 Electron in a quantum dot: Single particle

approximation

2.1.1 Effective mass approximation

Let us consider a semiconductor with an electron which is free (that is, it is not
bound to a certain atom). One supposes that the influence of crystal atoms and
other electrons can be attributed to an effective crystal potential VC , in which
the electron moves. The wavefunction of the electron is then given by this crystal
potential. The most general property of the wavefunction is that it is of the Bloch
form, a fact which follows from the periodicity of the crystal and consequently of
the potential VC . One can suppose that the Bloch functions and their energies
are known – detailed band structure calculations have been done for many bulk

5



6 Chapter 2. Spectrum of a single electron quantum dot

C
V  : crystal potential

V : confining potential

atom

Figure 2.1: Microscopic potential in a quantum dot. The crystal potential VC has
the periodicity of the crystal. The confinement potential V has a local minimum,
where an electron can be captured. The characteristic length of the confinement
potential is much larger than the period of the crystal.

semiconductor materials.[7]
If the electron is confined to a certain region by an additional confinement po-

tential V , as illustrated in Fig.2.1, one talks about a quantum dot. The confining
potential V can be of various origins, such as an electric potential of metal-
lic gates on the surface of the semiconductor, a charged impurity bonding the
electron, or a different material composition of the confinement region. The con-
finement potential V is not periodic as VC is, and only approximate solutions
of the total Hamiltonian with the potential VC + V can be found. The effective
mass approximation[13] exploits the fact that the period of the crystal poten-
tial is much smaller than the characteristic length of the confinement potential
(a length over which the confinement potential changes appreciably). The total
electron wavefunction can be in this case approximated by a product of a Bloch
function ξk,n(r) with a fixed momentum and band index, and a modulating enve-
lope function Ψ(r). An effective Hamiltonian can be then derived for the envelope
function, in which the crystal potential is present only through a redefinition of
the mass of the electron:

H =
1

2m
p2 + V, (2.1)

here m is the effective electron mass which is different from the free electron mass
me.

Equation (2.1) is called single band, since the electron is described as a two
component spinor. A generalization of the single band effective mass approxima-
tion is the multi-band k.p theory, where the quickly oscillating Bloch part of the
electron wavefunction is still not present explicitly, but more bands are taken into
account and the electron is described by a vector of envelope functions for which
an effective matrix Hamiltonian equation is derived. From such a description,
the influence of couplings between different Bloch bands through the potential
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Figure 2.2: a, Quantum well: At the heterostructure interface a two dimensional
electron gas (2DEG) is formed. By confining electrons further b, a quantum wire
and c, a quantum dot is formed.

V can be obtained perturbatively. These couplings lead to a change of the band
structure compared to the bulk; for example, degenerate bands are split. In
the context of this work, an important consequence of the band couplings is the
appearance of spin-dependent interactions in the effective electron Hamiltonian.
Using 14×14 Kane model in bulk GaAs (that is considering 7 bands, each for the
two spin indexes), one can derive the Dresselhaus spin-orbit Hamiltonian.[168]
The Dresselhaus Hamiltonian is the lowest order (in momentum operator) spin-
dependent interaction appearing in the conduction band effective Hamiltonian for
material without bulk inversion symmetry (such as GaAs, a III-V compound, it
is not present in Si). Higher order corrections can be derived,[26] these however
play only a minor role near the band minimum.

Further step that we make in the approximative description of the electron is
considering a heterostructure. A heterostructure is a composition of two different
materials (such as GaAs and AlGaAs) on top of each other – the interface is a
plane perpendicular to z direction. Due to different band gaps, a steep poten-
tial dip with approximately triangular shape is formed along ẑ. This is a part
of the confining potential V . Similarly as for the Dresselhaus interaction, now
the asymmetry of the interface potential along ẑ leads to another spin-dependent
correction – the Bychkov-Rashba spin-orbit interaction. It can be obtained con-
sidering the conduction and three valence band in 8 × 8 Kane model. At the
heterostructure interface, the conduction electrons (say the material is doped)
form a two dimensional electron gas. They are free to move along x̂ and ŷ, while
confined along ẑ by the heterostructure – one speaks about a quantum well. The
confinement length in ẑ is typically a few nanometers, being still large enough for
the effective mass approximation to hold. A quantum wire means electrons are
confined further, say in x direction (for example, by etching a narrow line from the
material or placing gates above). A quantum dot is formed, if the confinement is
in both lateral dimensions and electron states are completely spatially localized,
see Fig. 2.2.
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We will consider the lateral confinement to be achieved by placing metallic
gates on the top of the sample, which is typically ∼ 100 nm above the two di-
mensional electron gas at the heterostructure interface. By a voltage applied to
the gates it is possible to tune the confinement. In this case the lateral confine-
ment length is typically tens to hundreds nanometers, therefore much larger than
the confinement in z direction. We can then approximate the electron states as
Ψ(x, y, z) = Ψ(x, y)φ0(z), where φ0(z) is the ground state of a Hamiltonian with
the confinement potential of the heterostructure. In the total Hamiltonian we can
then replace all operators dependent on z variable by their expectation values in
the ground state: Ô(z) → 〈φ0(z)|Ô(z)|φ0(z)〉 (quantum averaging). Such aver-
aging allows us to describe the electron as two dimensional (2D approximation).
The 2D approximation is valid as long as the considered energy of the electron is
much smaller than the excitation energy in the z confinement (that is a difference
of energies of excited state φ1 and ground state φ0).

Finally, we consider that a magnetic field is applied. It couples to the elec-
tron spin through the Zeeman term, where again the strength of the interaction
(g-factor) is renormalized from the free electron value through the hidden Bloch
function part of the electron wavefunction. Second, the magnetic field enters the
momenta operators through the minimal coupling. However, the orbital effects of
the in-plane field can be neglected in the 2D approximation, if the in-plane mag-
netic field is not too high, say ≤ 10 T, for the further used material parameters.
It is possible to include the orbital effects of the in-plane field, while keeping the
two dimensional description. However this leads to much more complicated form
of the spin-orbit Hamiltonians.[62]

Summarizing, under the above discussed approximations the electron confined
in a quantum dot can be described by a two dimensional effective Hamiltonian
containing the spin-orbit interactions. The basic question is how does the energy
spectrum and the states of this Hamiltonian look like? The analytical solution for
a general confining potential does not exist. If one is able to solve the Schrödinger
equation with the Hamiltonian without the spin-orbit interactions, they can be
then treated as a perturbation. Their most important property is that they mix
the orbital and spin degrees of freedom, thus changing the spin character of the
states and renormalizing the states’ energies. The difference of energies of the two
spin opposite states is, without the spin-orbit interactions, given by the Zeeman
term only. The influence of the spin-orbit interactions can be then described as an
effective change of the strength of the Zeeman term, which is denoted as g-factor.

2.1.2 Overview of known results

Most of the existing works quantifying the spin-orbit influence on the quantum
dot spectrum work with a harmonic confinement potential, where an analytical so-
lution of the Hamiltonian without the spin-orbit terms exists in the form of Fock-
Darwin states[67, 32] with Pauli spin quantized along the magnetic field direction.
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Due to the circular symmetry of the confining potential definite rules exist for the
coupling of the Fock-Darwin states through the spin-orbit Hamiltonians.[34] The
deformations of the parabolic potential, thus loosing the circular symmetry, does
not allow for specific selection rules anymore.[155] Symmetry of the parabolic
potential causes in zero magnetic field high degeneracy, which is partially lifted
by the spin-orbit interactions.[43] The Dresselhaus and Bychkov-Rashba term
act independently and the g-factor, comparing to the bulk value, is enhanced if
Bychkov-Rashba dominates and suppressed if Dresselhaus terms dominate.[34]
The g-factor change is up to several percent for typical spin-orbit strengths in
GaAs. A complicated behavior occurs for stronger spin-orbit interactions, or
larger magnetic fields, where an anti-crossing is present and the spin structure
is disturbed heavily.[42, 43, 156, 34, 40, 161, 108] Spatially dependent spin-orbit
interaction induces bounding of the electron also in the absence of any confining
potential,[153] and a shallow potential well with only one possible bound state is,
in the presence of the spin-orbit interactions, turned into a system with infinitely
many possible bound states.[27] The spin-orbit can reveal itself also through the
properties of the wavefunction – it was shown that the spin-orbit causes discreet
steps in the magnetization.[160]

In zero magnetic field the spin-orbit interactions are not effective in the lowest
order of the perturbation theory. It is a consequence of the time reversal symmetry
of the spin-orbit Hamiltonians.[158] A unitary transformation (Schieffer-Wolff)
was found that explicitly removes the lowest order contribution of the linear spin-
orbit terms.[5] A generalization of this transformation in finite magnetic field was
found to exist for a specific case of the parabolic potential.[154]

If the potential is a cylindrical hard-wall, the Hamiltonian with only one of
the linear spin-orbit terms has analytical solution.[22] The solution in the same
potential has been further generalized by allowing for a finite magnetic field.[151]
Another strategy in the parabolic potential was followed in Ref. [37] – an analog
of the rotating wave approximation leads to a simple analytical solution. With
the exception of the analytical solution for a hard-wall, however, all discussed
works were based on the Fock-Darwin states, thus applicable only to the case of a
parabolic potential, possibly with only small deviations. The parabolic potential
is in fact a very good approximation to experimental data from single quantum
dots,[150] but perturbation approaches based on Fock-Darwin solutions are not
suitable for more general potentials. An example of such is the double dot, where
the potential has two symmetric minima.

For a general potential exact diagonalization techniques were used, such as
studying the potential profile in a 3D simulated Si device as a function of gate
voltage,[132] or 3D simulation of GaAs/AlGaAs device with realistic gates, where
few electron ground states were modeled.[166] However such methods lack the
simplicity of results obtained using few levels from the Fock-Darwin spectrum.
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2.1.3 Parameters of the model

The effective mass Hamiltonian contains several material parameters (effective
mass, g-factor, spin-orbit couplings) that have to be obtained from microscopic
calculations or measured experimentally. Microscopic calculations are based on
the k.p model where a specific confinement in z direction has to be included.[31,
129, 130, 93, 25, 33] The parameters show a nontrivial behavior as functions of
the doping density, material composition, width of the well, or applied electric
field. However, the existing calculations neglect the lateral confinement which
also influences the effective parameters. It would be therefore desirable to be
able to measure the parameters directly for a given quantum dot. Unfortunately
this is not a straightforward task, since the parameters’ influence on easy mea-
surable quantities is complicated. From the energy spectrum of the quantum
dot measured by a resonant tunneling technique,[157] the g-factor can be ob-
tained directly.[103, 131] The effective mass and the strength of the cubic Dres-
selhaus term are supposed to have the bulk value. The most complicated is
to obtain the couplings of the linear spin-orbit terms. In a quantum well they
can be fitted from Shubnikov-de Haas oscillations,[122, 57, 84, 85, 79, 141] weak
localization,[100, 119, 120, 167] and spin interferometry.[102] Recently, the spin
relaxation anisotropy[10] and spin-galvanic effect[73] allowed to find the ratio of
the linear spin-orbit couplings in a quantum well. The values obtained here are
then used for a quantum dot. Recent measurements of single dot spin relaxation
offered a first possibility to fit the strength of the spin-orbit interactions directly
from a quantum dot measurement.[118, 6]

2.2 Spin-orbit influence on the energy spectrum

Further in this chapter, we investigate the role of spin-orbit interactions, repre-
sented by the Dresselhaus (both linear and cubic) and Bychkov-Rashba terms, in
spin and charge properties of two laterally coupled quantum dots based on GaAs
materials parameters. We perform numerically exact calculations of the energy
spectrum using the method of finite differences. We first study the general struc-
ture of the energy spectrum and the spin character of the states of the double
dot system. We construct the group theoretical correlation diagram for the single
and double dot states and indicate the possible transitions due to spin-orbit inter-
action. This group theoretical classification is used in combination with Löwdin
perturbation theory to explain analytically our numerical results. In particular,
we show that while allowed by symmetry, the specific forms of the linear spin-orbit
interactions do not lead to spin hot spots in the absence of magnetic field (spin hot
spots are nominally degenerate states lifted by spin-orbit interaction[60]). Only
the cubic Dresselhaus term gives spin hot spots. If identified experimentally, the
strength of the cubic term can be detected.
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We next focus on two important measurable parameters: electronic g-factor
and tunneling amplitude. In single dots the variation of the effective g-factor
with the strength of the spin-orbit interaction has been investigated earlier.[34]
The effect is not large, amounting to a fraction of a percent. Similar behavior is
found for double dots. In our case of GaAs the contribution to the g-factor from
spin-orbit interaction is typically about 1%, due to the linear Dresselhaus term.

More exciting is the prospect of influencing coherent tunneling oscillations
between the dots by modulating the spin-orbit interaction strength. Two effects
can appear: (i) the tunneling amplitude or frequency can be modulated by spin-
orbit interaction and, (ii) the tunneling amplitude can be spin dependent. We
show how a naive application of perturbation theory leads to a misleading result
that (i) is present in the second order in linear spin-orbit interaction strengths,
giving rise to an effective tunneling Hamiltonian involving spin-flip tunneling at
zero magnetic field. Both numerical calculations and an analytical argument,
presented here, show that this is incorrect and that there is no correction to
the tunneling Hamiltonian in the second order of linear spin-orbit terms. The
dominant correction in the second order comes from the interference of linear and
cubic Dresselhaus terms. We propose to use this criterion, that the corrections
due to linear terms vanish in the second order, to distinguish between single
and double dots as far as spin-orbit interaction is concerned. Indeed, at very
small and very large interdot couplings the states have a single dot character and
the correction to energy due to linear spin orbit terms depends on the interdot
distance (except for the two lowest states which provide tunneling). We find that
dots are “coupled” up to the interdot distance of about five single-dot confinement
lengths.

In the presence of magnetic field the time reversal symmetry is broken. The
presence of spin-orbit interaction then in general leads to a spin dependent tun-
neling amplitude. Spin up and spin down states will oscillate between the two
dots with different frequencies (for our GaAs dots the relative difference of the
frequencies is at the order of 0.1%, but is higher in materials with larger spin-orbit
coupling). This leads to a curious physical effect, namely, that of a spatial sepa-
ration of different spin species. Indeed, starting with an electron localized on one
dot, with a spin polarized in the plane (that is, a superposition of up and down
spins), after a sequence of coherent oscillations the electron state is a superposi-
tion of spin up localized on one, and spin down localized on the other dot. A single
charge measurement on one dot collapses the wave function to the corresponding
spin state, realizing a spin to charge conversion. There exist several alternative
schemes,[53, 135, 76, 88] some of them being pursued experimentally.[52, 82, 81]
We construct an effective, four state (two spin and two sites) tunneling Hamilto-
nian for the single electron double dot system, which takes into effect the above
results. Such a Hamiltonian should be useful for constructing realistic model the-
ories of spin dephasing, spin tunneling, and kinetic exchange coupling in coupled
quantum dot systems.



12 Chapter 2. Spectrum of a single electron quantum dot

2.3 Model

We consider two dimensional electron system confined in a [001] plane of a zinc-
blende semiconductor heterostructure, with an additional confinement into lateral
dots given by appropriately shaped top gates. A magnetic field B is applied per-
pendicular to the plane. We denote the perpendicular component of the magnetic
field as B⊥ and in-plane component as B||. In the effective mass approximation
the single-electron Hamiltonian of such a system, taking into account spin-orbit
interaction, can be decomposed into several terms:

H = T + V + HZ︸ ︷︷ ︸
H0

+ HBR + HD + HD3︸ ︷︷ ︸
HSO

. (2.2)

Here T = P2/2m is the kinetic energy with the effective electron mass m and
kinetic momentum P = p + eA = −i~∇ + eA; e is the proton charge and
A = B⊥(−y/2, x/2) is the vector potential of B = B⊥ẑ. Only the in-plane
components of vectors of position and momentum are relevant, due to the electron
being two dimensional. Operators of angular momentum with mechanical and
canonical momenta are denoted as Lz = xPy − yPx and lz = xpy − ypx. The
quantum dot geometry is described by the confining potential V (r). Single dots
will be described here by a parabolic potential V = (1/2)mω2

0r
2, characterized by

confinement energy E0 = ~ω0 and confinement length l0 = (~/mω0)
1/2, setting

the energy and length scales, respectively. Coupled double dots will be described
by two displaced (along d) parabolas:

V =
1

2
mω2

0[min(r − dl0)
2 + (r + dl0)

2]; (2.3)

the distance between the minima is 2d measured in the units of l0. The Zeeman
energy is given by HZ = (g∗/2)µBσ.B, where g∗ is the conduction band g-factor,
µB is the Bohr magneton, and σ is a vector of the Pauli matrixes. In order to
relate the magnetic moment of electrons to their orbital momentum, we will use
dimensionless parameter αZ = g∗m/2me, where me is the free electron mass, and
we also define a renormalized magneton as µ = (g∗/2)µB.

Spin-orbit interaction gives additional terms in confined systems.[168] The
Bychkov-Rashba Hamiltonian,[133, 23]

HBR = (α̃BR/~) (σxPy − σyPx) , (2.4)

appears if the confinement is not symmetric in the growth direction (here ẑ). The
strength α̃BR of the interaction can be tuned by modulating the asymmetry by
top gates. Due to the lack of spatial inversion symmetry in zinc-blende semicon-
ductors, the spin-orbit interaction of conduction electrons takes the form of the
Dresselhaus Hamiltonian[47] which, when quantized in the growth direction ẑ of
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Figure 2.3: The orientation of the potential dot minima (denoted as the two
circles) with respect to the crystallographic axes (x = [100] and y = [010]) is
defined by the angle δ. The orientation of in-plane component of the magnetic
field is given by the angle γ. Throughout this chapter B|| = 0 and only the
perpendicular magnetic field component B⊥ can be nonzero.
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our heterostructure gives two terms, one linear and one cubic in momentum:[49]

HD = (γc/~
3)〈P 2

z 〉 (−σxPx + σyPy) , (2.5)

HD3 = (γc/2~
3)
(
σxPxP

2
y − σyPyP

2
x

)
+ H.c., (2.6)

where γc is a material parameter and H.c. denotes Hermitian conjugation. The
angular brackets in HD denote quantum averaging in z direction – the magnitude
of HD depends on the confinement strength. We will denote the sum of the two
linear spin-orbit terms by Hlin = HD+HBR. The complete spin-orbit interaction is
then HSO = Hlin +HD3. We find it useful to introduce strengths of the individual
terms of the spin-orbit interaction in length units. We denote lBR = ~

2/(2mα̃BR),
lD = ~

4/(2mγc〈P 2
z 〉) for the linear terms, and lD3 = (~2l20/2γcm) for the cubic

Dresselhaus term.
In our numerical examples we use the confinement length of l0 = 20 nm, which

corresponds to the confinement energy E0 ≈ 2.9 meV. We further use bulk GaAs
materials parameters: m = 0.067 me, g∗ = −0.44, and γc = 27.5 eVÅ3. For 〈P 2

z 〉
we choose 5.3 × 10−4Å2

~
2, which corresponds to γc〈P 2

z 〉/~
2 = 14.6 meV Å. This

value of 〈P 2
z 〉 corresponds to the ground state of a 6 nm thick triangular potential

well.[34] For α̃BR we choose a generic value of 4.4 meVÅ, which is in line of
experimental observations.[119, 100] The dimensionless parameter of the Zeeman
splitting is αZ = −0.015 (expressing it in length units as αZ ≡ l0/lZ would give
lZ ≈ −1.3µm), while the strengths of the spin-orbit interactions in length units
are lBR ≈ 1.3µm, lD ≈ 0.4µm, and lD3 ≈ 8µm. Except for anti-crossings, the
spin-orbit interaction is a small perturbation to the electronic structure; it is,
however, essential for investigating spin structure.

Our analytical calculations will often refer to the Fock-Darwin[67, 32] spec-
trum, which is the spectrum of Hamiltonian (2.2) for a single dot with HSO = 0.
The corresponding wave functions Ψ (expressed in polar coordinates r and φ),
and energies ε are

Ψn,l,σ(r, φ) = Cρ|l|e−ρ2/2L|l|
n (ρ2)eilφξ(σ), (2.7)

εn,l,σ =
~

2

ml2B
(2n + |l| + 1) + B⊥

~e

2m
(l + αZσ), (2.8)

where ρ = r/lB is the radius in the units of the effective confinement length
lB, defined by l2B = l20/

√
(1 + B2

⊥e2l40/4~
2); n and l are the principal and orbital

quantum numbers, respectively, C is the state dependent normalization constant,
and L

|l|
n are associated Laguerre polynomials. Spinors ξ(σ) describe the spin

σ state of the electrons. Since the parabolic dot has rotational symmetry in
the plane, the states have well defined orbital momentum l and spin σ in the z
direction. We also introduce a useful dimensionless measure θ of the strength of
the magnetic field induced confinement compared to the potential confinement:
θ = B⊥el2B/2~, 0 < θ < 1. The parameter θ gives the number of magnetic
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flux quanta through a circle with radius lB. For large magnetic fields θ ≈ 1 −
(2~/Bel20)

2/2. The confining length can be expressed as lB = l0(1 − θ2)1/4.

As it is not possible to solve for the spectrum of Hamiltonian (2.2) analytically,
we treat it numerically with the finite differences method using Dirichlet bound-
ary conditions (vanishing of the wave function at boundaries). The magnetic
field is included via the Peierls phase: if H(ri, rj) is the discretized Hamiltonian
connecting grid points ri and rj at B⊥ = 0, the effects of the field are obtained
by adding a gauge phase: H(ri, rj) exp[i(e/~)

∫
rj

ri
A.dl]. In our simulations we

typically use 50 × 50 grid points. The resulting matrix eigenvalue problem is
solved by Lanczos diagonalization. The achieved accuracy is about 10−5.

2.4 Single dots

As a starting point we review the effects of spin-orbit interaction in single dots.
We are interested in the changes to the spectrum and, in particular, to the mag-
netic moment of the lowest states, that is, to the effective g-factor. The calcu-
lated spectrum of a single dot is shown in Fig. 2.4. There are three ways in which
spin-orbit interaction influences the spectrum: (i) First, the levels are shifted, in
proportion to l−2

SO (by lSO here we mean any of lBR, lD, or lD3). (ii) Second, the
degeneracy at B⊥ = 0 is lifted, again in proportion to l−2

SO (2.4b). (iii) Finally,
at some magnetic field the level crossing of the Fock-Darwin levels is lifted by
spin-orbit interaction. The resulting level repulsion is linear in l−1

SO (2.4c). The
states here are the spin hot spots, that is states in which both Pauli spin up and
down species contribute significantly.[60, 21, 43]

The above picture can be understood from general symmetry considerations
within the framework of perturbation theory. All spin-orbit terms commute, at
B⊥ = 0, with the time inversion operator T = iσyĈ, where Ĉ is the operator
of complex conjugation. Therefore Kramer’s degeneracy is preserved so that the
states are always doubly degenerate. The linear terms can be transformed into
each other by a unitary transformation (σx + σy)/

√
2 (spin rotation around [110]

by π ), which commutes with H0. Therefore the effects on the energy spectrum
induced individually by the linear Dresselhaus and the Bychkov-Rashba terms
are identical at B⊥ = 0. At finite magnetic fields the two interactions give
qualitatively different effects in the spectrum, especially for spin hot spots, as
discussed below.

For any B⊥ the following commutation relations hold for the linear terms:

[HBR, lz + sz] = 0, [HD, lz − sz] = 0. (2.9)

This means that HBR commutes with the angular momentum, while HD does
not. This will influence the interference between the two terms in the energy
spectrum. We can use the Fock-Darwin states as a basis for perturbation theory.
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Figure 2.4: Energy spectrum of a single dot in magnetic field. a) The Fock-
Darwin spectrum, Eq. (2.8). b) Lowest orbital excited levels (n = 0, |l| = 1)
without (dashed) and with (solid) spin-orbit interaction. Arrows indicate the
spin states. For clarity the energy’s origin here is shifted relative to case a). Both
the shift in energy levels as well as the splitting at B⊥ = 0 grow as l−2

SO. c)
Anti-crossing at the critical magnetic field (here about 13 T). For clarity, a linear
trend was subtracted from the data.
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Up to the second order the energy of state |i〉 = Ψn,l,σ is

Ei = εi + 〈i|HSO|i〉 +
∑

j 6=i

〈i|HSO|j〉〈j|HSO|i〉
εi − εj

. (2.10)

The first order correction is zero for all spin-orbit terms since HSO contains only
odd powers of P whose expectation values in the Fock-Darwin states vanish.
If the perturbation expansion is appropriate, the spin-orbit interactions have a
second order (in l−1

SO) effect on energy.
Both linear spin-orbit terms couple states with orbital momenta l differing by

one. It then follows from the commutation relations (2.9) that HBR preserves the
total angular momentum l+s, while HD preserves the quantity l−s. As a result,
there is no correction to the energy from the interference terms between HBR and
HD in Eq. (2.10): 〈i|HBR|j〉〈j|HD|i〉 = 0. As for the cubic Dresselhaus term,
only the following orbital states are coupled: (l, ↑) → {(l + 3, ↓), (l − 1, ↓)} and
(l, ↓) → {(l−3, ↑), (l+1, ↑)}. Due to these selection rules there are no interference
terms ∼ HD3HBR, but terms ∼ HD3HD will contribute to energy perturbation.
The Bychkov-Rashba and Dresselhaus Hamiltonians act independently on the
Fock-Darwin spectrum (up to the second order).

To gain more insight into the perturbed structure of the spectrum at B⊥ = 0,
we rewrite Eq. (2.10) using an auxiliary anti-hermitian operator Hop

SO defined by
the commutation relation [H0, H

op
SO] = HSO. If such an operator exists, the second

order correction in (2.10) is then

∑

j /∈N

〈i|HSO|j〉〈j|HSO|i〉
εi − εj

= 〈i|1
2
[Hop

SO, HSO]|i〉 + Re(〈i|HSOPNHop
SO|i〉), (2.11)

where PN is the projector on the subspace N of the states excluded from the
summation. In our case here it is just one state, N = {|i〉}. The last term in
(2.11) then vanishes. The auxiliary operator for HD3 is not known and if found,
it must depend on the confining potential. Operators for the linear terms are:[5]

Hop
D = −(i/2lD)(xσx − yσy), (2.12)

Hop
BR = (i/2lBR)(yσx − xσy). (2.13)

The corresponding commutators are (in the zero magnetic field P = p, Lz =
lz, θ = 0; the last expression will be useful later)

[Hop
D , HD] = − ~

2

2ml2D
(1 − σzLz/~), (2.14)

[Hop
BR, HBR] = − ~

2

2ml2BR

(1 + σzLz/~), (2.15)

[Hop
D , HD3] = − γc

4~3lD

(
~P2 + 2σz[xPyP

2
x − yPxP

2
y −

−2iθ(xPx + yPy)]
)

+ H.c.. (2.16)
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Because [Hop
D , HBR] + [Hop

BR, HD] = 0, the corrections to the second order pertur-
bation add independently for HBR and HD (as also noted above from the selection
rules), we can introduce Hop

lin = Hop
D +Hop

BR. An alternative route to Eq. (2.11) is to
transform the Hamiltonian with[5] U = exp(−Hop

SO) to H ′ = H0−(1/2)[HSO, Hop
SO]

in the second order of l−1
SO. The final result can be also obtained in a straight-

forward way by using the Thomas-Reiche-Kuhn sum rule in the second order of
perturbation theory with the original spin-orbit terms. The resulting effective
Hamiltonian is (terms depending on HD3 are omitted here)

H ′ = H0 −
~

2

4m

[
l−2
D + l−2

BR + σzLz(l
−2
D − l−2

BR)/~
]
. (2.17)

This Hamiltonian, in which the spin-orbit interaction appears in its standard
form, neatly explains point (ii) about the lifting of the degeneracy at B⊥ = 0.
The levels in Fig. 2.4b, for example, are four fold degenerate (|l| = 1, |σ| = 1)
without spin-orbit interaction. Turning on, say, HD, will split the levels into two
groups: energy of the states with lσ > 0 would not change in the second order,
while the states with lσ < 0 will go down in energy by ~

2/2ml−2
D , as seen in Fig.

2.4b.

2.4.1 Spin hot spots

Spin hot spots are states formed by two or more states whose energies in the
absence of spin-orbit coupling are degenerate or close to being degenerate, while
turning on the coupling removes the degeneracy.[60] Such states are of great
importance for spin relaxation, which is strongly enhanced by their presence.[61,
21] The reason is that the degeneracy lifting mixes spin up and spin down states
and so transitions between states of opposite magnetic moment will involve spin
flips with a much enhanced probability compared to normal states.

Figure 2.4c shows an interesting situation where two degenerate levels are
lifted by spin-orbit interaction.[43, 21] The lifting is of the first order in l−1

SO,
unlike the lifting of degeneracy at B⊥ = 0 in which case the degenerate states are
not directly coupled by HSO. In a finite magnetic field, at a certain value Bacr,
the states of opposite spins and orbital momenta differing by one cross each other,
as follows from the equation (2.8). The crossing field is Bacr ≈ |αZ |−1/2

~/(el20),
which is about 13.4 T for our parameters (making the confinement length larger
the magnitude of the field would decrease). Spin-orbit interaction couples the
two states thereby lifting the degeneracy. For GaAs, where g∗ < 0, only the
Bychkov-Rashba term couples the two states. The Dresselhaus terms are not
effective (HD3 would introduce such a splitting at 3Bacr). The energy splitting
due to HBR is

∆ = c

√
2~

2

ml0lBR
|αZ |5/4, (2.18)
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Figure 2.5: Calculated corrections to the effective g-factor by spin-orbit inter-
actions. Formulas (2.19) scaled by the values at B⊥ = 0 (and thus indepen-
dent on lSO) are plotted. The actual numerical values of δg at B⊥ = 0 are:
δgD−D(0) = 1.0 × 10−2, δgBR−BR(0) = 8.6 × 10−4, δgD−D3(0) = 9.4 × 10−4,
δgD3−D3(0) = 2.5 × 10−5. At the anti-crossing δgD−D(Bacr) = 2.4 × 10−3,
δgBR−BR(Bacr) = 1.0 × 10−4, δgD−D3(Bacr) = 1.8 × 10−3, δgD3−D3(Bacr) =
3.4 × 10−4.
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where c, which is a number of order 1, depends on the quantum numbers of the
two states. Since spin hot spots at Bacr are due only HBR, the splittings could
help to sort out the Bychkov-Rashba versus Dresselhaus contributions. Figure
2.4c shows the calculated level repulsion for states n = 0, l = 0, σ =↓ and n =
0, l = −1, σ =↑. The magnitude of ∆, though being linear in lBR, is on the order
of 10−3 meV and thus comparable to the energy scales associated with quadratic
spin-orbit perturbations.

2.4.2 Effective g-factor

When probing spin states in quantum dots with magnetic field, important in-
formation comes from the measured Zeeman splitting. We will focus here on
the two lowest spin states and calculate the effective g-factor as g = (E0,0,↓ −
E0,0,↑)/(µBB⊥). If HSO = 0, then in our model the effective g-factor equals to
the conduction band value g∗. In fact the g-factor is modified by also other
confinement effects,[18] but here we consider only spin-orbit interactions. The
actual value in the presence of spin-orbit interaction is important for understand-
ing single spin precession in magnetic field, which seems necessary to perform
single qubit operations in quantum dots. We have obtained the following contri-
butions to the g-factor from non-degenerate (that is, excluding spin hot spots)
second-order perturbation theory [Eq. (2.10)] (for linear spin-orbit terms these
are derived also in[34, 156]):

δgD−D = − mel
2
0

2ml2D

√
1 − θ2[1 − θ2 − 2(1 + θ2)αZ ]

1 − θ2(1 + 4αZ + 4α2
Z)

,

δgBR−BR =
mel

2
0

2ml2BR

√
1 − θ2[1 − θ2 + 2(1 + θ2)αZ ]

1 − θ2(1 − 4αZ + 4α2
Z)

,

δgD−D3 =
2γcme

~2lD

(1 + θ2)[1 − θ2 − 2(1 + θ2)αZ ]

1 − θ2(1 + 4αZ + 4α2
Z)

,

δgD3−D3 =
4γ2

c mme

~4l20θ
√

1 − θ2

(
2(1 − θ)2(1 + θ2)2

1 − θ(1 + 2αZ)
+

(1 − θ)4(1 + θ)2

3 − θ(1 + 2αZ)
+

+
−3(1 − θ)6

3 − θ(3 − 2αZ)
+

3(1 + θ)6

3 + θ(3 − 2αZ)
−−2(1 + θ)2(1 + θ2)2

1 + θ(1 + 2αZ)
−

− (1 − θ)2(1 + θ)4

3 + θ(1 + 2αZ)

)
. (2.19)

Here δgA−B stands for a correction that is proportional to 1/lAlB.
The functions (2.19) are plotted in Fig. 2.5. We can understand the limits of δg

at B⊥ → ∞ (θ → 1) if we notice that in the natural length unit lB the momentum
Px = −i~∂x − yBe/2 = ~l−1

B [−i∂x/lB − θ(y/lB)]. In the limit B⊥ → ∞ the
matrix elements of HD, which is linear in P , scale as l−1

B , while the Fock-Darwin
energies scale as l−2

B . The second order D-D correction to E0,0,↓ − E0,0,↑ is thus
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magnetic field SO terms symmetries of H
B⊥ = 0 none Ix,Iy,I,T ,Rn

BR −iσxIx,−iσyIy,−iσzI,T
D, D3 −iσyIx,−iσxIy,−iσzI,T

all −iσzI, T
B⊥ > 0 none −iσzI,Rz

any −iσzI

Table 2.1: Symmetries of the double dot Hamiltonian for different spin-orbit
terms present at B⊥ = 0 and B⊥ > 0. Here Ix(Iy) means reflection x → −x
(y → −y), I = IxIy, and Rz = exp(−iφσz/2) is the rotation of a spinor by angle
φ around z-axis; Rn is a spinor rotation around an arbitrary axis n and T is the
time reversal symmetry. The identity operation is not listed.

independent of lB; it converges to −(~2/2ml2D)/(1+αZ). The BR-BR correction
is analogous, with the limit (~2/2ml2BR)/(1 − αZ). To get the g-factor we divide
the energy differences by µBB⊥ and get δgD−D (θ → 1) ∝ B−1

⊥ ; similarly for HBR.
Since HD3 scales as l−3

B one gets δgD−D3 (θ → 1) → 2(γcme/~lD)/(1 + αZ) and
δgD3−D3(θ → 1) ∝ B⊥. It seems that for increasing B⊥ there inevitably comes a
point where the influence of HD3 on the g-factor dominates. But at B⊥ = Bacr

there is an anti-crossing of the states (0, 0, ↓) and (0,−1, ↑) so for larger B⊥ the
g-factor does not describe the energy difference between the two lowest states, but
between the second excited state and the ground state. The value of B⊥ where
δgD3−D3 = δgD−D is given by B⊥ ≈ (~/el20)(γcme/

√
2~lD). For GaAs parameters

it is ≈ 25 T.

2.5 Double dots

A double dot structure comprises two single dots close enough for their mutual
interaction to play an important role. Here we consider symmetric dots modeled
by V of Eq. (2.3). Such a potential has an advantage that in the limits of small
d → 0 and large d → ∞, the solutions converge to the single dot solutions
centered at r = 0 and ±l0d, respectively. We denote the displaced Fock-Darwin
states as Ψ±d

n,l,σ(r) ≡ Ψn,l,σ(r ± d). In further we put d = dx̂. We comment on
the more general case later and will see that the main results presented in this
chapter are independent on the direction of d.

The symmetries of the double dot Hamiltonian with the spin-orbit interactions
are listed in Tab. 2.1. The time reversal symmetry is always present at B⊥ = 0,
giving Kramer’s double degeneracy. The rotational space symmetry from the
single dot case is lost; instead there are two discrete symmetries – reflections Ix

about y and Iy about x. In zero magnetic field and without spin-orbit terms,
the Hamiltonian has both Ix and Iy symmetries. If only Bychkov-Rashba or
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repre- under Ix, Iy numbers for gn,l
i,σ

sentation transforms l - even l - odd
as L D L D

Γ1 1 1 1 1 -1
Γ2 x 1 -1 1 1
Γ3 xy -1 1 -1 -1
Γ4 y -1 -1 -1 1

Table 2.2: Notation and transformation properties of C2v representations. L and
D are the coefficients of the dependence of gn,l

i,σ on the single dot functions (see
text).

Dresselhaus terms are present, we can still preserve symmetries Ix and Iy by
properly defining the symmetry operators to act also on the spinors (forming the
double group). The Bychkov-Rashba term, H0 + HBR, is invariant to operations
defined by the spatial invariance. This is not the case of HD, since here the
operators −iσyIx and −iσxIy do not describe a spatial reflection of both the orbital
and spinor parts. The symmetry operations for HBR and HD are connected by
the unitary transformation (σx + σy)/

√
2, which connects the two Hamiltonians

themselves. Finally, if both spin-orbit terms are present, or at B⊥ > 0, the only
space symmetry left is I = IxIy.

In the following we consider separately the cases of zero and finite magnetic
fields.

2.5.1 Energy spectrum in zero magnetic field, without
spin-orbit terms

If no spin-orbit terms are present the group of our double dot Hamiltonian is
C2v ⊗ SU(2). The SU(2) part accounts for the (double) spin degeneracy. The
orbital parts of the eigenstates of the Hamiltonian therefore transform according
to the irreducible representations of C2v. The representations[106] Γi, i = 1...4,
along with their transformation properties under the symmetries of C2v, are listed
in Tab. 2.2. The symmetry properties will be used in discussing the perturbed
spectrum.

We denote the exact eigenfunctions of the double dot Hamiltonian as Γab
iσ where

a(b) is the single dot level to which this eigenfunction converges as d → 0 (∞); i
labels the irreducible representation, σ denotes spin. We have chosen the confining
potential to be such, that at d → 0(∞) the solutions of the double dot H0 converge
to the (shifted) Fock-Darwin functions, if properly symmetrized according to the
representations of C2v. These symmetrized functions will be denoted as gn,l

i,σ,
where (up to the normalization)

gn,l
i,σ = (Ψd

n,l,σ + DiΨ
−d
n,l,σ) + Li(Ψ

d
n,−l,σ + DiΨ

−d
n,−l,σ). (2.20)
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The numbers Di(Li) for different irreducible representations are in Tab. 2.2.

Generally, up to a normalization, an exact solution can be written as a linear
combination of any complete set of functions (we omit the spin index which is
the same for all terms in the equation)

Γab
i =

∑

n,l

c̃(n, l)gn,l
i = gn0,l0

i +
∑

n,l

c(n, l)gn,l
i . (2.21)

The last equation indicates the fact, that for a function Γab
i in the limit d → 0(∞),

there will be a dominant g-function in the sum with the numbers n0, l0 given by
the level a(b) and the coefficients c for the other functions will converge to zero.
We term the approximation c(n, l) = 0 as a linear combination of single dot
orbitals (LCSDO).

Knowing the representations of the double dot Hamiltonian and the fact that
Fock-Darwin functions form SO(2) representations (reflecting the symmetry of
single dot H0) we can decompose all single dot levels into the double dot rep-
resentations and thus formally construct the energy spectrum of a double dot
using the symmetry considerations only. Following the standard technique for
constructing such correlation diagrams (connecting states of the same represen-
tation and avoiding crossing of lines of the same representation) we arrive at
the spectrum shown in Fig. 2.6. The ground state transforms by the symmetry
operations according to Γ1 (identity), while the first excited state according to
Γ2 (x). This is expected for the symmetric and antisymmetric states formed by
single dot ground states. The symmetry structure of the higher excited states
is important to understand spin-orbit interaction effects. Indeed, the spin-orbit
terms couple two opposite spins according to certain selection rules. Since HD,
for example, transforms similarly to x⊕ y, it couples the ground state Γ1 with Γ2

and Γ4. In general, odd numbered representations can couple to even numbered
representations. The same holds for HBR and HD3. If we include either HBR or
HD into the Hamiltonian, and consider spinors as the basis for a representation,
the states would transform according to Γ5, the only irreducible representation
of the double group of C2v.

The calculated numerical spectrum for our model structure is shown in Fig. 2.7.
There is a nice qualitative correspondence with Fig. 2.6. In Fig. 2.7 by verti-
cal bars we denote coupling through HD or HBR (|〈i|HD|j〉| = |〈i|HBR|j〉|, if
lD = lBR). The couplings follow the selection rule described above. Since there
are several level crossings in the lowest part of the spectrum, a question arises
if spin hot spots are formed in the presence of spin-orbit interaction. It turns
out, that there is no first-order level repulsion at the crossings due to the lin-
ear spin-orbit terms because the levels are not coupled by the linear terms, even
though such couplings are allowed by symmetry. There are no spin hot spots due
to the linear spin-orbit terms at zero magnetic field. For example Γ11

4 and Γ21
1

are not coupled by spin-orbit terms, and therefore their degeneracy (at 2d ≈ 50
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Figure 2.6: Single electron spectrum of a symmetric (C2v) lateral double dot
structure as a function of the interdot separation, at B⊥ = 0, derived by applying
group theoretical considerations. Single dot states at d = 0 and d = ∞ are
labeled by the principal (n) and orbital (l) quantum numbers, while the double
dot states are labeled according to the four irreducible representations Γi of C2v.
The lowest double dot states have explicitly written indices showing the excitation
level of the d = 0 and d = ∞ states they connect. Every state is doubly (spin)
degenerate, and spin index is not given.
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Figure 2.7: Calculated energy spectrum of a double quantum dot at B⊥ = 0,
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spin index is not given.

nm) is not lifted by linear spin-orbit terms as we would expect from symmetry
(actually, there is an anti-crossing which is of the order l−3

lin , instead of the ex-
pected l−1

lin ). The cubic Dresselhaus term gives here (and also in other crossings
that conform to the selection rules) a linear anti-crossing, as one expects. The
absence of anti-crossings from the linear spin-orbit terms will be explained in the
next section.

Since our main goal here is to study the effects of spin-orbit interaction on the
tunneling between the two dots, we first look at the tunneling for HSO = 0. We
use the LCSDO approximation for the wavefunction Γi and compute energy as
Ei = 〈Γi|HΓi〉/〈Γi|Γi〉. We denote the energies of the two lowest orbital double

dot states Γ00
1σ ≡ Γσ

S, Γ10
2σ ≡ Γσ

A as E
(0)
S , E

(0)
A , where index zero indicates the
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absence of spin-orbit interaction. We obtain:

E
(0)
S = E0

1 + [1 − 2d/
√

π]e−d2

+ d2Erfc(d)

1 + e−d2
,

E
(0)
A = E0

1 − e−d2

+ d2Erfc(d)

1 − e−d2
.

(2.22)

In the limit of large interdot separation the tunneling energy, T = (EA − ES)/2,
becomes,

T (0) ≈ E0
1√
π

de−d2

. (2.23)

It turns out that going beyond LCSDO does not improve the calculated T (0)

significantly. The tunneling computed by full formulas, Eq. (2.22), does not
differ from the numerically obtained value by more than 2% for any value of
the interdot distance; the leading order becomes an excellent approximation for
interdot distances larger than 50 nm.

2.5.2 Corrections to energy from spin-orbit interaction in
zero magnetic field

When we add HSO to H0, the structure of the corrections to the energies of the two
lowest states up to the second order in spin-orbit interactions can be expressed
as

E
(2)
i =

~
2

2m

[
−Ai(l

−2
D + l−2

BR) − Bil
−2
D3 + Cil

−1
D l−1

D3

]
, (2.24)

where i is either S or A. For the two lowest states the coefficients A,B, and C
are positive for all values of the interdot distance and the differences AA−AS, . . .
approach zero as d → ∞. We will argue below that AS = AA = 1/2 with the
exception of a very small interdot distance (less than 1 nm). There are thus no
contributions from the linear spin-orbit interactions to the tunneling energy in
the second order. Only the cubic Dresselhaus term contributes, either by itself
or in combination with the linear Dresselhaus term. Spin-dependent tunneling is
greatly inhibited.

Numerical calculation of the corrections to the tunneling energy from spin-
orbit interactions are shown in Fig 2.8. The dominant correction is the mixed
D-D3 term, followed by D3-D3. These are the only second order corrections.
For GaAs, and our model geometry, these corrections are about 4 and 5 orders
of magnitude lower than T (0). The corrections, when only linear spin-orbit terms
are present, are much smaller since they are of the fourth order. The dramatic
enhancement of the corrections from linear spin-orbit terms close to d = 0 is due
to the transition from coupled to single dots. We will explore this region in more
detail later.
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We first show that a naive approach to calculate spin-orbit contributions to
the tunneling fails to explain the above results. We use the example of the linear
Dresselhaus term. The simplest way to include this term is to begin with the
two lowest orbital states (that are four states including spin), g00

1σ and g00
2σ and

diagonalize the Hamiltonian in this basis. Because of the time reversal symmetry
the resulting 4 × 4 matrix block diagonalizes into two equal 2 × 2 matrices with
elements H11 = E

(0)
S , H22 = E

(0)
A , and H12 = 〈g00

1↑|HD|g00
2↓〉 = −iE0(l0/lD)de−d2

.

Using the large d limit for T (0), Eq. (2.23), we obtain the perturbed energies
ES(A) = E0 ± E0

√
1/π + l20/4l2Dde−d2

with the minus (plus) sign for S (A). In
the second order of 1/lD the symmetric and antisymmetric level energies have
opposite contributions, giving T ≈ [(E0/

√
π) + (E0

√
π/8)(l20/l

2
D)]d exp(−d2), in

contrast to the numerical results where there is no dependence on 1/lD in the
second order. A larger basis, as well as a small basis comprising single dot states
including spin-orbit interaction, still yield the l−2

D dependence.

From the previous example one can see that to get a correct (constant) spin-
orbit contribution to the energy of a state, it is not enough to include finite
number of terms in the sum in Eq. (2.10). Instead we employ the operators
Hop given in Eqs. (2.12,2.13). To get a contribution for a particular state, say
|i〉, we apply the Löwdin perturbation theory.[112] For this one has to identify
states |j〉 which are degenerate with |i〉 with respect to the perturbation HSO

and these have to be treated exactly. The rest of the states can be treated
perturbatively. The condition for a degeneracy of two states can be taken as
|E(0)

i −E
(0)
j | . E0l0/llin(lD3), when one considers linear (cubic) terms. The finite

set of the degenerate states will be denoted by N . The effective Hamiltonian Heff

acting in N is

Heff
ij = (H0 + HSO)ij +

1

2

∑

k/∈N
[
(HSO)ik(HSO)kj

E
(0)
i − E

(0)
k

+
(HSO)ik(HSO)kj

E
(0)
j − E

(0)
k

]. (2.25)

For the example of the linear Dresselhaus term, we can now use Eq. (2.11) and
(2.14) to obtain

Heff
ij = (H0 + HD)ij −

~
2

4ml2D
(1 − σzlz/~)ij + Rij, (2.26)

where

Rij =
1

2
〈i|HDPNHop

D − Hop
D PNHD|j〉. (2.27)

First we note that existence of the operator Hop
D means that the coupling

through HD between any two states is always much smaller then the difference of
the unperturbed energies of these two states, since (HD)ij = (E

(0)
i −E

(0)
j )(Hop

D )ij ∼
(E

(0)
i −E

(0)
j )(l0/lD). Then one can partially diagonalize the effective Hamiltonian
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to eliminate the off-diagonal HD terms. It turns out, that this leads to a cancel-
lation of the terms HD and R. The effective Hamiltonian is then

Heff
ij = (H0)ij −

~
2

4ml2D
(1 − σzlz/~)ij . (2.28)

This completes the way to get Eq. (2.17) using Löwdin perturbation theory. There
are no linear effects on the double dot energy spectrum from linear spin-orbit
terms, which explains the absence of spin hot spots even though symmetry allows
that.

The spin-orbit interaction influences the energy only through the operator
lz, which is of the symmetry Γ3, from where we get selection rule – the allowed
coupling is between functions of representations Γ1 – Γ3 and Γ2 – Γ4. Looking
at Fig. 2.7, accidental degeneracies of states with such representations are not
present in the lower part of the spectrum. The crossing of Γ21

1 with Γ11
4 considered

in the discussion to Fig. 2.7 also does not follow the selection rule, hence why the
anti-crossing is of the third order. From the selection rules one can immediately
see that also the expectation value of lz is zero in any state. This result is
more general and holds also if the symmetry of the potential is lower (or none),
since it follows from the fact that the Hamiltonian H0 is real, so one can choose
eigenfunctions to be real. Then the expectation value of any imaginary operator,
such as lz, must vanish. We conclude, that apart from degeneracies following
from the single dot [that is limits d → 0(∞)] and possible accidental degeneracies
respecting the selection rule, double dot states are non-degenerate and described
by a 1×1 effective Hamiltonian

Heff
ii = E

(0)
i − ~

2

4ml2D
. (2.29)

Particularly, the energies of the two lowest states are given by this equation, with
an exception for the state ΓA in the region of small d where it is coupled to Γ11

4

through lz and we have to describe it here by a 2 × 2 effective Hamiltonian.
An illustration of the lz influence on the spectrum is in Fig. 2.9, where the

linear Dresselhaus spin-orbit contribution to the energy for several states as a
function of the interdot distance is shown. One can see at what interdot dis-
tances the lz operator causes the qualitative change between the double dot case
(where the functions are characterized by a definite representation Γi and the
energy contribution from the spin-orbit is a uniform shift) and the single dot
case (where the functions are numbered according to the orbital momentum and
the spin-orbit contribution to the energy depends on σzlz). This happens when
~

2/ml2D is comparable to the energy difference of the nearly degenerate states.
If the criterion for the coupling between the dots is the constant contribution,
−~

2/4ml2D, to the energy, then the double dot region, as far as the spin-orbit
interaction is concerned, is between 1 to 100 nm, that is up to 5 times of the
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Figure 2.9: Calculated corrections to selected lowest energy levels due to HD.
All states have spin σ = +1. The graph demonstrates a transition between the
symmetry group of the double dot H0 (states Γ) and that of single dots (states Ψ).
The transition is induced by lz which by symmetry couples states Γ1 ↔ Γ3 and
Γ2 ↔ Γ4. Thus the anti-crossing mechanism will induce transition Γ1(3) ↔ Γ1±Γ3

and Γ2(4) ↔ Γ2 ±Γ4. These linear combinations are equal to a single dot solution
Ψn,l,σ in the case d → 0 and a combination Ψ±

n,l,σ ≡ Ψd
n,l,σ ± Ψ−d

n,l,σ of functions
with the same orbital momenta in the case d → ∞.

confinement length of 20 nm. As an example, for the function Γ11
4 the coupling

in the effective Hamiltonian through lz to Γ31
2 is equal to the unperturbed energy

difference if l2D ∼ l20d
3e−d2

, giving d ≈ 3, corresponding to the interdot distance
of 6l0. Due to the exponential, this result is only slightly sensitive to lD.

The Bychkov-Rashba term can be treated analogously. The effective Hamilto-
nian is Heff

ij = [H0 − (~2/4ml2BR)(1 + σzlz/~)]ij. The absence of a linear influence
on the energy was based on the existence of Hop

D . Since we found a case where HD3

causes linear anti-crossing (see discussion to Fig. 2.7), it follows that Hop
D3 can not

exist for our double dot potential. However, if one approximates Ei−Ek ≈ Ej−Ek

in (2.25), one can use Hop
D to simplify the mixed D-D3 correction. This, accord-

ing to Fig. 2.8, is the dominant spin-orbit correction for the tunneling energy T .
One gets an analogous expression as Eq. (2.26), where the needed commutator is
stated in Eq. (2.16). Concluding, if we neglect the mixed D3-D3 term, we can
write the spin-orbit contribution to the energy for the lowest orbital states to be
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(i = S, A)

δESO
i = − ~

2

4m
(l−2

D + l−2
BR) +

γc

2~2lD
(p2)ii. (2.30)

One note to the eigenfunctions: The matrix elements of the effective Hamil-
tonian are computed using the eigenfunctions of H0. But the functions that
correspond to the solutions are transformed by the same unitary transformation
that leads from H0 to Heff . The sum rule can be used also here to express the
influence of Hlin on the eigenfunctions of H0. If H0Γiσ = EiΓiσ, the eigenfunctions
corresponding to the effective Hamiltonian, Eq. (2.26), are

Γiσ = [I +
∑

j /∈N

(Hlin)ji

Ei − Ej
]Γjσ = [I − (I − PN )Hop

lin] Γiσ. (2.31)

Partial diagonalization of the effective Hamiltonian, to go from Eq. (2.26) to
Eq. (2.28), means we finish the unitary transformation completely and get Γiσ =
Γiσ − Hop

linΓiσ for the eigenfunctions corresponding to the effective Hamiltonian,
Eq. (2.28).

2.5.3 Finite magnetic field, no spin-orbit terms

The presence of a perpendicular magnetic field lowers the symmetry of the Hamil-
tonian without spin-orbit terms. The only nontrivial symmetry operator is the
inversion I (see Tab. 2.2). As a consequence the double dot states fall into two
groups (representations of C2): Γ1 and Γ3 become ΓS (symmetric under I) and
Γ2 and Γ4 become ΓA (antisymmetric under I). Symmetrized functions gn,l

iσ now
are

gn,l
iσ = Ψ−d

n,l,σ + DiΨ
d
n,l,σ, (2.32)

where the irreducible states i = S and A, while the permutation coefficients
DS = −DA = 1. The shifted single-dot wave functions acquire a phase:

Ψ±d
n,l,σ(r) = Ψn,l,σ(r ± d)e±(iel0/2~)B.(d×r), (2.33)

depending on which dot they are located.

The double dot energy spectrum of H0 as a function of magnetic field is shown
in Fig. 2.10 for the interdot distance of 50 nm. Indicated are two crossings and
one anti-crossing induced by magnetic field. States Γ1 and Γ2 (notation from
the B⊥ = 0 case) are not coupled because they have opposite spins. The second
crossing is between Γ2 and Γ3, which behave differently under I. An example
of anti-crossing induced by magnetic field is between Γ2 and Γ4, which are both
antisymmetric under I.
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In analogy with Eq. (2.22) we derive analytical expressions for the energies of
the lowest symmetric and antisymmetric state in the presence of magnetic field
using the LCSDO approximation:

E
(0)
S =

E0

η2

(1 + [1 − dη(1 − θ2)/
√

π]e−(dη)2(1+θ2)

1 + e−(dη)2(1+θ2)
−

−dη(1 − θ2)[e−(dη)2/
√

π − dη Erfc(dη)]

1 + e−(dη)2(1+θ2)

)
,

E
(0)
A =

E0

η2

(1 − [1 − dη(1 − θ2)/
√

π]e−(dη)2(1+θ2)

1 − e−(dη)2(1+θ2)
−

−dη(1 − θ2)[e−(dη)2/
√

π − dη Erfc(dη)]

1 − e−(dη)2(1+θ2)

)
. (2.34)

Here η = l0/lB = (1 − θ2)−1/4. In the limit d → ∞, we can then deduce the
tunneling energy in the leading order to be

T (0) = E0
1√
π

(1 − θ2)5/4e−d2(1+θ2)/
√

1−θ2

. (2.35)

If θ = 0, the above expressions reduce to Eq. (2.22,2.23). On the other hand, if

B⊥ → ∞, then T (0) ∼ B
−5/2
⊥ e−B⊥/B0 .

At a finite magnetic field we have also a new term in the Hamiltonian, the
Zeeman term. Since it commutes with H0 the only consequence of this term is
a shift of the energy of the states by a value σµB⊥ according to their spin σ.
Therefore it is this term that breaks the Kramer’s degeneracy and introduces
crossings of the states with opposite spin. An example of this can be seen in
Fig. 2.11, where we plot energies of the four lowest states in the region where the
Zeeman shift is comparable to the energy differences of the considered states.

2.5.4 Effective spin-orbit Hamiltonian

We now study the influence of the spin-orbit interactions on the spectrum of
double dots in a finite magnetic field. We will see that the spin-orbit terms lead
to new spin hot spots even at magnetic fields of the order of 1 T, and that the
linear spin-orbit terms will influence tunneling in the second order.

Although the presence of the Zeeman term complicates the analysis of the
perturbation theory using operators Hop, one can still apply the previously de-
veloped formalism if the Zeeman term is treated as a part of perturbation. (For a
harmonic potential describing single dots, operators Hop

lin have been derived[154]
for the case of finite magnetic field, so that the Zeeman term can be included into
H0). Up to the second order in the perturbation couplings (being now lSO and
αZ), there is no coupled Zeeman-spin-orbit term. This means that in the effective
Hamiltonians Heff that we already derived for the case of zero magnetic field, the
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Figure 2.10: Computed energy spectrum of the double dot Hamiltonian without
HSO, as a function of magnetic field. The quantum dot separation is 50 nm
(single dot confinement length is 20 nm). The energy levels are labeled according
to the symmetry of the states at B⊥ = 0. Two crossings (one between Γ2 and
Γ3, the other between Γ1 and Γ2) and one anti-crossing (between Γ2 and Γ4) are
indicated. In the limit B⊥ → ∞ the states merge to Landau levels.
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Zeeman term appears as a shift of the energies on the diagonal without bringing
any new couplings (non-diagonal terms). But an important consequence is that
the shift can change the number of states we have to include into the basis where
the effective Hamiltonian acts, because their energy difference to the considered
state is comparable to the spin-orbit interaction.

First, in analogy with Eq. (2.29), if the energy of a state is far enough from
others, we can consider the basis to consist of one term only and the spin-orbit
correction to the energy of state |i〉 is

δESO
i = − ~

2

4ml2D
(1 − σLz/~) − ~

2

4ml2BR

(1 + σLz/~) + [Hop
D , HD3], (2.36)

where the averaging means the expectation value in the state |i〉 and σ is the
spin of the state. Since the presence of magnetic field lowers the symmetry, the
last commutator, [Eq. (2.16)], can not be simplified according to the symmetry
as was the case before in Eq. (2.30), and, more important, we no longer have
Lz = 0. As a result, there are now corrections to the tunneling that are of the
second order in the linear spin-orbit interactions. These corrections depend on
α

(2)
− ≡ l20(l

−2
D − l−2

BR).
Second, we look how the energies of the four lowest states are changed, using

again the example of the linear Dresselhaus term. They are plotted in Fig. 2.11.
Here in the main figure one can see the shift caused by the Zeeman term. The anti-
crossing induced by the spin-orbit interaction is magnified in the inset, the anti-
crossing states being Γ↓

S and Γ↑
A. In the case of zero magnetic field we described

each of the four basis states by Eq. (2.29). Now, in principle, we have to describe
them by a 4×4 effective Hamiltonian Eq. (2.26). Due to symmetry we can simplify
this Hamiltonian into two 2×2 Hamiltonians, Heff

1 , Heff
2 , acting in the bases Γ↑

S, Γ↓
A

and Γ↓
S, Γ↑

A respectively. The four components of the effective Hamiltonian matrix
are

(Heff)11 = E
(0)
S − ~

2

4ml2D
[1 − σ(Lz)11/~] − σµBB⊥ − R11,

(Heff)22 = E
(0)
A − ~

2

4ml2D
[1 + σ(Lz)22/~] + σµBB⊥ + R11,

(Heff)12 = (Heff)†21 = (HD)12, (2.37)

where σ = 1 for Heff
1 and σ = −1 for Heff

2 , while indices 1,2 denote the first and the
second term in the corresponding basis. Comparing to the case of zero magnetic
field the Zeeman term increases the difference of the diagonal elements in Heff

1

and decreases them in Heff
2 . The ground and the fourth excited states which are

described by Heff
1 stay isolated, and we can do the perturbative diagonalization

to get rid of the off-diagonals. The energy of the two states is then up to the
second order in the spin-orbit interaction accurately described by Eq. (2.36).
Concerning the states Γ↓

S and Γ↑
A, there is a region in the interdot distance of a
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Figure 2.11: Calculated energies of the four lowest states of Hamiltonian H0 +
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dashed lines are energies of H0 + HZ , solid lines of H0 + HZ + HD.
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Figure 2.12: Calculated corrections to the energies of the four lowest states due
to the linear Dresselhaus term HD, at B⊥ = 1 T. Solid lines are numerical data,
dashed lines are analytical expressions computed by Eq. (2.36) using the LCSDO
approximation for the states.

few nanometers, where the two states must be described by the two dimensional
Heff

2 to account for the anti-crossing, which is caused by the the matrix element
〈Γ↓

S|HD|Γ↑
A〉. LCSDO gives for this element a result correct only in the order of

magnitude. This is because even in the limit d → ∞ this matrix element is of
the same order as the neglected coefficients c(n, l) in the LCSDO approximation,
Eq. (2.21).

The spin-orbit corrections to the energies from HD for the four lowest states
as functions of the interdot distance are in Fig. 2.12. Also shown are analytical
values computed by Eq. (2.36), that is, ignoring anti-crossing. The scale implies
that the corrections are of the second order in 1/lD and for the states Γ↓

S and Γ↑
A

are enhanced in the anti-crossing region.
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Figure 2.13: Calculated spin-orbit corrections to the effective g-factor (relative
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between the dots is 50 nm. Solid lines are numerical data, dashed lines are
analytical values computed using Eq. (2.36). Contributions come from linear
spin-orbit terms (a, b), the mixed Dresselhaus correction from HD and HD3 (c)
and the cubic Dresselhaus HD3 correction (d).

2.5.5 Spin-orbit corrections to the effective g-factor and

tunneling frequency

We next analyze spin-orbit corrections to the g-factor, δg ≡ [δE(Γ↓
S)−δE(Γ↑

S)]/µBB⊥,
which characterizes the energy cost of a spin flip in the ground state, or the fre-
quency of a spin precession. Another kind of oscillation is electron tunneling,
when electron oscillates between the left and the right dot without changing its
spin. The frequency of this oscillation, T/h, is given by the energy difference
T ↑ = [E(Γ↑

A) − E(Γ↑
S)]/2. Corrections to this energy difference induced by the

spin-orbit interaction are denoted by δT σ.

First, we take a look at the spin-orbit corrections to the g-factor. Contribu-
tions in the second order of the spin-orbit interactions are shown in Fig. 2.13, as
functions of magnetic field at a constant interdot distance. The spin-orbit contri-
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bution to the g-factor in the double dot case has the same qualitative dependence
on the magnetic field as in the single dot case (see discussion to Fig. 2.5). How-
ever, at finite interdot distances, there is an enhancing effect on the spin-orbit
contributions. This can be seen in Fig. 2.12, where at a certain magnetic field,
the spin-orbit contribution to the g-factor is enhanced for a finite d compared to
the case of d = 0(∞). We found numerically, that the enhancement can be up to
50% of the value of the correction in d = 0 at magnetic fields of the order of 1 T.

At the anti-crossing the spin-orbit contributions show cusps. At magnetic
fields bellow the anti-crossing, the dominant spin-orbit contribution is D-D which
reduces the conduction band g-factor by several percent. Contributions D-D3 and
BR-BR are one order of magnitude smaller. Using Eq. (2.36), that is ignoring
the anti-crossing, we get for the contribution from the linear spin-orbit terms

δglin−lin = − E0

2µBB⊥
α

(2)
− Lz/~, (2.38)

where, in the limit d → ∞, (η = l0/lB = (1 − θ2)−1/4),

Lz ≈ ~θ[1 + (d/η)2e−(dη)2(1+θ2)]. (2.39)

From Fig. 2.13 one can see that the analytical result agrees with numerics.
Finally, we look at the tunneling energy in the presence of both magnetic field

and spin-orbit couplings. The spin-orbit corrections, as a function of magnetic
field, are shown in Fig. 2.14. At zero magnetic field there is no contribution
from the linear terms (result of the section 2.5.2) and the dominant contribution
is D-D3. Similarly to T (0), the corrections decay exponentially with increasing
magnetic field. Anti-crossing strongly influences the tunneling energy. Using
LCSDO for d → ∞ we obtain in the leading order

δT σ = −σ(E0/4)α
(2)
− θ(d/η)2e−(dη)2(1+θ2). (2.40)

This analytical formula underestimates the corrections from the linear spin-orbit
terms by a factor of ∼ 3. Nevertheless the analytical expression for D–D3 is
reasonably good. In the magnetic field below anti-crossing, the relative change
of the tunneling energy stemming from the spin-orbit terms is of order 10−3. In
the inset b, there are contributions to the tunneling from the linear Dresselhaus
term for both spin states. The importance of their difference will be explained in
the next section.

2.5.6 Tunneling Hamiltonian

We now use our results to describe the influence of the spin-orbit interaction on
the lowest part of the spectrum. We restrict our Hilbert space on the four lowest
states Γσ

S(A), the eigenstates of the total double dot Hamiltonian. Because of the
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transformation Eq. (2.31) these four states have neither definite symmetry with
respect to inversion I, nor a definite spin in z direction. In this section we will
denote them as spin ‘up’ and spin ‘down’ states. For description of a transport
through the double dot it is useful to define the following left and right localized
functions

Lσ(Rσ) =
1√
2
(Γσ

S ± Γσ
A), (2.41)

where plus and minus holds for L and R, respectively. In the limit d → ∞ these
functions converge to single dot solutions localized in the left and right dot.

The effective Hamiltonian of our system in the second quantization formalism
is

H =
∑

σ=↑,↓
Eσ(nLσ + nRσ) − T σ(a†

LσaRσ + a†
RσaLσ), (2.42)

where Eσ = (Eσ
S + Eσ

A)/2, T σ = (Eσ
A − Eσ

S)/2, while a†, and a are creation and
annihilation operators, and n = a†a. We can get both localized and spin-pure
states if we diagonalize σz in a chosen basis. For example, taking L↑ and L↓, we
get Lpure↑ ∼ (L↑+oL↓) and Lpure↓ ∼ (L↓−o+L↑), up to normalization (1−|o|2/2).
That is, the left pure spin state is a linear superposition of both left states with
spin ‘up’ and ‘down’. The coefficient o is proportional to l−1

SO.
In the following we are interested in the time evolution of localized states given

by Hamiltonian Eq. (2.42). First we note, that due to the non-diagonal terms,
the electron which is in a localized state will tunnel into the other localized state
after the tunneling time tσtun = h/2T σ, resulting in coherent oscillations. For our
parameters ttun ≈ 1 ps. In the Hamiltonian there is no mixing between spin
‘up’ and ‘down’ states. However, there will be mixing (or spin-flip) if we work
with localized pure spin states. Electron being originally in Lpure↑ will, after the
tunneling time t↑tun, contain Rpure↓ with the probability amplitude

c = ioπ(T ↓ − T ↑)/4T ↑, (2.43)

assuming that the difference in T for different spins is much smaller that T itself.
In the case of zero magnetic field, because of Kramer’s degeneracy, the tun-

neling frequencies are the same for both spin orientations. Then whatever is the
initial combination of spin ‘up’ and ‘down’ (let it be, for example, Lpure↑), during
the time evolution (oscillations) there will be no relative change in the coeffi-
cients in this linear combination. Therefore spin-orbit interaction does not lead
to spin-flipping and c = 0 in Eq. (2.43).

In a finite magnetic field, the tunneling frequency for spin ‘up’ and ‘down’
are different. The difference is caused by spin-orbit terms only, and is of order
α

(2)
− = l20(l

−2
D −l−2

BR), see Eq. (2.40) and Fig. 2.14b for numerics. We conclude, that
spin-flip during tunneling induced by spin-orbit interaction is proportional to the
third power in spin-orbit interactions and depends linearly on the magnetic field
if the magnetic field is small [c ∼ (l0/llin)

3θ].
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The different tunneling frequency can be exploited for separation of different
spin states in a homogeneous magnetic field. Starting with some combination
of ‘up’ and ‘down’ states localized in one dot, after time tsep = h/2(T ↑ − T ↓) =
ttunT

↑/(T ↑ − T ↓) the part with spin ‘up’ will be localized in the left, and the
spin ‘down’ will be in the right dot. From Fig. 2.14 one can see that about 103

coherent oscillations are needed to get the spatial spin separation. Although the
relaxation and decoherence times for spin-flip in quantum dots (of the order of
1 ms - 1µs [21, 98]) are much longer than the separation time, for this scheme
to work we need to retain also the orbital coherence during the separation. The
orbital relaxation time is comparable to the separation time (0.1 ns in[145]). We
note that the separated states will not be pure spin states, but will contain a
small (linearly proportional to l−1

SO) admixture of opposite pure spin states.

2.6 Summary: effective Hamiltonian, perturba-

tive eigenfunctions

The numerical results of previous sections can be reproduced qualitatively from
the lowest order of the perturbative solution of the Hamiltonian Eq. (2.2). We
derive an effective spin-orbit Hamiltonian, with the help of which the spin-orbit
influence on the energies and wavefunctions can be understood.

2.6.1 Effective spin-orbit Hamiltonian

We assume that the spin-orbit interaction is a small perturbation and that one
can solve the Schrödinger equation for Hamiltonian H0 = T +V+HZ . As already
mentioned, the analytical solution of H0 for the single dot case is known – the
Fock-Darwin states, Ψn,l,σ, where n is the principal quantum number, l is the
orbital quantum number, and σ is the spin. For the double dot case the analytical
solution is not known, but for our double dot potential the eigenfunctions can
be approximated by a properly symmetrized linear combination of Fock-Darwin
functions centered at the potential minima, see Eq. (2.21).

It is useful to unitary transform[5] the Hamiltonian to remove the linear spin-
orbit terms

H → H ′ = eHop

He−Hop

= H0 + H1, (2.44)

where

H1 = HD3 + H
(2)
lin + H

(2)
Z + H

(2)
D3 (2.45)

is an effective spin-orbit interaction. In addition to the cubic Dresselhaus term
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HD3, H1 comprises the following parts:

H
(2)
lin =

~

4m

(
l−2
D − l−2

BR

)
σzLz −

~
2

4m

(
l−2
D + l−2

BR

)
, (2.46)

H
(2)
Z = −µB||σz(xhx

1 + yhy
1) + µB⊥(xĥx

2 + yĥy
2), (2.47)

H
(2)
D3 = − γc

4~3lBR

[
4~PxPy − σz({y, PyP

2
x} − {x, PxP

2
y })
]
−

− γc

4~3lD

[
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Higher order terms were omitted in H1. The curly brackets denote the anticom-
mutator. Vectors h1 and ĥ2 are effective spin-orbit vectors due to in-plane (B||)
and perpendicular (B⊥) components of the magnetic field:

hx
1 = l−1

BR cos γ − l−1
D sin γ, (2.49)

hy
1 = l−1

BR sin γ − l−1
D cos γ, (2.50)

ĥx
2 = l−1

BRσx − l−1
D σy, (2.51)

ĥy
2 = l−1

BRσy − l−1
D σx. (2.52)

In previous we had positioned the vector connecting the double dots to be
parallel to the crystallographic x axis. For a general orientation of the double
dot, to take advantage of the spatial symmetry of the confinement we need to
rotate the (originally crystallographic axes) coordinates such that the new x̂ lies
along d. The coordinates change accordingly to

x → x cos δ − y sin δ, y → y cos δ + x sin δ, (2.53)

and similarly for Px and Py. The rotation leaves Eq. (2.46) unchanged. In

Eq. (2.47) the effective linear spin-orbit couplings h1 and ĥ2 are renormalized
and similarly are the prefactors in Eq. (2.48). We will give explicit results of the
rotation later, when particular terms are needed.

The influence of the spin-orbit interactions on the state energy can be under-
stood by looking at the effective spin-orbit Hamiltonian. The spin-orbit correction
to the energy of a state Γi is in the lowest order given by 〈Γi|H1|Γi〉. Since at
zero magnetic field the states of the double dot belong to a particular symmetry
representation of C2v and have definite x and y symmetries, the only consequence
of the linear spin-orbit terms, Eqs. (2.46)-(2.47), is a constant shift. Therefore
the tunneling is not changed by the linear spin-orbit terms in the lowest order.
Only in the true single dot case the operator Lz in Eq. (2.46) shifts the energy of
a state according its orbital quantum number, as was discussed when explaining
Fig. 2.9. In the double dot regime the dominant spin-orbit correction in zero
perpendicular magnetic field comes from operator P2 in Eq. (2.48) which has
symmetry Γ1, as seen in Fig. 2.8. If the magnetic field has finite perpendicular
component, the dominant contribution to both the tunneling and g-factor comes
from Lz operator (having now symmetry ΓS) in Eq. (2.46), as shown in Fig. 2.11.
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2.6.2 Perturbative expressions for eigenfunctions

In next chapters we will also need, apart form energies, the explicit form of the
wavefunctions. Again, the lowest order of the degenerate theory allows to get
analytical results close to numerics. We use the notation for the eigenfunctions
and eigenenergies of H0 from Sec. 2.5.1 and Eq. (2.31), meaning an eigenfunction
of the full transformed Hamiltonian H ′ is denoted by an overline and can be
written as a combination of the solutions of H0 which are denoted by Γ. The four
lowest states (the ground state and the lowest orbital excited state, both with
spin up and down) in the lowest order of the degenerate perturbation theory are

Γ
00

1↑ ≈ Γ00
1↑ +

〈Γ10
2↓H1Γ

00
1↑〉

E00
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2↓
Γ10

2↓ + . . . , (2.54)
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where the dots denote the rest of an infinite sum through the eigenfunctions of
H0. The anti-crossing of states Γ00

1↓ and Γ10
2↑ is described by coefficients

β = Arg(4 δE) sin[arctan(|44/δE|)/2] =

= Arg(4 δE)
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which depend on the energy difference δE = E00
1↓ − E10

2↑ and the coupling 4 =
〈Γ10

2↑H1Γ
00
1↓〉 between the unperturbed crossing states. If |δE| � |4|, then α ∼ 1

and β � 1 – a result of the non-degenerate perturbation theory is recovered.
The other case, when |δE| . |4|, describes the anti-crossing – the spin hot
spot.[60, 61] In the limiting case, when δE = 0, we get β = 1/

√
2 = α.

2.7 Conclusions

In this chapter, we have performed numerically exact calculation of the spectrum
of a single electron localized by a confining potential in single and double GaAs
quantum dots. We have studied the influence of the spin-orbit terms, namely
the Bychkov-Rashba and the linear and cubic Dresselhaus terms, on the energy
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spectrum. In the single dot case we have elaborated on previous results and
shown that the spin-orbit interaction has three principal effects on the spectrum:
first, the interaction shifts the energy by a value proportional to the second order
in the spin-orbit interactions, second, it lifts the degeneracy at zero magnetic
field, and, third, the Bychkov-Rashba term gives rise to spin hot spots at finite
magnetic fields.

In the double dot case we have addressed the symmetries of the Hamiltonian.
For zero magnetic field without spin-orbit terms we have constructed the corre-
lation diagram, between single and double dot states, of the spectrum. We have
used a properly symmetrized linear combination of shifted single dot solutions as
an approximation for a double dot solution and found that for the four lowest
states it gives a good approximation for the energy. As for the contributions to
the energy from the linear spin-orbit terms, we have found that in zero magnetic
field a typical feature of a double dot is a uniform shift of the energy proportional
to the second order in the coupling strengths without any dependence on the
interdot distance. This is true also if the potential has lower (or none) symmetry
(for example biased dots). Therefore, in zero magnetic field, there is no influence
on the tunneling frequency up to the second order in the linear spin-orbit inter-
actions and the dominant contribution comes from the mixed linear and cubic
Dresselhaus second order term. We have found, that spin hot spots in zero mag-
netic field exist in the double dot, but are solely due to the cubic Dresselhaus
term. This means also, that for our potential, for the cubic Dresselhaus term
there can not exist a unitary transformation to eliminate its contribution in the
first order.

The effective g-factor, on the other hand, is influenced by the second order
linear spin-orbit interactions even at B⊥ ∼ 0, so the dominant contribution here
is the linear Dresselhaus term for GaAs. In finite magnetic fields the uniform shift
does not hold any more and there is a contribution to the tunneling frequency
in the second order of the linear spin-orbit interactions. We have derived an
effective Hamiltonian, using Löwdin’s perturbation theory, with which analytical
results up to the second order in perturbations (Zeeman and spin-orbit terms
with the exception of cubic Dresselhaus-cubic Dresselhaus contribution) can be
obtained provided one has exact solutions of the double dot Hamiltonian without
Zeeman and spin-orbit terms. From this effective Hamiltonian we have derived
the uniform shift in zero magnetic field. In a finite magnetic field we used linear
combinations of single dot solutions to obtain analytical expressions for the spin-
orbit contributions to the energy for the four lowest states. We have analyzed
them as functions of the interdot distance and magnetic field and compared them
with exact numerical values. The spin-orbit relative contribution to the g-factor
and the tunneling frequency is of the order of ∼ 10−2 and ∼ 10−3, respectively.
Due to the degeneracy of the energy spectrum at large interdot distance the spin
hot spots exist also at smaller magnetic fields compared to the single dot case.

As an application of our results we have constructed an effective Hamiltonian
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acting in a restricted Hilbert space of four states – electron localized on either
dot with spin up and down (these are effective spins in the presence of spin-orbit
interaction). For these effective spins there is only spin-conserving tunneling
between the localized states, no spin-flip tunneling. In zero magnetic field the
spin-orbit interaction does not significantly influence the tunneling frequency, nor
it implies spin-flip tunneling even for Pauli spin states. In finite magnetic fields
the tunneling frequency is spin dependent, the difference being of second order
in linear spin-orbit terms. This leads to a spin flip amplitude for Pauli spins
proportional to the third power in spin-orbit interactions (it is linear in magnetic
field). We propose to use this difference of the tunnelings to spatially separate
electron spin in homogeneous magnetic field.





Chapter 3

Adding dissipation

In this chapter we study transitions between eigenstates of an electron localized
in a quantum dot, which are induced by interactions of the electron with the
environment. We first define spin and orbital relaxation and discuss main mecha-
nisms of such relaxation processes in quantum dots. In the second part we review
the recent experimental progress in, first, detecting a single spin in solid state
environment and, second, measuring the single electron spin relaxation time. In
the third part we give our results for electron spin and orbital relaxation induced
by acoustic phonons.

3.1 Environment induces transitions

If the electron in the quantum dot is isolated and whole its’ interaction with the
rest of the world is described by Hamiltonian H , Eq.(2.1), the time dependence
of the electron wavefunction is

Γ(t) =
∑

j

αje
−iωjtΓj (3.1)

Here, at time t = 0 the wavefunction is a certain superposition, given by the
coefficients αj, of eigenstates Γj of the Hamiltonian H . The whole time depen-
dence is a phase linearly growing with time and energy of each eigenstate in the
expansion. The probability to find the electron in a certain eigenstate will be
time independent – there will be no transitions. The electron is however im-
mersed in a condensed matter environment. Phonons, crystal boundaries and
imperfections, electromagnetic fields, nuclei magnetic momenta are few examples
of entities interacting with the electron whose influence is not included in H .
Such interactions will change the electron wavefunction non-trivially. A change
is called inelastic if the energy of the electron is changed and elastic if it is not
changed. A typical time of an inelastic change is called relaxation time – it is
a time over which the modulus of a certain coefficient αj in Eq.(3.1) is changed
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appreciably. A decoherence time is a time over which the phase starts to differ
considerably from its linear evolution in Eq. (3.1). Such a definition of transition
times is not unambiguous. For example, transition times can be different for
changes of different coefficients in Eq. (3.1) and more time scales expressing the
environment influence on the electron are used.[168]

The relaxation and decoherence times are critical parameters determining the
possibility to use the electron in a quantum dot as a qubit. If the qubit states en-
code a classical information, the manipulation has to be accomplished on a much
shorter time scale than the relaxation time, after which the information is lost.
Requirements on quantum information processing are even more stringent - here
the information is encoded also in the phase of states, not only the occupation,
therefore the information lifetime is the decoherence time, which can easily be
orders of magnitude smaller than the relaxation time. It is thus a crucial task to
quantify these timescales and find conditions under which they are maximal.

3.1.1 Spin relaxation

To be able to induce non-trivial time-dependent behavior, the environment has to
have dynamical degrees of freedom and has to interact with the electron strongly
enough. For the next discussion we take an example of the spin relaxation. This
means we consider an initial state of the electron in Eq. (3.1) to be an eigenstate,
let it be an excited state, with the projection of the spin along certain axis −~/2.
We define the spin relaxation time to be a time after which the wavefunction
spin projection is ~/2, let it be the ground state where the electron finally ends.
We first discuss phonons as the source of the spin relaxation, since, compared to
other environment fluctuations, phonons can not be get rid off in the crystal and
define a fundamental upper limit for the spin relaxation time.

Phonons

A phonon is an oscillating wave-like displacement of the crystal atoms from their
equilibrium positions. With such a displacement, the energy of the electron is
changed due to the changed band structure. This is known as deformation poten-
tial. If the crystal is piezoelectric, the deformation of the crystal lattice induces
an electric field which interacts with the charged electron – piezoelectric potential.
If the crystal atoms are ions, a relative displacement of charged ions also induces
the electric field – Fröhlich coupling. All three listed interactions[77, 114] can be
viewed as an electric field induced by phonons. However, the electric field does
not couple directly to the electron spin. A further spin dependent mechanism is
needed for transitions which do not preserve the electron spin. Such mechanisms
can be divided into two main groups.[97, 98, 96]

First, suppose there is a term in the electron Hamiltonian which does not
allow to define a common spin quantization axis – it either does not commute
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with the Zeeman term, or mixes the spin and orbital degrees of freedom. The most
important example is the spin-orbit interaction. Then the electron eigenstates are
not exactly Pauli spin like. However, one can always attach labels to a state, such
as “spin up” or “spin down”, according to the state spin expectation value along
the applied magnetic field. If the spin-orbit interaction is small, what is usually
the case, such “spin” will be well defined since the spin expectation values will
be close to ±~/2. A “spin down” state is in fact a Pauli spin down state plus a
small amount of Pauli spin up state. This small admixture of Pauli spin opposite
state allows the transition to a “spin up” through spin preserving phonons and
gives the name to the admixture mechanism.

Second, say one neglects the influence of the spin mixing terms in the electron
Hamiltonian and considers the electron eigenstates to be Pauli spins. The phonon
can, under certain conditions, induce spin dependent coupling to the electron[68]
called direct spin-phonon coupling. This happens if the environment where the
electron is localized is anisotropic in such a way that the phonon induces fluctu-
ations of the parameters of the spin-dependent part in the electron Hamiltonian.
An anisotropic g-factor is the most natural example.[24] The phonon induced
electric field induces a spin-orbit coupling[4] in a similar way as the electric field
from the confinement has induced the Bychkov-Rashba interaction. At the het-
erostructure interface, phonon will induce fluctuation of every parameter in the
electron Hamiltonian which is different in the two materials forming the het-
erostructure – ripple coupling.[101, 164, 3] A phonon modulation of hyperfine
coupling is another possibility.[142]

Phonons are usually described as bulk with the corresponding power law de-
pendence of the density of states. The bulk model is justified for phonons in
quantum dot, unless the acoustic properties in the vicinity of the dot are strongly
anisotropic. A counter example is a dot located in a small sustained slab, where
the discreteness of the phonon density of states, as a consequence of the bound-
ary conditions,[36] is observable in the electron spin relaxation time.[111] Most
experiments dealing with single electron quantum dots were done at very low
temperature (mostly under one Kelvin, at maximum at 4.2 Kelvins) where the
single phonon processes dominate. At higher temperatures (say tens of Kelvin)
multi phonon processes have to be taken into account.[146]

The role of phonons can be taken over by fluctuations of the electric potential
of the leads defining the electron confinement[116, 16] or the background charge
fluctuations.[72] Similar is the absence of the direct coupling to the electron spin
and the main difference is the density of states – while phonons density drops with
smaller phonon energy as a power law, the leads’ potential fluctuation are mostly
described as a white noise with a constant spectral density. Other baths can play
role, such as ohmic fluctuations from a nearby current and 1/f background charge
fluctuations.[137] In analogy with the phonons, also the fluctuating fields can
couple to the electron spin directly: time dependent currents in the leads induce
magnetic field, the spins of the electrons in the leads interact with the electron
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through the exchange interaction (which requires the overlap of the confined and
lead electrons) or dipole-dipole coupling[125] (no overlap is needed).

Atomic nuclei

The second very important spin relaxation source are magnetic moments, if
present in the area of the quantum dot. They have dynamical freedom and
couple directly to the electron spin through the dipole interaction. In magnetic
diluted semiconductors, electrons confined at some crystal atoms have unpaired
magnetic moments.[165] However, even in non-magnetic materials an important
spin thermal bath is present if some of the constituent atoms of the material
have nucleus magnetic moments. It would seem that nuclei spins are much more
efficient in spin relaxation than second-order processes including spin-preserving
phonons. Fortunately from the perspective of long spin relaxation time, the en-
ergy conservation blocks a direct process where the electron and a nucleus flip
their spins, since the electron and nucleus magneton differ by a factor of ∼ 2000.
Another coacting interaction, for example, electron-phonon, is thus needed for
providing the energy conservation.[59, 1]

Compared to phonons in the previous section, now the thermal bath elements
(the nuclei spins) are static in space. Several timescales[117] can be identified in
the mutual interaction between the electron and an ensemble of nuclei spins – a
typical electrically defined quantum dot in GaAs contains ∼ 105 of nuclei spins.
The fastest timescale, being ∼ 1 ns, is the precession time of an electron spin
in the magnetic field of the nuclei spins. On this timescale, the nuclei spins can
be considered frozen and described by an effective magnetic field, leading to the
electron spin relaxation[58] and decoherence.[95, 30]

The second time scale is the time of precession of a nucleus spin in the magnetic
field of the electron, being three orders of magnitude smaller due to smaller nuclei
magneton. A simultaneous flip of the spin of both the electron and a nucleus flip
can be used for a dynamical polarization of the nuclei spins.[50, 109] Due to
the large number of the nuclei spins, some sort of a cut-off scheme is inevitable
for analytical description of such mutually influencing nuclei-electron dynamics.
Taking into account only pair wise interactions of the electron spin with a picked
nucleus,[39] instead of considering the whole set of nuclei spins, seems a possible
way. A systematic formulation of such approximation was recently done by a
cluster expansion.[163]

The slowest important time[87] is a nucleus spin precession in the dipole mag-
netic field of neighbor nuclei, being ∼ 100 µs. It is responsible for the thermal-
ization of the nuclei spins and can be viewed as spin diffusion. The electron in
the quantum dot strongly influences this diffusion,[113, 38] but for the back ac-
tion of the diffusion on the electron, no theoretical work exists, apart from an
exact numerical simulation that can encompass only up to 20 nuclei spins.[45]
In experiments,[124] one has observed a complicated electron behavior over long-
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times, mirroring the mutual influence between the three discussed processes with
different time-scales.

The most important channel how the nuclei spins cause the electron decoher-
ence is due to non-uniform hyperfine couplings induced by space dependence of
the electron wavefunction. Based on this finding, several schemes were proposed
to suppress this decoherence channel by polarization or narrowing the quantum
state of the nuclei spins.[147, 99]

Dominant channels

While many possible ways of spin relaxation exist, fortunately only few of them
turn out to play an important role. It is agreed that in magnetic fields above
∼ 1 Tesla, the acoustic phonon combined with the admixture mechanism due
to the spin-orbit coupling is the dominant channel for the spin relaxation. The
spin relaxation time is of order of 0.1 ms and analytical results fit experiments
neatly.[6] The spin relaxation rate is greatly enhanced[21] nearby an anti-crossing
where the spin-orbit influence on the electron spin is much more profound. The
anisotropy of the spin-orbit terms with respect to the crystallographic axes leads
to dependence of the spin relaxation rate on the orientation of the magnetic
field[75] or electron momentum[9] (the latter is meaningful only for electrons in a
quantum well) which can be used to control the spin relaxation. Another possibil-
ity of control is to use the dependence of the phonon density on the energy.[162]
If the spin-orbit interaction can not be considered as a small perturbation the
spin relaxation shows complicated behavior.[41] Despite its practical perspective-
ness, spin relaxation in quantum dots in silicon attained much less theoretical
attention[2, 149] than in III-V compounds, such as GaAs, because the analysis
for silicon is complicated by the degeneracy of the bands minima.

In sub-Tesla fields nuclei spins combined with phonons are believed to domi-
nate the spin relaxation. However, only a preliminary experimental data exist in
this range of the magnetic field and the analytical predictions can not be verified
yet. It is believed that also the decoherence is dominated by the interaction of
the electron with the nuclei spins, for which spin echo[128] and a suppression of
the decoherence by magnetic fields[92] seem to be strong indications.

Spin relaxation in two electron QD

From the quantum computation point of view the most interesting case is the
spin relaxation in a two electron quantum dot – a transition between singlet and
triplet states. Surprisingly, it still lacks a comprehensive quantitative analysis.
In a parabolic quantum dot the linear spin-orbit terms couple the ground state
to different states according selection rules,[29] which are loosen if the potential
looses the circular symmetry.[66, 65] The recent experiment[118] suggests that
the double electron case is not qualitatively different from the single electron
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case. Further analytical work is needed to clarify the role of cubic Dresselhaus
spin-orbit term, influence of the higher excited states,[29] appearance of a new
spin-orbit interaction originating in the Coulomb electric field[11] or the possible
non-spin-orbit origin of the spin relaxation.[86]

3.1.2 Orbital relaxation

To complete the discussion, we now shortly comment on transitions between spin
alike electron states which are not blocked by the spin conservation. The above
discussed spin-dependent mechanisms can be neglected and the transition is in-
duced by any fluctuation producing electric field. The main possible sources of
such fluctuations are phonons, potential of the circuitry (confinement gates, mea-
suring units like a quantum point contact), heterostructure background charge
fluctuations,[64] and interactions with the leads if the dot is opened and the cur-
rent is allowed to flow through. Apart from phonons, the previous mechanisms
can be suppressed: improving the circuit, putting the dot farther apart from the
doped region, lowering the current through the dot, respectively, for the three
listed sources. Phonons are always present and can be regarded as principally
the dominant source of the orbital relaxation. The single electron relaxation time
due to phonons is mainly given by the energy difference between the initial and
final state. Other details, such as the shape of the potential and the magnetic
field, have only minor influence. Apart from the single dot confining energy, in
the double dot there is an additional handle to influence the relaxation – the dis-
tance between the two potential minima.[63, 145] If the dot is populated by more
electrons, the transition rates tend to decrease comparing to single electron case,
since the Coulomb interaction mixes the lowest states with higher single electron
orbitals.[14, 28]

Concerning the orbital decoherence, it is not dominated by phonons,[159, 110]
but the true source of the orbital decoherence is not yet clear, the most probable
candidate are circuit potential fluctuations, making the decoherence rate strongly
dependent on sample details.

3.2 Experiments on single electron spin relax-

ation

To measure the electron spin relaxation and/or decoherence time, it is first of
all necessary to be able to measure the state of the electron spin. However,
the magnetic moment of an electron is very small, making a direct detection
of its magnetic field difficult. Even though this direct detection was realized,
more convenient methods are usually used. The optical methods based on spin
selective optical transition rules are usually used if an ensemble of spins is being
studied. On the other hand, in single electron systems, spin to charge conversion



3.2. Experiments on single electron spin relaxation 53

schemes are used. They take advantage of the fact that the spin is not completely
decoupled from the orbital degrees of freedom and therefore the electron spin state
can be deduced by measuring the charge of the system. In fact, here it is used
that the spin is just (a part of) the label (quantum numbers) for the electron wave
function – different states (wave functions) have all kinds of different properties
not connected directly to the spin (energy, spatial extent of the wave function,
. . . ). By measuring these properties, one can deduce about the spin.

In the next sections we present several experiments divided into two groups.
We review, first, experiments aiming at a single electron spin detection in solid
state environment, and, second, experiments reporting on measurements of the
spin relaxation time of few electron states in a quantum dot.

3.2.1 Detecting the presence of a spin

Nuclear magnetic resonance (NMR)

Nuclear magnetic resonance is a long known method of detecting a magnetic
moment with very important practical applications. The principle is sketched in
Fig. 3.1. A large static magnetic field is applied. The magnetic moments in the
sample (being the spins of nuclei of atoms in the material or spins of electrons)
align along the applied magnetic field, thus producing a magnetic domain. Then
a microwave radiation is applied. If the frequency of the microwave matches
the Zeeman splitting of the spins, each spin starts to precess with the Larmor
frequency. The rotating magnetic field of the domain at the Larmor frequency
is detected. Important thing is that different nuclei have different g factors and
therefore can be identified by their characteristic Larmor frequency. A three
dimensional images of a bulk sample can be thus obtained. However, the domain
has to possess some minimal total magnetic moment, so that it is possible to
detect the signal. Nowadays, a smallest domain consists of ∼ 1012 nuclei or ∼ 107

electrons, corresponding to a spatial resolution of several micrometers.

Scanning tunneling microscope (STM)

The scanning tunneling microscope is able to produce images with an atomic
resolution. The task was how to make it sensitive to spin, since usually the current
extracted from the surface of a sample depends on the local density of states of
electrons, but not on their spin. The idea that lead to a successful observation of a
single spin on SiO2 surface[115] resembles the magnetic resonance and is explained
in Fig. 3.2. A static magnetic field is applied (a small magnet bars were mounted
on the STM tip, producing a field of ∼ 200G). The electrons extracted from the
sample precess in the magnetic field. If there is a confined spin located nearby,
one can expect a modulation of the STM current at the Larmor frequency due
to an interaction of the static confined spin and the precessing spins of tunneling
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Figure 3.1: Nuclear magnetic resonance. A magnetic domain created in an applied
magnetic field precesses if a resonant microwave field is applied. The precession
of magnetic moments is detected.

electrons. The modulation of the current was really observed, even though the
origin of the spin-spin interaction was not clear. The experiment was done at
a room temperature and the spin sensitive signal was observed within a spatial
region of ∼ 10 Å. Thus STM has proven to be able to see an individual spin,
however only if the spin is located near the surface. Later, an observation of a
single spin in an organic molecule was done by the same method.[48]

Optical detection of the spin of nitrogen vacancy defect in diamond

The nitrogen vacancy defect is a charged defect produced by an electron irradia-
tion of a diamond sample. The energy level diagram of the defect is in Fig. 3.3a.
The ground state, denoted as 3A, includes singlet and triplet states split by a
small energy difference, while 3E is an excited state. Important is that only the
ground singlet state is active in the dipole optical transition, while the triplet is
a dark state.

In the first experiment[78] the sample was irradiated by a resonant laser, driv-
ing the optical transition between the ground and excited state. The luminescence
was observed through a small aperture behind which a single photon detector was
located, see Fig. 3.3b. By lowering the concentration of the defects in different
samples, it was possible to get to the regime where a single fluorescing defect was
observed. The spatial resolution was ∼ 300 nm.

The group worked on the system further and in Ref. [90] they reported on an
observation of time dependence of the fluorescence of a single defect, as depicted
in Fig. 3.3c. If the signal is being detected (on), it means the laser excites the
defect from the singlet ground state, followed by a relaxation back, along with an
emitted photon. If there is no signal (off), it means the defect is in triplet ground
state and no excitations by the laser are possible. From time to time the system
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Figure 3.2: Observation of a single spin located on a surface of a sample by the
scanning tunneling microscope. The tunneling electrons precess in the magnetic
field nearby the STM tip. Interaction between these precessing spins and a spin
located at the surface modulates the detected signal at the Larmor frequency.
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undergoes a spin-flip transition between the ground singlet and triplet states,
switching the signal between on and off. The average time between the switches
is the spin relaxation time, measured between milliseconds at room temperature
and seconds at the temperature of 2K.

In the most elaborated experiment with this system,[89] coherent Rabi os-
cillations were observed. An applied resonant microwave field induces coherent
oscillations between the ground singlet and triplet states, which were again de-
tected by the laser induced fluorescence. The oscillations are damped by the
decoherence, as seen in Fig. 3.3d. From the decay of the oscillations a decoher-
ence time of 1 µs at 2K was obtained.

Magnetic resonant force microscopy (MRFM)

The recently invented method of magnetic resonant force microscopy[136] is based
on the magnetic resonance, however is capable to detect a single electron spin.
The operation principle is demonstrated in Fig. 3.4a. Comparing to the usual
magnetic resonance, here the static magnetic field defining the resonant frequency
is spatially dependent, allowing to address a specifically located spin. The static
magnetic field consists of a uniform external field and a field of a magnetic tip
fastened to a cantilever. Similarly as in the usual magnetic resonance a mi-
crowave field is applied. The detection of the located spin is done by detecting
the spin-spin dipole interaction of the magnetic tip and the located spin. Since
this interaction is very small, a delicate method is used. The cantilever oscillates
above the located spin. If the microwave field is applied, the located spin under-
goes a transition (flip) each time the magnetic field at its position is resonant –
that is twice in a period of the cantilever oscillation. Thus the located spin oscil-
lates with the same frequency as is the frequency of the cantilever. This leads to
a small difference in the cantilever oscillation frequency depending on the initial
state of the spin. Every ∼ 100th period the microwave field is turned off leading
to an effective flip of the confined spin and a subsequent change in the cantilever
frequency. These periodic small changes (mHz) in the frequency of the cantilever
(kHz) are detected. In addition to induced spin flips, the spin undergoes intrinsic
flips due to the intrinsic relaxation. This is seen as additional random switches of
the cantilever frequency. A typical time evolution of the cantilever frequency is
in Fig. 3.4b. If the modulation of the cantilever frequency is observed, a confined
spin is present in the sample. In addition to a detection of the spin, the intrin-
sic spin relaxation time of 760 ms (bulk silicon sample was used) was measured
from the noise in the cantilever frequency. The great advantage of this method
comparing to usual NMR is its resolution (here a single spin can be detected).
Comparing to previously demonstrated STM methods, MRFM can detect the
spin also underneath the surface.
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Figure 3.3: Optically detected spin state of a nitrogen vacancy defect in dia-
mond. a, Energy level diagram and the transitions induced by applied fields.
b, Detecting an individual center in subsequent samples with diminishing defect
density. c, Measuring the spin relaxation time from the switches between the
fluorescence signal. d, Measuring the decoherence time from the damping of the
Rabi oscillations.
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Figure 3.4: Magnetic resonance force microscopy. a, The change of the frequency
of mechanical oscillations of a cantilever detects the spin. See text for the explana-
tion. b, Frequency of the cantilever as a function of time: dashed – if no intrinsic
spin flips occur, the frequency changes at regular intervals, solid – intrinsic flips
bring additional changes at random times.

3.2.2 Measuring spin relaxation and decoherence

Transient current method: two step ERO

A successful measurement of the single electron spin relaxation time in a quan-
tum dot was achieved using a spin to charge conversion method proposed and
demonstrated in Ref. [71]. A spin to charge conversion means the spin of the
electron is identified by measuring the presence of the electron (that is electrical
charge) after a specially designed sequence of voltage pulses applied on the gates.
The principle of the method is illustrated in Fig. 3.5. The quantum dot is con-
nected to leads and operated in a regime, where only the ground and first excited
states are relevant when considering a possible tunneling through the dot. A two
step pulse (a low voltage followed by a voltage enhanced by a certain amount
– high voltage) is applied repeatedly. The current through the dot is measured
by averaging over many cycles. By changing the basis gate voltage (that is by
changing the relative position of the energy levels with respect to the chemical
potential of the leads) there are three possible configurations when a current can
flow. The first configuration is such that the current flows through the ground
state during the high voltage pulse. If the bias voltage is enhanced enough, a sec-
ond stable configuration is reached, when the current flows through the ground
state during the low voltage pulse. For a bias voltage in between these two there
is a regime where the current can flow through the excited state during the high
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voltage pulse. However, now the current flows only until the ground state is
populated. If this happens, the current is blocked until the low voltage pulse,
when the ground state is emptied and the cycle is repeated. The idea is that by
prolonging the time interval of the high voltage pulse, a decay of the transient
current should be observed and the relaxation time for the transition from the
excited to the ground states could be deduced.

The method is based on the fact that in the transient current regime the
ground and excited states are discriminated during the high voltage pulse since
they have different energies. In between these energies the chemical potential of
the right dot is placed. Only if the electron is in the excited state, it can leave the
dot into the right lead and contribute to the current. Since the energy difference
is used, the method is called energy resolved readout (ERO). If the excited and
ground states have different spins, the method is an example of a spin to charge
conversion.

In the transient current configuration, the low voltage pulse is in further de-
noted as empty step, since the dot, possibly initially occupied, is emptied during
this pulse. The high voltage pulse is denoted as probe step, since the state of
the electron is measured. Figure 3.6a summarizes the two steps (the fill&wait
step will be discussed later). Figure 3.6b introduces definitions of the tunneling
rates needed for quantitative description. The relaxation rate from the excited
to the ground state is denoted as W , while the tunneling rates to/from the leads
are denoted by Γ, with indexes L and R standing for the left and right leads,
and E and G for the excited and ground states. It is assumed that the tunnel-
ing rates are independent on the applied gate voltage and that the left lead is
strongly coupled to the dot, ΓL � ΓR, W . The lead position defines whether the
electron can tunnel to/from the dot. For example, for the probe configuration
the electron can tunnel to the excited state only from the left lead, while from
the excited state it can tunnel only to the right lead or to the ground state. The
last assumption is that there can be only one electron in the dot, meaning the
charging energy (the energy needed to add another electron) is much larger than
the chemical potentials of the leads. In the probe configuration, populations of
the ground g and excited e states are described by the following set of equations:

ė = ΓLE(1 − e − g) − (ΓRE + W )e,

ġ = (ΓLG + ΓRG)(1 − e − g) + We.
(3.2)

An initial condition of an empty dot (g = e = 0) leads to the following approxi-
mate solutions (see Appendix .1.1 for the derivation)

e(t) ≈ ΓLE

ΓT

(
1 − e−ΓT t

)
e−Dt,

g(t) ≈ ΓTG

ΓT

(
1 − e−ΓT t

)
+

ΓTE

ΓT

(
1 − e−Dt

)
.

(3.3)
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Figure 3.5: Two stable and one transient current configuration for a dot with
two voltage steps applied. In the stable current 1 and transient current configu-
ration the current flows during the high voltage pulse, while in stable current 2
configuration during the low voltage pulse.
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Here tunneling rates with index T are total tunneling rates for the corresponding
state, ΓTG = ΓLG+ΓRG, ΓTE = ΓLE +ΓRE, ΓT = ΓTG+ΓTE, and D is an effective
relaxation rate

D = W +
ΓTG

ΓT
ΓRE . (3.4)

The approximate solutions are written in a form allowing straightforward physical
interpretation. Considering an empty dot at time zero, there is an initial filling of
the dot due to electron tunneling from the leads. This is a fast process and leaves
the states of the dot occupied according to the “filling efficiency” – the average
excited state population equals ΓLE/ΓT , while the ground state is populated with
a probability of ΓTG/ΓT . After this initial filling, the population of the excited
state decays in favor of the ground state on a longer time scale, given by the
effective relaxation rate D. This rate reveals two ways how an electron can get
from the excited state to the ground state. It can either relax directly, happening
with a rate W , or it leaves the dot going to the right lead and another electron
tunnels into the ground state. This happens with a probability given by the
ground state filling efficiency (this process is called direct injection, since the
electron gets from the excited state to the ground state not by the relaxation,
but by the injection from the lead). In experiments the spin relaxation rate W is
usually much slower than the total tunneling rate ΓT = ΓTG + ΓTE and also the
duration of a particular voltage step is much longer than Γ−1

T . Then the terms
decaying with the rate ΓT (that is the initial filling) are not resolved and only the
trade off between the excited and the ground state is observed.

ERO: third step introduced

From Eq. (3.4) it follows that the intrinsic relaxation rate W , one is interested
in, can be extracted only if it is not much smaller than the direct injection rate.
This is why there was an intermediate step introduced in Ref. [69]. It is denoted
as “fill&wait” in Fig. 3.6, and is such that both ground and excited states are
below the chemical potential of the right lead. The dot, if empty, is filled by an
electron from one of the leads. In an analogous way to the probe configuration,
the equations for the time evolution of the population during the fill&wait step
are

ė = (ΓLE + ΓRE)(1 − e − g) − We,

ġ = (ΓLG + ΓRG)(1 − e − g) + We.
(3.5)

The solution, again for the initial condition of an empty dot (see Appendix .1.2),
is

e(t) ≈ ΓTE

ΓT

(
1 − e−ΓT t

)
e−Wt,

g(t) ≈ ΓTG

ΓT

(
1 − e−ΓT t

)
+

ΓTE

ΓT

(
1 − e−Wt

)
.

(3.6)
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Figure 3.6: a, Relative positions of the energy levels and chemical potentials of the
leads for the three steps in energy resolved readout. b, Tunneling rates between
the leads and the dot. The first index denotes the lead (left or right), while the
second denotes the state of the dot (ground or exited). The relaxation rate from
the excited to the ground state is denoted as W . The right barrier is much thicker
than the left one.
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a) b)elastic cotunneling inelastic cotunneling

Figure 3.7: Elastic and inelastic cotunneling as a second order tunneling pro-
cess. a, In the elastic cotunneling the electron initially in the dot tunnels out
while another electron tunnels simultaneously into the same state. In inelastic
cotunneling the incoming electron enters into a different state of the dot.

The behavior of the system is very similar to the probe configuration – there is
an initial fill up on the timescale given by Γ−1

T , followed by the exchange of the
excited and ground state populations. However, now the electron, once captured
in the dot, cannot escape. Therefore the relaxation rate is not renormalized and
the effective (that is measured) relaxation rate equals the intrinsic relaxation
rate W . The excited population is measured during the probe step – only if the
electron is in the excited state, it tunnels out to the right reservoir, contributing
to the current. If it has relaxed to the ground state, it can tunnel out only during
the empty phase. If the ratio of the total left and right tunnel rates is the same in
the empty and fill&wait steps, on average the electrons tunnel back to the same
lead from which the it had entered the dot during the fill&wait step – these back
and forth tunnelings result in no net contribution to the measured current.

To complete the picture, the effective relaxation in early experiments using
ERO was dominated by cotunneling. This is a quantum mechanical process, thus
not included in our classical description in Eq. (3.2), illustrated in Fig. 3.7. Here
an electron being in the ground state can tunnel out while another electron from
a lead tunnels in simultaneously, to the same (elastic cotunneling) or possibly into
a different state of the dot (inelastic cotunneling). This process is of the second
order in the tunneling rates. For our purposes here the case of interest is when
the initial electron is in the excited state, while the replacing electron tunnels
into the ground state, contributing to the relaxation. The elastic cotunneling is
not capable to relax the electron, but the phase of the incoming electron can be
different compared to the phase of the electron initially in the dot. Therefore,
elastic cotunneling contributes only to the decoherence.
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ERO: experimental results

The method of the transient current was proposed and demonstrated at by Fuji-
sawa et al at NTT Corporation in Japan.[71] In that experiment a lateral quantum
dot contained ∼ 50 electrons and the only successful relaxation time measured
was 3 ns, attributed to an orbital relaxation process. In other cases the effec-
tive relaxation was either too slow to give a clear decay or too fast to give a
measurable current. The group has pursued this method further – in Ref. [70]
they got an upper limit for a spin relaxation time of 2µs and a result of 2 ns for
the orbital relaxation time in a lateral dot. The experiment was done also with
a single electron vertical dot, however, all the extracted relaxation times were
dominated by the direct injection, again giving only an upper limit for the spin
relaxation of 1 µs. After introducing the fill&wait step in Ref. [69] it was possible
to get rid of the direct injection contribution. The experiment was done with a
single and two electrons in a vertical dot in magnetic field of 0-7 T applied per-
pendicularly. A singlet-triplet relaxation rate of 100 µs was obtained, however it
was suspected that it was dominated by the cotunneling. The group finally suc-
ceeded in obtaining the singlet-triplet spin relaxation time of 200 µs in Ref. [140],
where they measured the spin relaxation at different tunneling rates. Since the
cotunneling scales as the tunneling rate squared, it was possible to exclude the
cotunneling contribution. This experiment was done in a lateral single dot with
∼ 8 electrons in a perpendicular magnetic field up to 3 T. In this experiment,
they also observed a narrow dip in the spin relaxation time, being possibly due
to an anti-crossing enhancement of the relaxation rate. This is to our knowledge
the only experimental observation of such a steep dip in the relaxation rate up
to now.

QPC – break through in ERO

Even a measurement of the spin relaxation of few electron states using the tran-
sient current method was successful in vertical quantum dots, it turned out to
be impossible to realize in lateral quantum dots. A crucial problem is that the
tunneling rates into/out of the lateral dot get too small if the dot is forced to
be occupied by a small number of electrons. In such a case the cotunneling con-
tribution to the relaxation rate is negligible, but the current through the dot is
too small to be measured. This problem was solved by using a quantum point
contact (QPC) as a detector of the charge of the dot instead of measuring the
current through the dot. The resolution of the QPC detector is quite below a unit
charge (∼0.1 e) and thus the single electron tunneling into/out of the dot can
be resolved. The QPC was used as a counter for each single electron tunneling
event.

Namely, each time the electron tunnels into (out of) the dot, the QPC current
is suppressed (enhanced) by a certain amount. In Fig. 3.8 a typical time trace of
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Figure 3.8: Time dependence of the QPC signal during the three step ERO
sequence. See text for the explanation.

a QPC current during the three steps of ERO is sketched. An electron enters the
dot, which is being initially empty, during the fill&wait step, what is observed
as a decrease of the QPC current. If in the excited state, the electron tunnels
to the right lead during the probe step and another one tunnels into the ground
state, what is observed as a temporary enhancement of the QPC current. If the
electron had relaxed during fill&wait step, or entered the dot into the ground
state, no enhancement is observed during the probe step. Finally, the dot is
emptied during the empty step, observed as an increase of the QPC current and
the cycle is restarted. The current through the dot can be obtained by counting
the tunneling electrons. In addition, tunneling rates can be deduced by averaging
the corresponding time for a particular tunneling to occur. The time resolution
of the QPC current signal is ∼10 µs, therefore all relevant events to be resolved
must happen on a longer time.

ERO+QPC: experimental results

The first experiment measuring the spin relaxation rate using ERO and QPC was
done in Delft.[82] The average number of electrons tunneling through the dot in
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the probe step (lasting for time tp) is

〈nE〉 =

∫ tp

0

ΓREe(t) dt ≈ ΓRE
ΓTE

ΓT

(
1 − e−Dt

)
/D. (3.7)

The effective tunneling rate D, Eq. (3.4), was found by fitting the exponential
decay, Eq. (3.7). It has been found that the effective rate was dominated by
the direct injection and the three step pulse was applied to extract the intrinsic
relaxation rate. A simple exponential decay is supposed to be observed, if the
current is normalized in the following way

〈nE(tp)〉
〈nE(0)〉 = e−Wt. (3.8)

No decay was detected up to the measurement precision, giving an upper limit
for the spin relaxation of 50 µs. In this experiment a parallel magnetic field of
6-14 T was applied to energetically resolve the spin excited state from the ground
state. Only in the next experiment[51] the Delft group succeeded in measuring
the spin relaxation of a single electron in a single lateral quantum dot (the first
successful measurement of this kind). The dot was connected to one reservoir
only and the three step voltage pulse was applied. The spin relaxation times of
850 µs, 550 µs, and 120 µs in magnetic fields 8, 10, and 14 T, respectively, were
obtained.

A drawback of the ERO method is that for the readout the energy difference
has to be large enough to overcome the blurring of the levels due to a finite
temperature and shifts of the levels due to background charge fluctuations. Since
the Zeeman energy is small, a high magnetic field is required for ERO. In the
first experiments of the Delft group the minimal magnetic field was ∼6 T. Very
recently[6] the minimal magnetic field for ERO was pushed down to 1.7 T. The
improvement was achieved by periodic monitoring and appropriately correcting
the shifts of the positions of the energy levels due to the background charge
fluctuations. This experiment so far covers the largest range of the magnetic
fields and is in a very good agreement with a theoretical prediction for the spin
relaxation due to the spin-orbit interactions and acoustic phonons.

Transient current in small magnetic field: TRRO

A different spin to charge conversion scheme was proposed for a measurement of
the spin relaxation time in small magnetic fields.[54] The readout of the electron
state in the probe step is possible if the tunneling rates for the spin up and down
states are different. In the energy readout the tunneling rate out of the ground
state during the probe step was strictly zero, since it was under the chemical
potential of the right dot. Now both states are above, as depicted in Fig. 3.9,
but the rates are different. For two electron states, the difference in the rates
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Figure 3.9: Two steps in tunneling resolved readout scheme. The tunneling rates
are different for the ground and excited states even if both states are under/above
the chemical potential of a lead. In such a case the empty and probe steps can
be merged.

originates in the fact that the triplet state is spatially more extended (being
antisymmetric) than singlet, leading to a larger overlap with the states in the
lead. Thus this method is not straightforwardly applicable to a single electron
quantum dot.

In Ref. [81] the Delft group realized the tunneling rate resolved readout
(TRRO) for the first time. A two electron occupied lateral single dot in a par-
allel magnetic field of 0-6 T was used. At zero magnetic field a singlet–triplet
relaxation time of 2.58 ms was measured. The method was demonstrated to be
feasible even when the energy difference of the excited and ground states was
bellow the experimental resolution (that is, it can be considered to be zero), giv-
ing a relaxation time of 310 µs. The measured relaxation rate was obtained by
fitting the exponential decay of the excited state population as a function of the
duration of the fill&wait step.

e(t) =
3ΓT

3ΓT + ΓS

e−Wt[1 − α(t) − β(t)] + α(t). (3.9)

Here ΓS and ΓT are the tunneling rates to the singlet and triplet state and the
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Figure 3.10: Optical pump and probe method. The spin is first pumped optically
by a polarized light into an ensemble of self-assembled quantum dots. After a
waiting time the remaining spin polarization is probed by measuring the polar-
ization of the emitted light produced by the recombination.

prefactor reflects the filling efficiency – the triplet state is triple degenerate. The
probabilities α and β reflect the possibility of a wrong measurement answer: α
is a probability that a tunneling was observed even when the electron was in
the ground state and β is the probability that the tunneling was not observed
even when the electron was in the excited state. They originate in the fact that
“unwanted” tunneling rates (such as out of the ground state during the probe
step) are not exactly zero. The probabilities are computed in the Appendix .2 and
were neglected in the previous computations, where they originated in thermal
fluctuations or cotunnelings. In Ref. [81] the visibility (being the probability of
the correct answer, equal to 1 − α − β ) of 80% was achieved, while in Ref. [51],
65% was estimated.

Optical detection of the spin relaxation

A completely different method should be mentioned here for the sake of chronol-
ogy and as an example of optical methods used in spin relaxation measurements.
In Ref. [107] the spin relaxation rate in an ensemble of self assembled quantum
dots was measured by optical pump and probe method. The idea is depicted in
Fig. 3.10. During the initialization (pump) the spin is optically pumped by a lin-
early polarized light which creates electron-hole pairs. The voltage is applied such
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that the holes are expelled from the area of confined electrons such that the re-
combination process is inhibited. After a waiting time the voltage is reversed, the
holes are brought to the area of confined electrons and the recombination takes
place. The emitted photon polarization, which depends on the spin orientation
of the recombined electron, is detected. The exponential decay of the preferred
polarization (being the polarization of the pump pulse) is observed. The longest
spin relaxation time obtained was 20 ms at the temperature of 1 K. However,
more importantly, the power law dependence of the spin relaxation rate on the
perpendicular magnetic field (4-12 T) was observed with the exponent (five) in
line with the theoretical prediction for the relaxation dominated by spin-orbit
interaction. A typical excitation energy of a dot was 30 meV and approximately
104 dots were involved in the experiment.

Singlet–triplet double dot system

Perhaps a most remarkable system for studying coherent spin dynamics (and the
relaxation as a subset) was introduced in Ref. [127]. A double dot occupied by
two electrons with controllable asymmetry ε (detuning of the energy levels of the
left and right single dots when considering them to be isolated) is used. The
lowest part of the spectrum as a function of the asymmetry is in Fig. 3.11a. If
the asymmetry is large, one of the dots is preferably occupied (the one lower in
energy) and the ground state is a single dot singlet S(0,2). Since both electrons
occupy one dot, the exchange energy is high and the single dot triplet states
are far above the ground state and can be neglected. On the other hand, if the
detuning is small the preferable occupation is one electron per dot. In this case the
exchange energy is small and the ground state is four times degenerate, embracing
one singlet S(1,1) and three triplet states T

(1,1)
0 , T

(1,1)
+ , and T

(1,1)
− . If the magnetic

field is applied, the triplet states are split and a two level system, consisting of
the singlet S(1,1) and triplet T

(1,1)
0 , can be operated (initialized and probed) by

projecting into/from the single dot singlet S(0,2) by adiabatically changing the
detuning.

In the first experiment,[127] a charge on the dots was measured by QPC
detector, while applying a three step pulse cycle depicted in Fig. 3.11b. If the
order of the cycle sequence is A–B–C, the dot is emptied in point A (that is a
single electron occupies the double dot). Then, in point B (small detuning), the
second electron enters the dot. There is no relevant discrimination between the
double dot singlet and triplet states (either by energy or the tunnel rates), so
each of the four states is populated with the same probability. In the last part of
the cycle the system is brought in point C (large detuning), where the electron
being originally in the left dot should tunnel into the right dot to get the system
into a ground state. This is possible only if the state in point B was the singlet,
due to the spin conservation. For other states in B the transition is blocked for
a certain time depending on the initial state, as shown in Fig. 3.11c. The double
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Figure 3.11: Two electron double dot system. Singlet (triplet) states are denoted
by S(T ). The two upper indexes denote the occupation of the left and right dots.
The lower index denotes a projection of the total spin along the magnetic field
direction. a, Energy of the states as a function of the bias ε. b, Occupation of
the two dots as a function of the voltages applied to the left (VL) and right (VR)
dot. c, Possible processes to go from the double to single dot configuration and
d, back.
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dot triplet T
(1,1)
0 dephases into the double dot singlet on a timescale of T2 ∼ 100

ns (estimated from other experiments), following an orbital relaxation from the
double dot to the single dot singlet, what happens on a scale of 1 µs (estimated
from current measurements). For other double dot triplet states the transition is
blocked until a spin flip transition occurs. By prolonging the duration of the pulse,
the occupation of the left dot due to blocked transitions decays exponentially. By
fitting this decay a singlet to triplet relaxation time of 70 µs was obtained. Note
that no blocking is observed when the cycle is reversed, being A–C–B, since in C
always a single dot singlet is loaded which is free to decay in B into a double dot
singlet, see Fig. 3.11d.

While in the previously discussed experiment a magnetic field around 1 T
was applied, in the next experiment[92] the same method was used at smaller
magnetic fields (0-150 mT). The measured spin relaxation was in the range of 10
ms to 1 µs, while a clear suppression with increasing magnetic field was observed.
Such a suppression indicates that the relaxation is caused by fluctuations of the
magnetic field of nuclei spins, which are suppressed in an external magnetic field.
From the measured relaxation times, an effective internal magnetic field due to
nuclei magnetic moments was deduced to be ∼ 5 mT, which agrees with the
theoretical prediction and supports the assumption about the nuclei spins being
the dominant source of the relaxation.[117]

Measuring the decoherence in a quantum dot

We finish this chapter by describing two experiments probing the electron de-
coherence time. This is done most easily by optical pump and probe methods,
similar to the previously discussed experiment of Ref. [107] on page 68. However,
such experiments are done on ensembles of dots, so can give only the dephasing
time T ∗

2 .[168]

Orbital decoherence

Experiment measuring the orbital decoherence in a double dot was presented
in Ref. [83]. A double lateral quantum dot with ∼ 25 electrons connected to
leads was used in a two step cycle. A magnetic field of 0.5 T was applied and
the tunneling rates were such that the interdot tunneling was much smaller than
the coupling of an individual dot to the corresponding lead, as is depicted in
Fig. 3.12. The first step, when the dots are biased (that is, the detuning is fi-
nite), served as a measurement of the previously achieved state of the dot and
a consequent initialization. The dot is kept in this step for a time long enough
for an electron to tunnel out of the right dot, contributing to the current and
another electron to tunnel into the left dot. The time is, however, short for the
interdot tunneling, therefore if the electron was initially in the left dot it stays
there. In the oscillation step the dots are unbiased and the eigenstates of the
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Figure 3.12: a, Two step pulse applied to a two level system of a double lateral
quantum dot. b, The observed damped coherent oscillations.

system are delocalized states. The electron initially being in the left dot is then a
superposition of delocalized eigenstates and will coherently precess between being
in the left and right dot with frequency given by the energy difference of the two
lowest delocalized states. The decay of these coherent oscillations is caused by
the orbital decoherence and the decoherence time of 1 ns was obtained.

An impressive suitability of the singlet-triplet system in the double dot, Fig. 3.11,
was manifested by measuring the spin decoherence time in Ref. [128]. As before,
the state initialization/measurement was done by injecting from/projecting to
the single dot singlet state at a large detuning, while the decoherence time was
obtained from the system evolution at zero detuning, where the double dot singlet
and triplet states are degenerate. This is analogous to the two steps used to mea-
sure the orbital decoherence described in the previous paragraph. The singlet
and triplet states are coupled by magnetic field of the nuclei, which fluctuates
over times larger than the relaxation/decoherence of the electron states. In first
step the state is initialized to be the double dot singlet. After a waiting time the
singlet occupation is measured. The dephasing causes the exponential decay of
the probability to find the singlet from 1 at t = 0 to 0.5 at t = ∞. A dephasing
time of 10 ns was extracted. To get a measurable signal, the probability has to
be averaged over many cycles, on a total time scale larger than a typical time
for fluctuations of the nuclear field. Thus the measured time is the spin dephas-
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Figure 3.13: Rephasing a state in a spin echo experiment. See text for the
explanation.

ing time T ∗
2 . The group succeeded in getting the decoherence time T2, too, by

applying a spin echo pulse. The idea of the spin echo is in Fig. 3.13. A Bloch
sphere can represent the two level system, where the double dot singlet and triplet
states are the north and south pole. The nuclear field coupling the two states is
represented by a vector in the equatorial plane. The initial state being the north
pole precesses around the nuclear field vector. The dephasing coming from mul-
tiple measurements comes around because the vector of the nuclear field changes
its direction and size from one cycle to another. A spin echo means applying a
coupling between the singlet and triplet states at the time τ such that the actual
state rotates around the globe axis by 180◦. After turning off the coupling, the
state continues to precess around the vector of the nuclear field. However, due
to the intermediate 180◦ rotation, at the time 2τ the state will come back to the
initial position at the north pole. In this way the influence of a constant nuclear
field on the state can be excluded in each cycle. A decoherence time of ∼ 1 µs
was obtained, being two order of magnitude larger than the dephasing time.

3.3 Phonon induced spin relaxation due to the

admixture mechanism

In the rest of this chapter, we present a systematic and comprehensive investi-
gation of phonon-induced orbital and spin relaxation in lateral single and double
quantum dots, defined in a GaAs heterostructure. We consider the most relevant
electron-phonon couplings – the deformation potential and piezoelectric acoustic
phonons. We numerically calculate the relaxation rates in the presence of in-
plane and perpendicular magnetic fields. We report on new anisotropy effects of
spin relaxation in double dots. The anisotropy arises due to anisotropic spin hot
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method year system relax. time
STM 1989 single spin spin detection

fluorescence 1997 single spin spin detection
in N-V defects 2002 T1 ∼ms-s

2004 T2 ∼1 µs
magnetic resonant 2004 single spin spin detection
force microscopy T1=760 ms
energy resolved 2001 lateral SD, 50 e T orbital

1 =3 ns
readout (ERO) 2002 lateral SD, 50 e T1 > 2 µs

2002 vertical SD, 2 e T S−T
1 ≥ 100 µs

2005 lateral SD, 8 e T S−T
1 =200 µs

ERO+QPC 2003 lateral SD, 1 e T1 >50 µs
(B≥ 8 T) 2004 lateral SD, 1 e T1 = 0.85 ms
(B≥ 1.7 T) 2006 lateral SD, 1 e T1 = 150 ms

tunneling resolved 2005 lateral SD, 2 e T S−T
1 =2.5 ms

readout (TRRO)
optical pump&probe 2004 104 dots T1=20 ms

self assembled

singlet-triplet 2005 lateral DD, 2 e T S−T
1 =µs-10 ms

SD-DD system
2005 T S−T

2 = 1 µs

Table 3.1: Measuring the relaxation time of the spin of a single confined electron –
a road map. STM=scanning tunneling microscope, N-V defect=nitrogen vacancy
defect, ERO=energy resolved readout, TRRO=tunneling rate resolved readout,
QPC=quantum point contact, SD=single dot, DD=double dot, S-T=singlet-
triplet, T1= relaxation time, T2=decoherence time.
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spots, the parameter (magnetic field and interdot coupling) regions in which a
spectral crossing between a spin up and a spin down state is lifted (producing an
anti-crossing) by spin-orbit coupling [60, 61]. At these points the spin and orbital
relaxation rates are equal. In single quantum dots spin hot spots were found
in Ref. [21], while in vertical few-electron quantum dots in Ref. [12]. In lateral
double dots spin hot spots appear at useful magnetic fields (1 T) and interdot
couplings (0.1 meV), due to the crossing of the lowest orbital antisymmetric (with
respect to the quantum dot axis) state and the Zeeman split symmetric state of
the opposite spin. This occurs when the tunneling energy equals the Zeeman en-
ergy. Manipulation of interdot coupling in the presence of a magnetic field thus
in general results in a short spin lifetime. Fortunately, we have found that the
spin hot spots are absent for certain arrangements of the double dots’ axis and
the orientation of the in-plane magnetic field. In particular, if the dots are ori-
ented along a diagonal [on a (001) heterostructure plane], and the magnetic field
is perpendicular, the spin hot spots are absent (due to symmetry reasons) for any
values of spin-orbit parameters. We propose such a geometry, which corresponds
to what we call “easy passage”, for quantum information processing.

In addition to discussing the easy passages, we focus on providing a unified
description, both analytical and numerical, of orbital and spin relaxation rates.
We give analytical formulas describing the trends, with respect to magnetic fields
and confinement energies of the dots, of the rates. We present the numerically
calculated orbital relaxation rates and demonstrate that they are due to the
deformation potential phonons at low magnetic fields and due to piezoelectric
phonons at high fields (at zero magnetic field, the orbital relaxation in a biased
double dot was studied in Ref. [145], using a two-level model).

As for the spin relaxation, we demonstrate here the different origin of spin
hot spots in single and double quantum dots. While in single dots spin hot spots
appear due to the Bychkov-Rashba term,[21] in double dots both the Bychkov-
Rashba and Dresselhaus terms contribute. The reasons is the different symmetry
of the underlying states in single and double dots. Furthermore, we classify here
the conditions for the absence (or narrowing) of spin hot spots in double dots
defined in quantum wells grown in different crystallographic directions, in which
the Dresselhaus spin-orbit interaction takes on different functional forms. We
also explore the orbital effects of a perpendicular magnetic field component –
the main effect is the absence of easy passages; only a narrow “weak passages”
appear instead with inhibited but finite spin hot spots. Finally, we show that easy
passages are also absent in general asymmetric double dots, implying stringent
symmetry requirements on coupled dots for spin information processing.

In the next sections, we first derive useful expressions for orbital and spin
relaxation rates. Then we describe the orbital and spin relaxation in single dots
for the case of in-plane and perpendicular magnetic fields, followed by a similar
description for double dots. Finally we give conclusions.
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3.4 Model

3.4.1 Electron parameters

We study a single electron double dot, as described in Chapter 2, while using
slightly different values for the spin-orbit couplings. To agree with experimen-
tal data, we choose for α̃BR a value of 3.3 meVÅ, which is in line of experi-
mental observations[119, 100] and corresponds to the carrier density of 5×1011

cm−2 in Ref. [93]. For the coupling of the linear Dresselhaus terms we choose
γc〈P 2

z 〉/~
2 = 4.5 meVÅ, corresponding to the 11 nm thick ground state of the

triangular confining potential.[34] These values correspond to length units of
lBR = 1.8 µm, and lD = 1.3 µm.

For a confinement length of 32 nm (used in a recent experiment [51]) and a
perpendicular magnetic field of 1 T, one gets the following typical magnitudes
for the strengths of the contributions to the Hamiltonian (2.2): 1.1 meV for the
confinement energy E0, 13 µeV for the Zeeman splitting, and 14, 10, and 0.8 µeV
for the linear Dresselhaus, Bychkov-Rashba, and the cubic Dresselhaus terms,
respectively. The spin-orbit interactions are small perturbations, with strengths
comparable to the Zeeman splitting. This leads to the many orders of magnitude
difference between the orbital and spin relaxation rates.

We numerically obtain eigenstates of the full electron Hamiltonian, Eq. (2.2),
and compute the orbital and spin relaxation rates using Fermi’s Golden Rule. We
also present analytical calculations for various limiting cases, where we use the
effective spin-orbit Hamiltonian derived in Sec. 2.6.1 and perturbative expressions
for the lowest eigenfunctions from Sec. 2.6.2.

3.4.2 Phonon-induced orbital and spin relaxation rates

By orbital relaxation we mean the transition from the first excited orbital state
to all lower lying states. By spin relaxation we mean the transition from the
upper Zeeman split orbital ground state to all lower lying states (except at high
magnetic fields, there is only one lower Zeeman split orbital ground state). The
spin of a state Γ [eigenstate of H0, Eq. (2.2)] is quantized in the direction of the
magnetic field. However, due to the spin orbit interactions, the perturbed states
Γ [eigenstates of H ′, Eq. (2.44)] have no common spin quantization axes. We call
a state to be spin up (down) if the mean value of the spin in the direction of the
magnetic field is positive (negative). Since the spin-orbit interactions are a small
perturbation, these mean values are close to ±~/2, except at anti-crossings.

Given the initial and final states for the transition we compute the rates by
Fermi’s Golden rule, where the perturbation is the electron-phonon interaction.
The relevant terms for our GaAs system comprise deformation (df) and piezo-
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electric acoustic (pz) phonons, described by Hamiltonian terms [114]

Hdf = σe

∑

K

√
~K

2ρV cl
(bK,l + b†−K,l)e

iK.R, (3.10)

Hpz = −ieh14

∑

K,λ

√
~

2ρV cλ
Mλ(bK,λ + b†−K,λ)e

iK.R. (3.11)

Here the three dimensional phonon wave vector is denoted by K = (kx, ky, kz) =
(k, kz), and λ = l, t1, or t2 is the phonon polarization (one longitudinal and two
transversal); ρ is the material density (5.3×103kg m−3, for GaAs), V is the volume
of the crystal, cλ is the sound velocity, (cl = 5.3 × 103 m/s, ct = 2.5 × 103 m/s),
b†
K,λ, bK,λ are the creation and annihilation phonon operators, σe is the deforma-

tion potential (7.0 eV), and eh14 is the piezoelectric constant (1.4 × 109 eV/m).
Finally, the geometrical factors Mλ are equal to 2(kxkye

λ
z + kzkxe

λ
y + kykze

λ
x)/K

2,
where eλ are unit polarization vectors,

el = (kx, ky, kz)/K,

et1 = (−ky, kx, 0)/k,

et2 = (kxkz, kykz,−k2)/K.

(3.12)

Consider first the deformation potential, Eq. 3.10, in which only longitudinal
(λ = l) phonons take part. Using Fermi’s Golden rule, a relaxation (orbital or
spin) rate can be written as

Γdf = [n(E) + 1]γdfE
2

∫
d2k|F (k)|2|f(kl

z)|2/kl
z (3.13)

= [n(E) + 1]γdfE
2l−1

B χdf(El). (3.14)

Here E is the energy difference between the initial and final states, n(E) =
[exp(E/kBT ) − 1]−1 is the occupation number of the phonon state with energy
E at temperature T (further we use zero temperature), γdf = σ2

e/8π2ρc4
l ~

3 is
the strength of the deformation electron-phonon interaction [8.3 × 1010 s−1 nm

/(meV)2], F (k) =
∫

d2rΓ
†
ie

ik.rΓf is the xy-overlap, and f(kz) =
∫

dz φ0(z)†eikzzφ0(z)
is the z-overlap, contribution of which can be neglected, f(kz) ≈ 1, if the energy
difference E is much smaller than the excitation energy in the z confinement
potential. The z component of the wave vector is given by kλ

z =
√

E2
λ/l2B − k2,

where the dimensionless parameter Eλ = ElB/~cλ is the ratio of the effective
length lB and the wavelength of the emitted phonon. Finally, χdf(El) is an inte-
gral of the xy-overlap F (k). Since a typical linear dimension of a wavefunction is
the effective length lB, we express it as

χdf(El) =

∫

kz≥0

d2(klB)
|F (k)|2√
E2

l − k2l2B
. (3.15)
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Eλ � 1 Eλ � 1
Γdf A2γdfl

−1
B E2E−1

l A2γdf l
−1
B E2E3

l

Γpz
l A2γpzl

−1
B E−5

l A2γpzl
−1
B E3

l

Γpz
t A2γpz(cl/ct)

2l−1
B E−3

t A2γpz(cl/ct)
2l−1

B E3
t

relative Γdf � Γpz
t � Γpz

l Γpz
t ≈ (cl/ct)

5Γpz
l � Γdf

Table 3.2: The relaxation rates and the relative strength of the contributions
due to deformation (λ = l), piezoelectric longitudinal (λ = l), and piezoelectric
transversal (λ = t) phonons. The two limiting cases are defined by the ratio,
Eλ, of the wavelength of the emitted phonon of polarization λ, and the effective
length lB. The initial and final states are encoded into the coefficient A, which
needs to be evaluated for specific cases.

We compute the relaxation rate Γdf numerically using formula (3.13). However,
we can gain physical insight in two important limits. First, if the wavelength of
relevant phonons is smaller than the size of the dots, El � 1, the square root
can be taken out from the integral and χdf ∼ 1/El. Physically, this means that
the energy to be absorbed by the phonon is large and almost whole is in the z
component of the phonon wave vector (phonon is emitted almost perpendicularly
to the xy-plane). Second, in the opposite limit of El � 1, the integration is only
in the vicinity of point k = 0. Because of the orthogonality of the eigenfunctions
the overlap integral vanishes, F (k → 0) → 0, and the lowest order gives |F |2 ∼
(klB)2. This leads to the dependence of χdf(El) ∼ E3

l .

Analogous expression holds for the piezoelectric interaction which contains
contributions from longitudinal and transverse phonons. The relaxation rate can
be written as

Γpz = [n(E) + 1]γpzl
−1
B χpz(E), (3.16)

with γpz = (eh14)
2/8π2ρc2

l ~ = 4 × 1010 s−1 nm (note the different unit from γdf)
and χpz(E) =

∑
λ(c

2
l /c

2
λ)
∫

d2(klB)|Mλ|2|F (k)|2/kλ
z lB. The geometrical factors,

Mλ, have no influence on the limiting expressions for χpz in the limit E � 1,
where χpz(E) ∼ E3. If E � 1, the fact that Mλ contains factors (kx/K)2 and
kx/K leads to limits E−5 and E−3 for the longitudinal and transverse phonons,
respectively. Table 3.2 summarizes the limiting expressions.

As we discussed in Sec. 3.1.1, in addition to the deformation and piezoelec-
tric phonons, there are additional electron-phonon spin dependent interactions
which can lead to spin relaxation. The direct spin-phonon coupling (spin-orbit
modulated electron-phonon interaction[97, 98]) is believed to give a negligible
contribution. In very small (say, 10-20 nm, which is not our case) quantum dots
spin relaxation due to the ripple mechanism[164] can be as important as the spin-
orbit mechanism and should be considered. Finally, at low magnetic fields the
relaxation is believed to be dominated by the hyperfine interaction between the
electron and nuclei of the host material.[59, 58]
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3.5 Single dots

In the single dot case we identify the unperturbed lower and upper Zeeman split
orbital ground, and excited orbital states as Ψ0,0,↑, Ψ0,0,↓, and Ψ0,−1,↑, respectively
(we call them ground, spin, and orbital state). Here, consistent with Chapter 2,
we use letter Ψ for the eigenfunctions of the single dot. The negative value of the g
factor energetically favors spin up rather that spin down states. Having opposite
spin, the perturbed ground and spin states will have a nonzero overlap due to
those perturbations in the effective Hamiltonian (2.45) which do not commute
with the Zeeman term. Therefore the xy-overlap F (k) will be proportional to the
strengths of the corresponding perturbations. In the case of the spin relaxation,
the coefficient A in Tab. 3.2 will be approximately equal to these strengths divided
by a typical energy difference between the corresponding coupled states, as can
be seen from Eqs. (2.54)-(2.57). On the other hand, since the excited orbital and
ground states have the same spin, the coefficient A for the orbital relaxation is of
order 1.

This consideration leads to the following approximations which we use when
estimating the rate analytically. For orbital relaxation

H1 ≈ 0. (3.17)

For spin relaxation, in analytical calculations we neglect the cubic Dresselhaus
term. If the magnetic field is in-plane, the term in Eq. (2.46) does not couple the
ground or the spin state, which have zero orbital momenta, with any other state.
If the magnetic field is perpendicular, the term in Eq. (2.46) commutes with the
Zeeman term, again giving no contribution to the spin relaxation. For the spin
relaxation we therefore approximate

H1 ≈ H
(2)
Z . (3.18)

3.5.1 In-plane magnetic field

Figure 3.14 compares our calculation of the spin relaxation in an in-plane mag-
netic field with two experiments.[51, 6] It can be seen that the experiments can
be fitted very well over large range of magnetic fields with a reasonable set of
spin-orbit parameters. This is a strong indication that acoustic phonons together
with the admixture mechanism due to spin-orbit is the dominant source of the
spin relaxation.

To understand numerical results, we provide approximate analytical formulas.
Using Eqs. (2.54), (2.55), (3.16), and (3.18) we get for the dominant contribution
to the spin relaxation due to piezoelectric transversal phonons in the low magnetic
field limit

Γpz
t ≈ 256πγpzc

2
l m

2

105~7c5
t

l80|µB‖|5L−2
SO, (3.19)
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Figure 3.14: Spin relaxation rate in single electron single dot as a function of in-
plane magnetic field in two experiments. Points with error bars are experimental
values, solid lines are our fits. The only fitting parameter is the strength of the
spin-orbit coupling, different in the two experiments.
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where

L−2
SO =

l2D + l2BR − 2 sin(2γ)lDlBR

l2Dl2BR

(3.20)

describes the effective (anisotropic) spin-orbit length. The angular dependence
of the spin relaxation rate, expressing the C2v symmetry of the heterostructure,
allows to find the ratio of the Dresselhaus and Bychkov-Rashba couplings:

min{lD/lBR, lBR/lD} = 2/(
√

ra + 1) − 1, (3.21)

where ra is the ratio of the rates at γ = 45◦ and γ = 135◦. A possible measured
angular dependence with the minimum at γ = 45◦ would be another convincing
indication that the admixture due to spin-orbit is the mechanism of the relaxation.
A more general angular dependence, allowing for out-of-plane magnetic fields, was
derived in Ref. [75].

The reason for the angular dependence of Γpz
t follows from Eq. (3.18), which

for an in-plane field is

H1 = −µB‖σz[x(
cos γ

lBR
− sin γ

lD
) + y(

sin γ

lBR
− cos γ

lD
)]. (3.22)

Due to the selection rules for the Fock-Darwin states, x and y do not mix in
coupling of the states. The coefficient A2 is then proportional to the sum of the
squared couplings from Eq. (3.22), at x and y. Taking E0 as a typical energy
difference E of the coupled states and using lB for a natural length unit, we get
A2 ≈ |µB‖lB/E0|2L−2

SO. Noting that lB = l0 for in-plane field and using the low
energy limit for Γpz

t from Tab. 3.2, one recovers Eq. (3.19) up to a numerical
factor.

3.5.2 Perpendicular magnetic field

Orbital relaxation rates

In the case of a perpendicular magnetic field, the numerically calculated orbital
and spin relaxation rates in a single dot are shown in Fig. 3.15. The orbital
relaxation rate is of the order of 109 s−1. The spin-orbit contributions to the
rate (not shown in the figure) are of the order of 106 s−1 for the linear spin orbit
terms and 105 s−1 for the cubic Dresselhaus term, validating the approximation
Eq. (3.17). The energy difference of the orbital and the ground state is E =
~

2/ml2B − (~e/2m)B⊥. At low magnetic fields the high E limit applies and the
deformation potential dominates the orbital relaxation rate. The results are listed
in Tab. 3.3. The values at zero magnetic field, up to a numerical factor, follow
from Tab. 3.2, if one uses A = 1 and the low magnetic field limits, where E ≈
~

2/ml20, and lB ≈ l0. The dependence of the rates on the energy difference of the
states, shown in Tab. 3.2, is enough to understand the different dependence of
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Table 3.3: Approximate orbital and spin (due to Dresselhaus coupling) relaxation
rates in a single quantum dot at low and high perpendicular magnetic fields in
the lowest order of the non-degenerate perturbation theory. In the last column
we state the maximal or minimal magnetic field by requiring that at l0 = 32 nm
the presented approximation does not differ from the numerical value by more
than a factor of 2.

the deformation and piezoelectric contributions to the orbital relaxation rate at
low magnetic fields shown in Figs. 3.15 and 3.16. The deformation contribution
drops with increasing both the magnetic field and confinement lengths, while the
piezoelectric contribution increases with increase of these two parameters.

For fields lower that 1 T the dominant deformation contribution manifest itself
on Fig. 3.16. At magnetic fields higher than 1 T the piezoelectric contribution
dominates. Up to about 4 T we are still in the regime E � 1 and the rate
grows with increasing magnetic field and increasing confinement length. Since
the energy difference E drops with increasing magnetic field, for magnetic fields
& 6 T we get into the limit E � 1. The corresponding orbital relaxation rates
in 3.3 then follows from Tab. 3.2 using A = 1 and high magnetic field limits,
where E ≈ ~

3/emBl40 and l2B ≈ 2~/eB. This leads to a much stronger drop of
the deformation contribution to the rate with the increase of both magnetic field
and the confinement length, than is the drop of the piezoelectric contribution.

Finally, we explain the influence of the anti-crossing on the orbital relaxation
rate, seen in Fig. 3.15. The anti-crossing contributes by an overall factor of |α|2
[α is defined in Eq. (2.59)], which multiplies the orbital relaxation rates listed
in Tab. 3.3. Away from anti-crossing α ≈ 1, while directly at the anti-crossing
the rate is reduced by a factor of 2, α = 1/

√
2. The anti-crossing region for the

orbital relaxation is rather narrow (∼ 0.1 T) and manifests itself as a narrow line
of the suppression of the rate in Fig. 3.16.
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Spin relaxation rates

For spin relaxation the relevant energy difference is the Zeeman splitting, E ≈
2|µB|. Therefore the low energy limit, E � 1, applies up to rather high magnetic
fields (∼10 T). Piezoelectric transversal phonons dominate the rate. The linear
spin-orbit terms dominate over the cubic Dresselhaus term, although the differ-
ence becomes smaller for higher magnetic fields. We use an example of the linear
Dresselhaus term for analytical expressions. Using Eq. (3.18) and the limits of
low and high magnetic fields we present the analytical spin relaxation rates in
Tab. 3.3 (these results were also derived in Refs. [21] and [98]). These formulas
approximately follow from Tab. 3.2 using A = |µB⊥|lB/lDδE and E = |µB⊥|,
while noting that δE = E0 for low and δE = |µB⊥| for high magnetic fields. The
trends described by the Dresselhaus contribution can be seen in Fig. 3.15. The
spin relaxation rate grows much steeper with increasing magnetic field at low B⊥
(fifth power) than at high B⊥ (first power). Interestingly, at high magnetic fields
the rate does not depend on the confining length.

Away from the anti-crossing analogous formulas, up to a numerical factor,
as those listed in Tab. 3.3, hold for the contribution to the spin relaxation due
to the Bychkov-Rashba term after the substitution lD → lBR. In this case the
contribution to the overlap between the spin and ground states due to the term β
in Eq. (2.55) is comparable to others. However, comparing the analytical formulas
from Tab. 3.3 with the numerical calculation in Fig. 3.17, we find discrepancy,
except at low magnetic fields. This is because, as can be seen also in Fig. 3.15, the
rate is actually dominated by a spin hot spot (anti-crossing). The anti-crossing
occurs for single dots only when the Bychkov-Rashba term is present, since the
Dresselhaus terms do not couple the unperturbed orbital states.[21] In this case
we can neglect all terms but that one containing β in Eq. (2.55) and for the spin
relaxation rate due to the anti-crossing one gets Γ(spin, acr) = |β|2Γ(orbital).
Thus, the anti-crossing effectively mixes what we usually call spin and orbital
rates. The spin relaxation rate has a sharp peak at the anti-crossing. With
increasing the “distance” from the anti-crossing the rate drops, mirroring the
drop of the coefficient |β|2. Only far enough from the anti-crossing the term β is
not dominant in Eq. (2.55) and the rate is described by expressions analogous to
those from Tab. 3.3. In Fig. 3.15 the Bychkov-Rashba contribution to the spin
relaxation rate is dominated by the β term unless the magnetic field is smaller
than 2 T. Similarly in Fig. 3.16, for fields higher than 2 T the total spin relaxation
rate is dominated by the anti-crossing contribution due to Bychkov-Rashba term.
Consequently, the influence of the anti-crossing is substantial in a much larger
region (several Tesla) than in the case of the orbital relaxation.

In Ref. [21] spin relaxation rates due to the deformation potential were com-
puted in the lowest order of the perturbation theory and an analogous figure to
our Fig. 3.15 was presented. Our results for both orbital and spin relaxation rates
are in a quantitative agreement.



86 Chapter 3. Adding dissipation

0 2 4 6 8 10
23      

2

1.8
26      

1.6

1.4

30      1.2

32      

1.0
34      

magnetic field B⊥  [T]

co
nf

. l
en

gt
h 

[n
m

] /
 e

xc
. e

ne
rg

y 
[m

eV
]

102

104

106

108

100

102

104

106

108

8.109

Figure 3.17: Spin relaxation rate in a single quantum dot as a function of magnetic
field and the confinement length l0 / the confinement energy E0. The rate is
given on the logarithmic scale in the units of s−1. The solid lines represent
equirelaxation lines.
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3.6 Double dots

In our double dot potential the ground (excited orbital) state can be approximated
as a symmetric (antisymmetric) combination of two Fock-Darwin functions, Ψ0,0,↑,
placed at the two potential minima, as was explain in Sec. 2.5.1. What we call
here ground, spin and orbital state is denoted in Sec. 2.5.3 as Γ↑

S, Γ↓
S, and Γ↑

A,
respectively. Similarly to the single dot case, the most important parameter
for the orbital relaxation is the energy difference between the initial and final
states, being twice the tunneling energy, obtained by subtracting the two values
in Eq. (2.34)

2T (0) =
~

2

ml2B

2d(1 − θ2){1 + d
√

πErfc(d) − e−d2}√
π{ed2(1+θ2) − e−d2(1+θ2)} , (3.23)

where θ = B⊥el2B/2~. The approximation of Eq. (3.18) for the spin relaxation is
correct also here, since Eq. (2.46) does not couple any two of the ground, spin,
and orbital states due to a definite symmetry of the Lz operator. There is a
coupling through higher excited states with appropriate symmetry, but, as we
learn from numerics, this is negligible. Apart from the energy difference, given
by the Zeeman energy, for the spin relaxation the anti-crossing plays a dominant
role.

3.6.1 In-plane magnetic field

The spin relaxation rate as a function of in-plane magnetic field and the interdot
distance is plotted in Fig. 3.18. The rates for small interdot distances are similar
to the single dot case, where the rate grows with increasing magnetic field; for
low magnetic fields more steeply than for large. The order of magnitude of the
rate is given by Eq. (3.19), being about 102 s−1 at 1 T and 105 s−1 at 10 T.
At large interdot distances the rate is strongly influenced by the presence of
a anti-crossing (spin hot spot), which occurs when the Zeeman and twice the
tunneling energies are equal. If the tunneling energy is changed from zero to
a value of order of the single dot excitation energy, regardless of the magnetic
field strength, one always passes through a spin hot spot region, where the spin
relaxation is very fast. Fortunately there exist specific orientations of the double
dot system and the magnetic field, where this anti-crossing does not occur. We
call such a configuration “easy passage.”

To understand the angular dependence of the relaxation rate and find condi-
tions for an easy passage it is enough to write the effective Hamiltonian for the
spin relaxation, Eq. (3.18), after the rotation into coordinates in which the new
x axis lies along the dot’s axis d, see Sec. 2.6.1. Since there are no orbital effects
in in-plane magnetic fields, in these new coordinates the unperturbed solutions
of the Hamiltonian H0 have a definite symmetry under inversions along x̂ – the



88 Chapter 3. Adding dissipation

0 2 4 6 8 10
0

0.5     

0.3 50

0.1     100

150

magnetic field B
||
 [T]

tu
nn

el
in

g 
[m

eV
] /

 in
te

rd
ot

 d
is

t. 
[n

m
]

10−2

10−3

102
104

105

106

108

100

102

104

106

108

4.109

Figure 3.18: Spin relaxation rate in a double quantum dot as a function of in-plane
magnetic field for γ = 0◦ and the interdot distance d / tunneling energy T (0), for
a confinement length 32 nm. The relaxation rate is given on the logarithmic scale
in the units of s−1. The double dot is oriented along [100] (δ = 0◦).
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ground and spin states are symmetric, while the orbital state is antisymmetric.
The transformed H1 of Eq. (3.18), is

H1 = − µB‖σz{x[l−1
BR cos(γ − δ) − l−1

D sin(γ + δ)]

+ y[l−1
BR sin(γ − δ) − l−1

D cos(γ + δ)]}. (3.24)

In the single dot case the coefficient A2 in Tab. 3.2 is proportional to the sum
of the squared couplings in Eq. (3.24) at x and y. However, in the double dot
case, x and y can couple states differently. For large interdot distances the most
important influence on the spin relaxation comes from the anti-crossing of the
spin and orbital states, which are coupled by terms with the x-like symmetry.
Thus, the anti-crossing will not occur if

l−1
BR cos(γ − δ) − l−1

D sin(γ + δ) = 0. (3.25)

The angles γ and δ that satisfy the above equation define an easy passage. Figure
3.19 presents the spin relaxation rate as a function of the tunneling energy and
orientation of the in-plane magnetic field for double quantum dot oriented along
[100] and [110] directions. For a double dot oriented along [100] direction (δ = 0)
the easy passage occurs for an in-plane magnetic field oriented along angle γ
given by tan γ = lD/lBR. Similarly to the single dot case, the measured angular
dependence recovers the ratio of the spin-orbit couplings, now also revealing which
one is larger. As can be seen from Eq. (3.25), both linear Bychkov-Rashba and
Dresselhaus (also cubic) spin-orbit terms contribute to the anti-crossing; in single
dots it is only the Bychkov-Rashba coupling which gives relevant spin hot spots.
The position of the easy passage is then given by an interplay of all the spin-orbit
terms. If the double dot is oriented along [110] (δ = π/4), the condition for the
easy passage is γ = 135◦, being independent on the spin-orbit couplings and thus
suitable to use in quantum information processing.

3.6.2 Perpendicular magnetic field

Orbital relaxation rate

There are two different regimes for the orbital relaxation, depending on the energy
difference of the ground and orbital states, E = 2T ↑, which is more sensitive to the
interdot distance than to the confinement length. If dl0 � lB, then E ≈ ~

2/ml2B,
decreasing with increasing the magnetic field or the interdot distance. The limit
of high E applies and the rates are comparable to the single dot case. On the
other hand, if dl0 � lB the energy, and thus also the rates, drop exponentially
with increasing the magnetic field or the interdot distance. Due to the complex
interplay of the magnetic field and interdot distance, no power law dependence
of the rates on magnetic field can be identified. However, approximations in
Tab. 3.2 give analytical formulas with a fair agreement with numerics, if the
energy difference is approximated by Eq. (3.23), E ≈ 2T (0).
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Figure 3.19: Calculated spin relaxation rate, in s−1, of a double quantum dot
as a function of γ and tunneling energy, for B|| = 5 T. Spin hot spots strongly
influence spin relaxation at tunneling energies from 0.001 to 0.1 meV. a, The dots
are oriented along [100] (δ = 0◦). The weakest relaxation is for γ ≈ 35◦. b, The
dots are oriented along [110] (δ = 45◦), with the easy passage at γ = 135◦.
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Figure 3.20: Orbital relaxation rate in a double quantum dot as a function of in-
plane magnetic field for γ = 0◦ and the interdot distance d / tunneling energy T (0),
for a confinement length 32 nm. The relaxation rate is given on the logarithmic
scale in the units of s−1. The double dot is oriented along [100] (δ = 0◦).
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The dependence of the orbital relaxation rate on the magnetic field and the
interdot distance is shown in Fig. 3.20. The lower left corner is the regime of
the high E limit. The rate here is similar to the single dot case. The opposite
corner is the regime of an exponentially small energy difference and the rate is
practically zero. The transition between these two regimes comes for a smaller
interdot distance if the magnetic field is higher, since the transition occurs when
d ∼ lB. Again, as in the single dot case, the anti-crossing does not have a large
influence on the orbital rate – in the figure it can hardly be seen. For interdot
distances much larger than lB the dots are effectively isolated.

Spin relaxation rate

Spin relaxation in double dots reveals a surprising complexity as compared to
the single dot case. The complexity is due to the strong anisotropy of spin hot
spots. While anisotropy appears already in single dots, caused by the interfer-
ence of the Bychkov-Rashba and Dresselhaus couplings, additional anisotropy
appears in spin hot spots. This anisotropy does not require the presence of both
couplings. Instead, it is caused by the selection rules for spin-orbit virtual tran-
sitions in the double-dot spectrum. Next we discuss the individual contributions
of the Bychkov-Rashba and Dresselhaus terms in the spin relaxation rate and,
specifically, in the spin hot spot anisotropy.

The contribution to the spin relaxation rate from the Bychkov-Rashba (Dres-
selhaus) term is shown in the upper (lower) part of Fig. 3.21. For low magnetic
fields the rate grows with increasing magnetic field, as we expect from Tab. 3.2.
However, similarly to the in-plane magnetic field case, the spin hot spots (ridges
in Fig. 3.21) dominate the rate for most of the parameters’ range. The interdot
distance strongly influences the spin relaxation rate by determining the position
of anti-crossings. In high magnetic fields, the spin state can anti-cross higher
orbital states depending on the symmetry of these states. However, the influence
of these anti-crossings on the rate is limited to a narrow region of magnetic fields,
since the dots are effectively isolated at high fields and the crossing states do not
comply with the selection rules for spin-orbit couplings of single dot states.

It is interesting to compare the contribution to the spin relaxation by the
Bychkov-Rashba and the Dresselhaus terms. Let us first look at the single dot
regime, which in Fig. 3.21 is visible at d = 0. The spin hot spot appears only for
the Bychkov-Rashba term, in line with our earlier observation in Fig. 3.15. The
Dresselhaus term becomes effective only in the coupled-dot system in which the
symmetry of the lowest orbital states allows the coupling at the level crossings.
The coupling is again absent at two isolated dots (d → ∞). Another nice feature
seen in Fig. 3.21 is the transformation of the single-dot spin hot spot at about 5
T to a double-dot spin hot spot at lower fields, while the single-dot spin hot spot
that starts at about 9 T shifts towards 5 T in the double dot and remains there
at all couplings.
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Figure 3.21: Spin relaxation rate as a function of perpendicular magnetic field for
γ = 0◦ and the interdot distance d / tunneling energy T (0) (at zero magnetic field
only), for a confinement length 32 nm. The relaxation rate is given in logarithmic
scale in the units of s−1. The double dot is oriented along [100] (δ = 0◦). The
upper figure shows results when only the Bychkov-Rashba term is present in the
Hamiltonian. In the lower figure, only the Dresselhaus terms are present.
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Similarly to the in-plane field case, we can understand the anisotropy of the
spin relaxation in perpendicular magnetic field by studying the transformed ef-
fective Hamiltonian:

H1 =µB⊥{x[σx(l
−1
BR − l−1

D sin 2δ) − σyl
−1
D cos 2δ]

+ y[σy(l
−1
BR + l−1

D sin 2δ) − σxl
−1
D cos 2δ]}. (3.26)

Due to the presence of the orbital effects of the perpendicular magnetic field, the
unperturbed states have no specific symmetry under inversions along x̂. As a
result, only in the limit of low magnetic fields (lB ≈ l0), for us below 1 T, the
term in Eq. (3.26) containing x dominates over the term containing y; in higher
fields both terms contribute. In this limit the condition for a suppression of the
anti-crossing is lD = lBR and δ = 45◦. This we call a “weak passage”, since
the anti-crossing, while suppressed, is still present. If the condition for a weak
passage is not fulfilled, the spin relaxation rate, as a function of δ, still has a
minimum at δ = 45◦ and a maximum at δ = 135◦. However, the ratio between
the two extremal values is in general of order 1.

3.6.3 Other growth directions

Thus far we have considered lateral quantum dots defined in a (001) plane of a
GaAs heterostructure. A different growth direction leads to a different form of the
Dresselhaus spin-orbit interactions[168] (the form of the Bychkov-Rashba term
remains unchanged) and to different conditions for the easy passage. Our results
are summarized in Tab. 3.4. For [111] growth direction the linear Dresselhaus
term has the same form as the Bychkov-Rashba one. Our results easily translate
for this case by placing formally lD → ∞. There will be no spin relaxation
anisotropy in single dots, while in double dots spin hot spots vanish for cos(γ −
δ) = 0 at in-plane fields. For a general magnetic field a weak passage occurs only
at specific spin-orbit parameters, given by 2

√
3lBR + lD = 0 (the couplings can

be negative).
A less trivial situation occurs for the [110] grown quantum well. The linear

Dresselhaus term has the form

HD = − ~

4mlD
σzPx (3.27)

Unlike the Bychkov-Rashba term, which has eigenspins always in the plane, the
[110] Dresselhaus term has eigenspins oriented out of the plane.

For this growth direction, the calculated spin relaxation rate for the double
dot system oriented along δ = π/2 in an in-plane magnetic field of B|| = 1 T is
shown in Fig. 3.22. The spin hot spots exist for all orientations of the field except
at multiples of π. This is confirmed by analytical considerations summarized in
Tab. 3.4. The easy passage exists if the dot is oriented along the (rotated) x̂, while
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Figure 3.22: Spin relaxation rate as a function of γ and the tunneling energy for
B|| = 1 T, for [110] growth direction. The dot orientation is given by δ = π/2.
The relaxation rate is given in logarithmic scale in the units of s−1.

growth dir. in-plane general
[001] lBR cos(γ + δ) = lD = lBR, δ = π/4

= lD sin(γ − δ)

[111] cos(γ − δ) = 0 2
√

3lBR + lD = 0
[110] γ = 0, δ = π/2 lBR cos δ = ±2lD cot ξ,

sin(δ − γ) = ±1
[cos α sin α 0] δ = π/2, lD = −lBR cos 2α,

lD tan γ = −lBR cos 2α δ = π/4, ξ = 0

Table 3.4: Easy passage conditions for several growth directions in an in-plane
magnetic field and weak passage conditions for a magnetic field with a nonzero
perpendicular component. The z axis points in the growth direction. In addition
to γ and δ, defined in Fig. 2.3, angle ξ is the angle between the magnetic field
and the z axis.
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Figure 3.23: Spin relaxation rate as a function of ξ and tunneling energy for
B = 1 T, for [110] growth direction. The dot orientation is given by δ = π/2.
The relaxation rate is given in logarithmic scale in the units of s−1.
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the in-plane magnetic field is along ŷ. Also, the [110] Hamiltonian is not invariant
under the in-plane inversion of the coordinates which is why the period in γ for
the relaxation rate is twice as in the case of the [001] growth direction. However,
the part of the Hamiltonian important for anti-crossing is invariant with respect
to inversion along ŷ. Therefore, the results in Fig. 3.19 for γ > π are equal to
those at 2π − γ to a very good approximation.

In order to demonstrate the difference between easy and weak passages, we
plot in Fig. 3.23 the calculated spin relaxation rate in double dots defined in a
(110) plane. The dots are oriented along ŷ. From Tab. 3.4 one gets the conditions
for the weak passage to be γ = 0, and, for our spin-orbit couplings, ξ = 56◦, where
ξ is the angle between the magnetic field and ẑ. This arrangement corresponds to
the “neck” in Fig. 3.23. However, contrary to an easy passage, here the width of
the anti-crossing region is finite and gets larger with increasing magnetic field (not
shown). Since all weak passages we found depend on spin-orbit couplings, they
(better, the corresponding geometries) are much less useful for robust inhibiting
of spin relaxation than easy passages.

In the above analysis we have not considered the cubic Dresselhaus term, HD3,
in deriving the conditions for easy passages. Being cubic, even after rotating the
double dot (δ 6= 0), it always has qualitatively the same symmetry properties
with respect to inversions about x̂ and ŷ – it is a sum of two terms, one with
symmetry of x and one y. Therefore the presence of HD3 does not destroy the
easy passage. It can only slightly change the conditions for the easy passage to
occur. For our parameters this change, checked numerically, is only on the order
of 1◦ for the of angles in Tab. 3.4, so the linear terms should provide a realistic
guidance to experimental demonstrations of the predicted anisotropy.

3.7 Conclusions

In this chapter, we have calculated phonon-induced orbital and spin relaxation
rates of single electron states in single and double quantum dots. The rates
were calculated as a function of in-plane and perpendicular magnetic fields, as
well as a function of the field and (in the case of double dots) dots’ orientation.
Realistic, GaAs defined, electron-phonon piezoelectric and deformation potential
Hamiltonians were considered. Similarly, relevant spin-orbit interactions, namely
the Bychkov-Rashba and linear and cubic Dresselhaus couplings, were used to
calculate the spin relaxation rate. We have supported our numerical findings by
analytical models based on perturbation theory, deriving effective Hamiltonians
which display, in the lowest order, all the important effects seen in numerics.
We have proposed using a classifying dimensionless parameter E which allows to
obtain relevant trends and order-of-magnitude estimates in important limiting
cases.

In the case of single dots, we have carefully analyzed the theoretically pre-
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dicted anisotropy of the spin relaxation rate in an in-plane magnetic field. The
anisotropy comes from the interplay of the linear Bychkov-Rashba and Dres-
selhaus terms (if only one of the terms dominates, the anisotropy is absent).
Experimental verification of the anisotropy would give a strong evidence of the
spin-orbit mechanism of spin relaxation. Furthermore, such a measurement would
enable to estimate the ratio of the two relevant spin-orbit terms.

For single dots in a perpendicular magnetic field, which causes cyclotron effects
as well as the Zeeman splitting, we have numerically investigated the orbital
relaxation rate. In addition, we have provided a simple analytical scheme to
estimate the rates in the important limits of low and high magnetic fields, and
found the corresponding rate as a function of the confining length. The orbital
relaxation rate is found to be of the order of 109 s−1, with a relatively small
dependence on the magnetic field. At anti-crossings the orbital relaxation rate
is reduced by a factor of two. At low magnetic fields the rate is dominated by
the deformation potential electron-phonon interaction, while at high fields it is
dominated by piezoelectric phonons.

On the other hand, the spin relaxation in single dots is always dominated
by piezoelectric transversal phonons. The contribution of deformation potential
phonons is more than a decade smaller. The rate is of the order of 105 s−1 over
a large region of parameters (magnetic field and excitation energy). However,
the rate is strongly enhanced in the region of anti-crossing/spin hot spot, where
it becomes comparable to the orbital relaxation rate. We have also provided
analytical estimates of the rate (away from the spin hot spots) for various phonon
contributions, at the limits of low and high magnetic fields.

The physics is more complex in coupled dots. We have numerically studied
spin relaxation in double dots in in-plane magnetic fields, in which the rate is
strongly anisotropic in the direction of both the magnetic field and the dots’
axis. Similarly to the single dot case, the piezoelectric phonons dominate spin
relaxation here. We have demonstrated that a spin-hot spot exists at useful
magnetic fields (say, 1 T) and interdot couplings (0.1-0.01 meV). In fact, a spin
hot spot is a typical phenomenon in symmetric double dots since it appears when
the tunneling energy becomes comparable to the Zeeman splitting. Fortunately,
the spin hot spots are strongly anisotropic, due to the symmetry of the lowest
orbital electronic states, and they vanish at certain orientations of the field and
the dots’ axis. We have systematically investigated these “easy passages” using
an analytical model. We have found the criteria for the absence of spin hot spots
for different growth directions of the underlying quantum well. These criteria
should be seriously considered in fabricating double dot systems for spin-based
quantum information processing which requires low spin relaxation.

For double dots in a perpendicular magnetic field, the orbital relaxation rate
is most influenced by the energy difference of the corresponding coupled states.
The energy has a range over eight orders of magnitude due to cyclotron effects on
the interdot coupling. As in the single dot case, both deformation potential and
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Figure 3.24: Spin relaxation rate in a double dot as a function of the orientation
of the in-plane magnetic field and tunneling energy for B = 5 T, for [001] growth
direction. The dot orientation is given by δ = π/4. A small asymmetric term is
added into the confinement potential (an electric field of 103 V/m in y direction
is applied in on one of the dots). By this, the easy passage is turned into a weak
passage – compare with Fig. 3.19.
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piezoelectric phonons can dominate the orbital relaxation. The spin relaxation in
double dots in a perpendicular field has similar qualitative features as in the single
dot case, with an additional anisotropy given by the orientation of the double dot
with respect to the crystallographic axes. However, unlike in in-plane fields, only
weak easy passages (in which spin hot spots form a neck on the parameter map,
rather than disappear altogether) exist in a perpendicular magnetic field. We
have also observed a nice shift of spin hot spots to the lower field neighbors as
the tunneling between the dots decreases. While the perpendicular fields provide
a nice opportunity to study fundamental physics of double dot systems, they are
less useful in quantum information processing due to the omnipresence of spin
hot spots and weak passages.

Our final note concerns the symmetry of the double dot. Do our conclusions
hold if the symmetry is broken? The answer is yes, if the double-dot system still
possesses either x- or y-like symmetry. Suppose, for example, that a weak electric
field is applied along x̂ or ŷ, or one of the dots is somewhat smaller than the
other. The spin hot spot anisotropy still leads to easy passages in spin relaxation
in in-plane magnetic fields. On the other hand, if the symmetry breaking is xy-
like (an electric field pointing along a diagonal, for example), the easy passage is
destroyed since the selection rules for the lowest orbital states will allow coupling
of the states by the term containing y in H1 of Eq. 3.24 (recall that it was the
vanishing of the term containing x that lead to the appearance of easy passages).
This situation is demonstrated in Fig. 3.24. A double dot system in an in-plane
field of 5 T is oriented along [110] (the growth direction is [001]). If the double
dot is symmetric, an easy passage exists for γ = 135◦, see Fig. 3.22. However, if
one of the dots is subject to a y-like electric field, so that the overall symmetry
of the perturbation is xy-like, the easy passage turns to a weak passage – at all
directions of the in-plane magnetic field there exists an interdot coupling in which
the spin relaxation rate is greatly enhanced. This is another important message
for spin-based quantum information processing in quantum dots.



Chapter 4

Adding resonant field

Starting with an electron in a quantum dot with dissipation, as analyzed in Chap-
ters 2 and 3, we now add oscillating electric and magnetic fields. Such fields induce
Rabi oscillations between electron eigenstates. We first overview shortly the tasks
that can be accomplished using oscillating fields in quantum dots and next we
present our results about the role of the spin-orbit interactions in the resonant
field induced Rabi oscillations.

4.1 Oscillating field in a quantum dot

Resonantly induced Rabi oscillations due to oscillating fields are a most often
used method for controlled qubit manipulations. The advantage of this method
is a high energy selectivity – only the states whose energy difference matches
exactly the frequency of the field are influenced. By changing the amplitude of
the resonant field one can control the speed of the operation.

The need for controlled manipulations comes from quantum information pro-
cessing, where qubit gates are basic building blocks of a quantum processor. A
qubit gate is a unitary operation that brings an initial state into a final state
according to a specific rule (an example is the NOT operation which makes spin
up into spin down and vice versa). The required unitary operation is achieved by
a proper interaction which acts on the system for a suitable time. For example,
the previously mentioned NOT operation can be accomplished by turning on a
magnetic field in a perpendicular direction to the spin quantization axis for such
a time that the spin precesses by angle π.

Manipulation of a quantum dot charge qubit by a resonant electric field was
demonstrated in Ref. [126]. Nuclear magnetic resonance is an example of a spin
resonance technique with a wide range of practical applications. In a quantum
dot the possibility of a selective manipulation of spin qubits by resonant magnetic
field was demonstrated using the idea of g-factor modulation.[94] Experimentally,
however, an oscillating electric field is much more convenient to handle compared

101
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to the magnetic field. Therefore, it was proposed to exploit the spin-orbit interac-
tion, which allows to manipulate the spin by the electric field. It was shown that
in quantum well the electric field is comparably efficient as the magnetic field for
experimentally used fields’ strengths.[134] In GaAs quantum dot, an oscillating
in-plane electric field of 102 − 103 V/m is as effective as an oscillating magnetic
field of 1 mT for realistic spin-orbit parameters, in a static magnetic field of 1
T.[74]

Recently, the influence of dissipation,[8] double dot symmetry,[152] intense
fields,[91] detuning from the resonance,[35] quantum character of the oscillating
field,[80] and other factors on the Rabi oscillations in quantum dots were stud-
ied. Impetus has come from remarkable experimental progress – Rabi oscillations
were observed in a double electron double dot[128] and an on-chip coherent ma-
nipulation of single electron spin was demonstrated in Ref. [105]. It is worth to
mention that Rabi oscillations are a crucial method for manipulation of trapped
ions, together with optical shelving.[121] The latter is a resonance induced popu-
lation inversion due to different relaxation rates and has been shown to work also
in quantum dots.[143]

Similarly as starting and stopping the rotation of the qubit by turning on
and off the oscillating field, the current through the dot can be also controlled.
Namely, if electron states in two dots or in the dot and in the leads are misaligned,
the oscillating field can provide the energy needed to overcome the barrier due
to misalignment, which without the field blocks the current.[19, 148, 144] The
induced current is known as photon assisted tunneling.[20, 17] Recently, the same
concept, where the two states between which the current is blocked without the
resonant field have different spins lead to proposals for spin pump (the resonant
field induces a spin-polarized current even if no voltage is applied),[139] spin
battery (given spin species are flipped into the opposite in both leads),[46, 44]
spin filter (only one of the spin species can go through the dot from one reservoir
into the second).[138] It was also shown how from the resonant width of the
pumped current the spin decoherence time can be obtained.[56, 55]

4.2 Spin-orbit influence on induced Rabi oscil-

lations

We continue studying the role of spin-orbit interactions in orbital and spin qubits
realized by single electron double quantum dot. We use the results of Chapter 2
to get the electron wavefunctions and energies, while phonon-induced relaxation
rates are computed according to Chapter 3. In this chapter we add an oscillating
resonant electric and magnetic fields. We aim at quantifying the influence of the
spin-orbit interactions on the spin (the resonant states are the ground state and
its Zeeman split twin) and the orbital (resonance between the ground state and
the lowest orbital excited state) electron resonance.
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The main result of this chapter is the identification of effective dipolar electric
and magnetic couplings between resonant states. The dependence of these cou-
plings on the orientation of the dots, with respect to the crystallographic axes, as
well as on the orientation of the static magnetic field allows to control the reso-
nance strength induced by electric and magnetic fields individually. For example,
a specific contribution to the spin resonance from the oscillating electric field can
be turned off by proper orientation of the static magnetic field.

In the rest of the chapter we first describe the electron in the dissipative
phonon environment under oscillating electric and magnetic fields using reduced
density matrix. Then we list analytical results for a two level approximation,
showing how the decoherence and relaxation rates can be obtained from measur-
able quantities (the excited population, the Rabi frequency, and the absorption).
We also show how these can be obtained from a steady current measurement. Fi-
nally, with the effective spin-orbit Hamiltonian we evaluate the matrix elements of
oscillating magnetic and electric fields for the case of spin and orbital resonance.

4.3 Model

We consider a single electron in a double quantum, as described in Chapter 2.
Here we use a confinement length 32 nm and values of spin-orbit couplings from
Chapter 3. In this chapter, we consider only an in-plane static magnetic field. We
now describe the influence of the phonon environment as well as of the oscillating
electric and magnetic fields.

The phonon environment leads to the relaxation and decoherence expressed,
in the Markov approximation, by the time derivative of the diagonal and off-
diagonal elements of the reduced density matrix of the electron, ρ:[15]

∂t|ph ρii = −
∑

k

2Γikρii +
∑

k

2Γkiρkk,

∂t|ph ρij = −
∑

k

(Γik + Γjk)ρij ≡ −γijρij .
(4.1)

Here 2Γij is the relaxation rate from the electron state i to j due to the piezoelec-
tric and deformation potential interactions of the electron with acoustic phonons.
There is no additional phonon channel for the decoherence γij apart from the
relaxation, since the phonon density of states vanishes for zero phonon energy,
Γii = 0. We do not consider non-phonon mechanisms of dephasing, which are
important at low magnetic fields, B|| . 1 T. To allow for a finite temperature
one can suppose a detailed balance: Γji = τΓij , where τ = exp(−~ωji/kBT ). In
the calculations below, we consider temperature much lower than the orbital ex-
citation energy. For example, the experiment Ref. [105] was done at temperature
100 mK, corresponding to ∼ 0.01 meV, while a typical excitation energy of the
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used quantum dot was about 1 meV. In this limit the transitions into higher or-
bital levels have negligible rates. The decoherence rate for both spin and orbital
resonance is then given by the relaxation between the resonant states only,

γba = Γba + Γab = Γba(1 + τ), (4.2)

where a and b are indexes of the resonant states. Equation (4.2) is valid at
low temperatures, independent on other parameters, due to the fact that the
relaxation rates including spin flip are much smaller than the transition rates
between the spin alike states.

In addition to phonons, the electron is subject to oscillating electric and mag-
netic fields, which contribute through the following Hamiltonian:

Hof = 2[eEof .r + (g/2)µBBof .σ] cos ωt ≡ 2~Ω cos ωt. (4.3)

Only the in-plane components of the oscillating electric field are relevant. The
oscillating magnetic field is perpendicular to the plane, Bof ∝ ẑ, simulating the
conditions in the experiment.[105] In the numerical calculations we set E = 1000
V/m as a realistic guess for the experimental setup[104] and B|| = 1 mT, a typical
value from the experiment.[105] We suppose the frequency ω be close to the energy
difference of a given pair of states – resonant states – denoted by indexes a and
b, such that ω ≈ ωba ≡ (Eb −Ea)/~ > 0. In the rotating wave approximation,[15]
that we adopt, the oscillating field influences only the two resonant states by
opening an additional transition channel:

∂t|of ρaa = 2(ρbb − ρaa)J,

∂t|of ρbb = 2(ρaa − ρbb)J.
(4.4)

The Rabi frequency J is determined by the oscillating field matrix element Ωba

and the decoherence rate between the resonant states, γba. Away from resonance,
ω = ωba, the Rabi frequency decays with the Lorentzian shape,

J = |Ωba|2
γba

(ωba − ω)2 + γ2
ba

. (4.5)

Finally, even though it is not currently measurable in a single electron system,
we include in our list of interesting resonance parameters the absorption,

W =
d

dt
|of
∑

i

Eiρii, (4.6)

defined as the energy gain of the electron due to the oscillating field.
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4.4 Resonance in a two level model

In order to obtain useful resonant characteristics we calculate the steady state
density matrix ρ. Our numerical strategy to obtain ρ is as follows: We diagonalize
the coupled dots electron Hamiltonian, Eq. (2.2), and compute the relaxation
rates using Fermi’s Golden rule. We choose a pair of resonant states, {a, b}, and
after evaluating Ωba we find the Rabi frequency according to Eq. (4.5). Finally, we
find the steady state density matrix by solving the set of linear equations defined
by ∂t|phρ + ∂t|ofρ = 0. A different method, with the oscillating field treated
exactly, was used for single dot qubit in intense oscillating fields,[91] three orders
of magnitude larger than the fields considered here.

Apart from the case of optical shelving,[121] whereby the electron is trapped
in a dark state, it is enough to consider the basis for the density matrix to consist
of only the two resonant states. The physics is then characterized by the number
Jr

0 = Γ−1
ba J |ω=ωba

which is the Rabi frequency at the resonance, measured in units
of the relaxation rate between the resonant states.

Two limits can be identified, according to Jr
0 . (i) If the Rabi frequency dom-

inates the relaxation, Jr
0 � 1, the probability to find the electron in the ground

or exited state is almost the same. In this regime the coherent oscillation of the
electron is occasionally interrupted by a relaxation. (ii) If Jr

0 � 1, immediately
after the electron is excited by the oscillating field it relaxes back to the ground
state. The probability to find the electron in the excited state then differs from
the thermal equilibrium value in proportion to Jr

0 . The absorption is proportional
to the electron transition rate from the excited state to the ground state times
the energy dissipated at this transition. The transition rate equals the relaxation
rate for strong enough oscillating field, Jr

0 � 1, while it is limited to the Rabi
frequency for weak fields, Jr

0 � 1. The frequency full widths at half maximum
(FWHM) also differ for the two limits – see Tab. 4.1 for analytical results.

Figure 4.1 presents our numerical results for the Rabi frequency, excited pop-
ulation width, and decoherence as functions of the tunneling energy for the spin
and orbital resonance. Both resonances are in the regime of Jr

0 � 1, where
the decoherence is revealed by the FWHM of the Rabi frequency, see Tab. 4.1,
while the relaxation rate can be obtained if both the Rabi frequency at resonance
and FWHM of the excited population are known, too. Due to Eq. (4.2), the
relaxation rate is indiscernible from the decoherence in the figure and Jr

0 can be
directly determined. For the spin resonance Jr

0 varies between 105 and 1011 –
the limit expressions in Tab. 4.1 are then exact with this precision. The upward
dips in FWHM and the decoherence rate are due to the anti-crossing of the spin
and orbital states. It is interesting that the Rabi frequency is not influenced by
the anti-crossing. This is because both the square of the matrix element and the
decoherence (equal to the relaxation) in Eq. (4.5) depend on the anti-crossing in
the same way and the contributions cancel.

Comparing to the spin resonance, the orbital resonance is much less sensitive
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a steady state at resonance FWHM (δω2
1/2)

ρbb
J+τΓba

2J+Γba(1+τ)

Jr
0
+τ

2Jr
0
+1+τ

8Jr
0
(1+Jr

0
)+4τ(1+τ+3Jr

0
)

Jr
0
−τ(1+τ+3Jr

0
)

γ2
ba

J |Ωba|2γba

(ωba−ω)2+γ2

ba

|Ωba|2/γba 4γ2
ba

W EbaJ
2(1−τ)

1+τ+2J/Γba
EbaJ

2(1−τ)
1+τ+2Jr

0

4(1+τ+2Jr
0
)

1+τ
γ2

ba

b limit at resonance FWHM (δω2
1/2)

ρbb Jr
0 � 1 1/2 − (1 − τ)/2Jr

0 8Jr
0γ

2
ba/(1 − 3τ)

ρbb Jr
0 � 1 τ

1+τ
+ Jr

0 (1 − τ)/(1 + τ)2 4γ2
ba

W Jr
0 � 1 EbaΓba(1 − τ) 8|Ωba|2γbaΓ

−1
ba /(1 + τ)

W Jr
0 � 1 2EbaJ

r(1 − τ)/(1 + τ) 4γ2
ba

Table 4.1: (a) Steady state, value at resonance, and frequency full width at half
maximum (FWHM) δω1/2 squared for the excited state population ρbb, the Rabi
frequency J , and absorption W . Note that the FWHM of the excited population
is defined only if the temperature is low enough such that Jr

0 ≥ τ(1+ τ)/(1−3τ).
(b) The value at the resonance, and frequency full width at half maximum of the
excited population and absorption in the two limits.

to the anti-crossing, since only in a very narrow region at the anti-crossing the
relaxation rate acquires a factor one half. One also sees that Jr

0 is smaller, meaning
it is easier to get into the regime of Jr

0 < 1 by lowering the amplitude of the
oscillating electric field. Reaching this regime, the decoherence can be obtained
from the FWHM of the excited population or from the Rabi frequency.

4.4.1 Current through the dot

As described in the previous section, probing the electron qubit by a resonant
oscillating field can reveal the relaxation and decoherence times. For that, how-
ever, the excited population and Rabi frequency have to be known. We show
here how these can be extracted from current measurements. For this purpose
we open the system by coupling it to the left and right reservoirs in the regime
of transient current, as depicted in Fig. 4.2. Such a configuration was studied in
Ref. [56] under more general conditions. We consider a simplified model which
allows simple physical interpretation. We suppose no dependence of the coupling
rates, ΓL and ΓR, on the electron state. Opening the dot adds additional terms
to Eqs. (4.1), and (4.4), namely

∂t|leadρbb = −ΓRρbb + ΓLρ0,

∂t|leadρaa = (ΓR + ΓL)ρ0.
(4.7)

Here we denote the population probability of the empty state as ρ0. Due to the
normalization of the density matrix it holds ρ0 = 1 − ρbb − ρaa. We neglect any
coherences including the empty dot since these would include electrons in the
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Figure 4.1: Calculated Rabi frequency J at resonance (solid), decoherence γba

(dashed), and the FWHM of the excited population (dot-dashed) as functions of
the ratio of the tunneling energy T and the confinement energy E0 for (a) spin
resonance and (b) orbital resonance. The static in-plane magnetic field is B|| = 1
T. If the solid line is above (under) the dashed one, it means that Jr

0 > 1 (Jr
0 < 1).

The dots are oriented along [100], while the static magnetic field lies along [010].
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ΓRΓL

JΓ

a

b

ba

Figure 4.2: A two level model of a quantum dot with dissipation (described by a
relaxation rate Γba). The applied oscillating field induces the Rabi frequency J .
The dot is connected to the left and right leads, each characterized by a single
tunneling rate (ΓL and ΓR). The electron can enter the ground state of an empty
dot from any lead, while the excited state can be filled only from the left lead.
Once in the dot, the electron can leave only from the excited state to the right
lead.
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leads. We solve for the steady state solution in the two level basis and find the
current through the dot to be

I =
ΓLΓR(J + Γbaτ)

ΓR[ΓR + 3J + Γba(1 + 2τ)] + ΓL{ΓR + 2[2J + Γba(1 + τ)]} . (4.8)

If the couplings to the leads are tuned to be small, ΓR, ΓL � J + τΓba, the
current will be proportional to the occupation of the excited state ρbb. If ΓL � ΓR,
the left lead is the current bottleneck and the current is I = 2eΓLρbb; If ΓR � ΓL,
the current is I = eΓRρbb. In the opposite regime, when the couplings to the leads
are large, ΓR, ΓL � J + τΓba, the current is proportional to the excitation rate
from the ground to the excited state I = 2(J + τΓba)ΓL/(ΓL + ΓR), valid for any
relative strength of the couplings. By the current measurement in the transient
regime it is thus possible to measure the excited state population, or the Rabi
frequency, by changing the coupling to the leads. The value of the Rabi frequency
in Fig. 4.1 gives an example what are large and small values for the couplings.

4.4.2 Effective spin-orbit Hamiltonian

Once again, the spin-orbit influence on the matrix elements of oscillating fields
follows from the effective spin-orbit Hamiltonian Eq. (2.45)

H1 = HD3 + H
(2)
lin + H

(2)
Z + H

(2)
D3, (4.9)

where the individual terms are listed in Eqs. (2.46)-(2.48). As explained in
Sec. 2.6.1 and used already in Chapter 3, see Eq. (3.24), we rotate the axes
to lay along the main axes of the potential, whereby the effective linear spin-orbit
couplings in H

(2)
Z obtain the following form

hx
1 = l−1

BR cos(γ − δ) − l−1
D sin(γ + δ), (4.10)

hy
1 = l−1

BR sin(γ − δ) − l−1
D cos(γ + δ). (4.11)

Since the magnetic field is in-plane, ĥ2 = 0. It is important that the couplings
can be selectively turned to zero by orienting the in-plane magnetic field B|| in a
direction (γ) dependent on the orientation of the double dot (δ).

The term Hlin, Eq. (2.46) is untouched by the rotation. The result of the
rotation in Eq. (2.48) is not presented here; we will, however, discuss its rele-
vant parts. For the following discussion the symmetries of the terms of H1 are
important. First, each term has a definite time reversal symmetry: H

(2)
Z is anti-

symmetric, while the other terms are time reversal symmetric. Second, the spatial
symmetry of a particular term is defined by a combination of x, y, Px, and Py it
contains.

We will now quantify individual contributions of oscillating fields to the matrix
element Ωba. We will show where these contributions originate and how they can
be used to control the electron spin and orbital resonance.
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4.5 Matrix elements for the spin resonance

Consider exact states Γ
00

1↑ and Γ
00

1↓, and a general Hermitian operator O. Let us
write the matrix element in the following form:

〈Γ00

1↑|O|Γ00

1↓〉 = 〈Γ00
1↑|O|Γ00

1↓〉 + δO, (4.12)

where δO is due to spin-orbit corrections. If the first term is nonzero, that is the
unperturbed states are coupled by O, δO can be usually neglected. If the first
term vanishes, and we are away from the anti-crossing, β � 1, the time inversion
symmetry gives an important information about the matrix element δO. Indeed,
if O has a definite time reversal symmetry, T (O) = 1(−1) when being symmetric
(antisymmetric), the matrix element in the lowest order in H1 is[158, 98]

δO =
∑

i,j,σ

〈Γ00
1↑OΓj

iσ〉〈Γj
iσH1Γ

00
1↓〉×

×
(

1

E00
1↓ − Ej

iσ

− T (H1)T (O)

E00
1↑ − Ej

i,−σ

)
,

(4.13)

where i denotes the symmetry class, j denotes, for brevity, both upper orbital
indexes, and σ denotes the spin. In this lowest order, the contributions from
terms in H1 are additive and can be considered separately. Therefore the first
order contributions of the terms with the same time reversal symmetry as O
will be suppressed by a factor of order of EZ/E0, comparing to matrix elements
between states with different spatial indexes. Near the anti-crossing the terms
containing coefficients α and β dominate other terms in Eqs. (2.55)-(2.56) and
the matrix elements are then proportional to these coefficients – the suppression
does not take place.

These general results can be applied to the spin resonance due to magnetic
and electric fields. The oscillating magnetic field [~Ω = µBof

z σz] couples the
unperturbed states:

Ω
Bof

z

spin = αµBof
z , (4.14)

so that we can neglect the spin-orbit contribution to the matrix element δΩ.
On the other hand, the electric field dipole operator (~Ω = eEof .r) does

not couple the unperturbed states. As Ω is now time reversal symmetric, the
contributions of all terms in H1 but H

(2)
Z are suppressed. For the electric field

along the rotated x̂ axis, the matrix element at the anti-crossing is

Ω
Eof

x

spin = βeEof
x X. (4.15)

Away from the anti-crossing

Ω
Eof

x

spin = −eEof
x hx

1EZ

∑

j

|Xj |2
2Ex

j

(Ex
j )2 − 4E2

Z

, (4.16)
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definition unit expression d � 1 d � 1

X1 〈Γ10
2 |x|Γ00

1 〉 l0
d√

1−e−2d2

1√
2

d

X2 〈Γ31
2 |x|Γ00

1 〉 l0 - −3d2

4
1√
2

Y 1 〈Γ11
4 |y|Γ00

1 〉 l0
1√
2

1√
2

1√
2

XY 〈Γ21
3 |PxPy|Γ00

1 〉 ~
2l−2

0 − d√
2

e−d2√
1−e−2d2

−1
2

− d√
2
e−d2

Ex
1 E10

2 − E00
1 E0 2T (0)/E0 1 de−d2

Ex
2 E31

2 − E00
1 E0 - 3 1

Ey
1 E11

4 − E00
1 E0 1 1 1

Table 4.2: Analytical approximations for the dipole matrix elements and energy
differences. For each quantity the definition, unit, expression, and limits for small
and large interdot distances are given. In some cases the expression is too lengthy
and only the asymptotics are given. The expression for T (0) is given in Eq. 3.23.

where EZ = µB||. The spatial symmetry (here x) of the dipole operator selects

only eigenfunctions of symmetry x in the sum. Only H
(2)
Z , Eq. (2.47), contains

a term of x symmetry, proportional to hx
1 . In the above sum each state j (with

energy E00
1 + Ex

j ) contributes proportionally to its dipole matrix element Xj . To
get the analytical result reasonably close to numerics one needs to include the
two lowest eigenfunctions in the sum in Eq.(4.16).

If the electric field is along the rotated ŷ axis, the anti-crossing does not
influence the overlap, since y dipole operator of the electric field does not couple
the ground and anti-crossing state. Then, an analogous expression to Eq. (4.16)
holds at (up to a factor α multiplying some terms in the sum) or away from the
anti-crossing:

Ω
Eof

y

spin = −eEof
y hy

1EZ

∑

j

|Y j |2
2Ey

j

(Ey
j )2 − 4E2

Z

. (4.17)

Here it is enough to include just the lowest eigenfunction of y symmetry in the
sum. The dipole elements and energy differences, computed by approximating
the unperturbed functions Γ by LCSDO, Eq. (2.21), are summarized in Tab. 4.2.

Fully numerical results for the matrix elements as a function of the magnetic
field are shown in Fig. 4.3a. The matrix element of the magnetic field is constant,
up to a narrow region of suppression due to α, since it depends only on the
strength of the oscillating magnetic field, Eq. (4.14). The matrix elements of the
electric field [Eqs. (4.16)-(4.17)] are proportional to the Zeeman energy EZ – the
spin resonance is more sensitive to electrical disturbance as the magnetic field
grows, while at zero magnetic field the electric field is ineffective. At the anti-

crossing, Ω
Eof

x

spin is strongly enhanced (by two orders of magnitude) and described

by Eq. (4.15), while Ω
Eof

y

spin develops a small dip similar to Ω
Bof

z

spin.



112 Chapter 4. Adding resonant field

10
-4

10
-3

10
-2

10
-1

δ E
t
 / E

0

4

6

8

10

12

lo
g 

|Ω
sp

in
 [

s-1
]|

10
-2

10
-1

magnetic field [T]

2

4

6

8

10

lo
g 

|Ω
or

b [
s-1

]| 

0.5101

a b

c d

Figure 4.3: Calculated matrix elements between the resonant states due to mag-
netic and electric oscillating fields. The two upper panels, (a) and (b), show the
matrix elements Ωspin for the spin resonance, while the two lower panels show
orbital resonance elements Ωorb. On the left, in (a) and (c) the elements are
functions of the static magnetic field, with a fixed tunneling energy of 20% of the
confinement energy. On the right, in (b) and (d) the elements are functions of
the tunneling energy at a fixed magnetic field B|| = 1 T. The dots are oriented
along [100], while the static magnetic field lies along [010].
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It can be seen in Fig. 4.3b, where the matrix elements are functions of the
tunneling energy, that the spin resonance is much more sensitive to the electric
field along the double dots x axis than to a perpendicular field. This difference
is strengthened at the anti-crossing. Only in the truly single dot case (d = 0
or d = ∞), the electric field influence is isotropic. We can also conclude from
the single dot values that the matrix elements of a magnetic field of 1 mT and
electric field of 103 V/m are comparable in magnitude in the static magnetic field
of order of Tesla. This means that in the experiment,[105] where no electrically
induced signal was observed, the electric field is likely considerably lower than
the estimated value of 104 V/m.

Similarly to the spin relaxation rates,[123] the matrix elements of the resonant
fields are highly anisotropic. The possible control over the resonance is demon-
strated in Fig. 4.4a, where the matrix elements Ω are shown as a function of
the orientation of the static magnetic field. The magnetic field matrix element is
independent on γ, as follows from Eq. (4.14). The electric field matrix element is
anisotropic, with the dependence given by the effective spin-orbit couplings hx

1 and
hy

1. By proper orienting the static magnetic field it is thus possible to turn off the
contribution due to the electric field along a certain direction. In particular, the
electric field along x̂ is not effective (hx

1 = 0) at γ = arctan(lD/lBR) ≈ 38◦. The
contribution due to the electric field along ŷ vanishes at γ = arctan(lBR/lD) ≈ 58◦,
since here hy

1 = 0. These conditions were obtained from Eqs. (4.10) and (4.11)
by putting δ = 0 (the dots oriented along [100]). Different orientation of the
dots changes the conditions for the effective spin-orbit couplings to be zero. For
example, in Fig. 4.4b, the dots are oriented along [110], that is δ = 45◦ and the
effective couplings hx

1 and hy
1 are zero at γ = 45◦ and 135◦, respectively, inde-

pendent on the spin-orbit parameters. If the electric field points along a general
direction, it is still possible to turn off the contribution to the overlap by properly
orienting the magnetic field. However, in a general case the desired position of
the magnetic field is defined not only by the effective couplings hx

1 and hy
1, but

by all terms in Eqs. (4.16)-(4.17).

As shown in Chapter 3, in the easy passage configuration, defined by hx
1 = 0,

the spin relaxation time does not suffer a drastic suppression due to the anti-
crossing. In addition to that, the spin resonance is insensitive to otherwise
most effective electric field component – along x̂. Such electric fields are in-
evitably present if the spin qubit is manipulated by an on-chip generated mag-
netic field.[105] On the other hand, on-chip manipulations seem inevitable in a
scalable system, where it must be possible to address the qubits selectively. The
easy passage configuration thus protects the spin against the electric field and
provides a stable Rabi frequency over a wide range of parameters values.
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Figure 4.4: Calculated matrix elements for the spin [upper two panels (a) and
(b)] and the orbital [lower two panels (c) and (d)] resonance due to oscillating
magnetic and electric fields as functions of γ, the orientation of the static magnetic
field, B|| = 1 T. The tunneling energy is 20% of the confinement energy. On the
left, in (a) and (c) the dots are oriented along [100], that is δ = 0. On the right,
in (b) and (d) the dots are oriented along [110], δ = 45◦.
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4.6 Matrix elements for the orbital resonance

In the orbital resonance the resonant states are Γ
00

1↑ and Γ
00

2↑. A similar suppression
as in Eq. (4.13) holds for the overlap between states with different spatial indexes,
if the operator O acts only in the spin subspace. This suppression again favors the
contribution from H

(2)
Z comparing to the rest of H1. If the anti-crossing dominates,

the overlap due to Bof
z is Ω

Bof
z

orb = −βµBof
z , while away from the anti-crossing

Ω
Bof

z

orb = µBof
z hx

1X1
(Ex

1 )2

(Ex
1 )2 − 4E2

Z

. (4.18)

Contrary to the case of electrically induced spin resonance, the oscillating mag-
netic field can induce transitions also at zero static magnetic field, as seen in
Fig. 4.3c. The electric field along x̂ is most efficient for the orbital resonance,

Ω
Eof

x

orb = eEof
x X1, since it couples unperturbed states directly.

For the chosen parameters, the magnetic field is approximately as effective as
the electric field along ŷ, since the linear spin-orbit terms do not contribute to
the electric field matrix element in the first order. Here, for a non-zero overlap

between Γ
00

1↑ and Γ
00

2↑, a spin diagonal operator with spatial symmetry xy is needed.

The only such in H1 is the term originating in the first term of H
(2)
D3, Eq. (2.48).

After the rotation of the coordinate system this term is −(2γc/~
2lBR) cos(2δ)PxPy,

leading to the overlap

Ω
Eof

y

orb = −2eEof
y Y 1

γc

~2lBR
cos 2δXY

2Ex
1

(Ey
1 )2 − (Ex

1 )2
. (4.19)

In small magnetic fields (. 1 T) this contribution dominates the overlap com-

paring to contributions from other parts in H1, such as H
(2)
Z , contributing in

the second order. Note that there is no term with appropriate symmetry (spin
diagonal, spatially xy) in H1 coming from a mixture of HD and HD3, making

Ω
Eof

y

orb a specific effect due to the mixed cubic Dresselhaus and Bychkov-Rashba
interactions.

The dependence of the matrix elements Ω on the static magnetic field ori-
entation γ is shown in Fig. 4.4c and d. The magnetic field matrix element is
proportional to hx

1 , see Eq. (4.18). The direct coupling through the electric field
along x̂ is also independent on γ. The matrix element of the electric field along
ŷ, as given in Eq. (4.19), is independent on γ and can not be put to zero by
changing the magnetic field orientation – as seen in Fig. 4.4c. However, there is
some dependence to be seen and the dependence is striking for a different dots’
orientation. The reason is that Eq. (4.19) is the dominant contribution to the
matrix element only up to a certain value of the static magnetic field – in higher
fields the second order contribution from H1 will dominate. Since there is already
a visible dependence in Fig. 4.4c, we can estimate the crossover magnetic field to
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be 1 Tesla, for our parameters. In Fig. 4.4d, the contribution of Eq. (4.19) is zero
exactly, since δ = 45◦. Therefore the second order contribution to the matrix
element coming from H

(2)
Z is seen. The possible dependence of the matrix ele-

ment on γ can decide whether the matrix element is induced by linear spin-orbit
terms (depends on γ), or the mixed cubic-linear terms (does not depend on γ).
This could be used as a detection for the presence of the cubic Dresselhaus term.
Unless the electric field is positioned exactly along ŷ, no oscillating magnetic field
influence or anisotropy can be observed due to high effectiveness of the electric
field along x̂.

4.7 Conclusions

We have studied electrically and magnetically induced spin and orbital resonance
of a single electron confined in single and coupled lateral quantum dots. We have
shown how the decoherence and relaxation rates can be computed from the ex-
cited population and Rabi frequency (these two in turn can be obtained from a
steady state current measurement by changing the coupling to leads). We have
also shown that the spin resonance in an electric oscillating field, induced by the
spin-orbit interactions,[134, 74] can in practical situations exceed the resonance
induced by the magnetic field. We have shown that the spin-orbit interactions
allow orbital resonance in an oscillating magnetic field. We have quantified the
spin-orbit contributions to the resonance, stemming from the effective spin-orbit
Hamiltonian. The time reversal symmetry and spatial symmetry of the potential
determine which part of the effective Hamiltonian is relevant. The electron reso-
nance is most sensitive to the electric field along the coupled dots’ axis. However,
this component of the electric field is not effective in spin resonance in the easy
passage configuration, which is achieved by properly orienting the static magnetic
field. The easy passage thus provides not only long spin relaxation time, but also
stability against electric field disturbances, making it a suitable arrangement for
spin qubit realization.
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Conclusions

We have performed numerical and analytical study of single electron states lo-
calized in a semiconductor quantum dot created by gate and heterostructure
confinement. We included phonons into our consideration, leading to the orbital
and spin relaxation. We also allowed for the presence of resonant electric and
magnetic fields and studied the effectiveness of these fields in inducing Rabi os-
cillations. We concentrated on revealing the role of the spin-orbit interactions,
trying to provide means of control over electron states. Important part of our in-
vestigations was to look at spin anti-crossings which have profound consequences
on spin properties of the system.

In the first part we studied the spin-orbit interactions influence on the energy
spectrum of single and double dot states both in zero and finite perpendicular
magnetic field. Among our main results here is the finding that the tunneling
energy in double quantum dots is influenced by spin-orbit interactions much less
than expected. Nevertheless, spin-orbit interactions induce small difference in
tunneling energies for spin up and down electrons, what we proposed to use in
a spin to charge conversion scheme. The small influence of the spin-orbit on the
energy follows from the symmetry of the potential and the spin-orbit interactions
and we explained it by deriving an effective spin-orbit Hamiltonian. On the
other hand, we found that a double dot, compared to a single dot, is much
more influenced by spin hot spots. It is because the anti-crossing can occur at
any magnetic field, and all spin-orbit terms are effective in inducing the anti-
crossing. In single dots the field where the anti-crossing occurs is fixed by the
dot dimensions and some of the spin-orbit terms are not effective in inducing
the anti-crossing. Concluding from the first part, having small impact, spin-orbit
interactions are not effective in controlling the double dot spectrum, but their
influence on the wavefunctions is more profound than in single dots.

The second part was dedicated to quantifying the spin and orbital relaxation
rates due to acoustic phonons, entering through piezoelectric and deformation
potentials. We provided a comprehensive study of the spin and orbital relaxation
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rates in single and double dots in both in-plane and perpendicular magnetic
fields. The most interesting result is the anisotropy of the spin relaxation rate,
which reflects the anisotropy of the Dresselhaus spin-orbit interactions. This
was already known from the single dot case, however, we found that there is an
additional anisotropy in double dots, originating in anti-crossing enhancement
of the spin relaxation rate. We found that the anti-crossing actually dominates
the spin relaxation, making the spin relaxation time much shorter in the useful
parameters’ range. Fortunately, from the point of long spin relaxation times, we
found that there are particular configurations of the quantum dot and a magnetic
field where such enhancement of the spin relaxation rate is not present. We have
called such configurations easy passages and specified analytically the parameters
values for them for various heterostructure growth directions. Using easy passage
we proposed a scheme for resolving the couplings of the linear spin-orbit terms.
Even highly desirable, experimental quantification of these couplings has not been
achieved in quantum dots yet.

In the third part we studied electrically and magnetically induced Rabi oscil-
lations of single electron charge and spin qubits. We showed how decoherence and
relaxation time can be calculated from Rabi oscillations characteristics, which, in
turn, can be obtained in a steady current measurement. Most important result
is that the anisotropy, and the underlying symmetry, is crucial also here. It is
namely possible to control the effectiveness of electric and magnetic fields in in-
ducing Rabi oscillations by changing the orientation of the static magnetic field,
meaning going into/out of the easy passage configuration.

The spin-orbit interactions thus proved to provide a possible efficient mean for
spin qubit manipulation – our results show how to control the spin relaxation rate
and Rabi frequency exploiting easy passages. These findings provide guideline for
manufacturing experimental samples with much improved double dot spin qubit
characteristics from the point of interest of quantum computation.

Possible extensions of the work

We identify three main areas where further studies, taking into account results
presented in this work, are highly desirable.

In Chapter 4 we already touched the possibility that the dot is open and a
current is allowed to flow through the dot. The number of electrons in the dot
is then not constant and the electron life time in the dot is finite. Eigenenergies
become blurred, with a certain width, around their sharp values from the case of
a closed dot. The nearby leads provide an additional relaxation and decoherence
channel. However, compared to phonons, the theoretical description is much more
complicated, since the influence of the leads probably depends strongly on the
system details.
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Closely connected to couplings to the leads is the possibility of a finite bias
applied across the dot, meaning a dot in a nonlinear regime. It is a situation
almost always encountered in experiments, in which a current flows through the
dot. Considering our results, the degradation of the potential symmetry will
critically influence easy passages, which exist due to the potential symmetry. It
is important to find out to what degree are easy passages useful in realistic biases.

From the point of view of a possible exploitation of double dots as qubits in
quantum information processing, the most important extension of this work is to
repeat the analysis for the two electron case. Recent experiments provide data
for comparison for both energy spectrum and spin relaxation time. We think that
easy passages will occur also in the two electron case, if the confining potential
stays symmetric. This problem is currently under our investigation.





Chapter 6

Appendices

.1 Transient current occupation

.1.1 Probe pulse

Here we derive Eq. (3.3) from Eq. (3.2). We introduce the missing charge in the
ground state, x = 1 − g, which transforms Eq. (3.2) into a homogeneous system:

ė = ΓLE(x − e) − (ΓRE + W )e,

ẋ = −(ΓLG + ΓRG)(x − e) − We.
(1)

Introducing total tunneling rates,

ΓTG = ΓLG + ΓRG,

ΓTE = ΓLE + ΓRE ,

ΓT = ΓTE + ΓTG,

(2)

we express e from the second equation,

e(ΓTG − W ) = ẋ + ΓTGx. (3)

Inserting it into the first one, we get a second order homogeneous equation for x:

ẍ + ΓTGẋ

ΓTG − W
= ΓLEx − ΓTE + W

ΓTG − W
(ẋ + ΓTGx) , (4)

which we rewrite as
ẍ + aẋ + b2x = 0, (5)

where

a = ΓT + W,

b2 = ΓTG(ΓTE + W ) − ΓLE(ΓTG − W ) = ΓTGΓRE + W (ΓT − ΓRE).
(6)
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In further we use that W and ΓRE are much smaller than the total (or left)
tunneling rate and express all quantities up to the lowest order in small frequencies
(a � b). The solution of the homogeneous equation is

x(t) = Ae−ω1t + Be−ω2t, (7)

where the frequencies ω1,2 are given by

ω1,2 =
1

2

(
a ±

√
a2 − 4b2

)
=

a

2

(
1 ±

√
1 − 4

b2

a2

)
=

a

2

(
1 ± (1 − 2

b2

a2
)

)
+ o(

b2

a2
).

ω2 =
b2

a
≈ ΓTG

ΓT
ΓRE + W ≡ D.

ω1 = a − ω2 ≈ ΓT − ΓTG

ΓT
ΓRE ,

(8)

The initial condition e = g = 0 leads to equations for the coefficients of the linear
combination Eq. (7)

A + B = 1,
Aω1 + Bω2 = ΓTG,

}
=>

B = 1 − A,

A = ΓTG−ω2

ω1−ω2
≈ ΓTG

ΓT
+
(

ΓTG

ΓT

)2
ΓRE

ΓT
− W

ΓT

ΓTE

ΓT
.

(9)

Using this result in Eq. (7) we get

x(t) ≈ ΓTG

ΓT
e−ΓT t +

ΓTE

ΓT
e−Dt, (10)

from where the solution for ground state population g(t) given in Eq. (3.3) follows.
From Eq. (3) follows that the excited state will have the same functional form

as Eq. (7) with different coefficients given again by the initial condition of an
empty dot:

A′ + B′ = 0,
A′ω1 + B′ω2 = −ΓLE ,

}
=>

B′ = −A′,

−A′ = ΓLE

ω1−ω2
≈ ΓLE

ΓT

(
1 + W

ΓT
+ 2ΓTG

ΓT

ΓRE

ΓT

)
.

(11)
From here we get

e(t) ≈ ΓLE

ΓT

(e−ΓT t + e−Dt), (12)

which is, within the leading order in Γ−1
T , equivalent to the solution in Eq. (3.3).

.1.2 Fill&wait pulse

Here Eq. (3.5) are derived from Eq. (3.6). Now the equations are best simplified
by introducing the total missing charge on the dot c = 1 − g − e.

ė = ΓTEc − We,

ċ = −ΓT c,
(13)
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with initial conditions e(0) = 0 and c(0) = 1. The second equation gives imme-
diately

c(t) = e−ΓT t, (14)

From the previous case, Appendix .1.1, the functional form of the excited state
population is already known. One of the frequencies is that given by Eq. (14),
leading to an ansatz

e(t) = A
(
e−ω2t − e−ΓT t

)
, (15)

where the second frequency and the normalization follows from Eq. (13).

A
(
−ω2e

−ω2t + ΓT e−ΓT t
)

= ΓTEe−ΓT t − WA
(
e−ω2t − e−ΓT t

)
,

e−ω2t (−Aω2 + WA) = e−ΓT t (−AΓT + ΓTE + WA) ,
(16)

giving

ω2 = W,

A =
ΓTE

ΓT − W

(17)

.2 TRRO – probe pulse

Here we derive explicit formulas for probabilities α and β in Eq. (3.9). We
suppose the dot is in fill&wait step, as denoted in Fig. 3.9, leading to the following
equations for the populations:

ė = −(ΓT + W )e,

ġ = −ΓSg + We.
(18)

Comparing with Eq. (13) the solution follows as:

e(t) = e(0)e−(ΓT +W )t,

g(t) = Ae−(ΓT +W )t + Be−ΓSt.
(19)

Considering an initial condition of an occupied dot, e(0) + A + B = 1, one solves
for the ground state population

− A(ΓT + W )e−(ΓT +W )t − BΓSe−ΓSt =

= −ΓSAe−(ΓT +W )t − ΓSBe−ΓSt + We(0)e−(ΓT +W )t,
(20)

giving
e−(ΓT +W )t

[
A(ΓT + W ) − ΓSA + We(0)

]
= 0, (21)

with solution

A =
W

ΓS − ΓT − W
,

B = 1 − A − e(0).

(22)
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If, initially, the excited state is populated, e(0) = 1, the time dependence of the
two states is

e(t) = e−(ΓT +W )t,

g(t) =
W

ΓT − ΓS + W

(
e−ΓSt − e−(ΓT +W )t

)
.

(23)

A tunneling has not been observed, with an electron in the excited state initially,
with a probability

β(t) = e(t) + g(t) =
1

ΓT + W − ΓS

(
We−ΓSt + (ΓT − ΓS)e−(ΓT +W )t

)
, (24)

On the other hand, if the ground state is populated in the beginning, g(0) = 1,

e(t) = 0,

g(t) = e−ΓSt.
(25)

A tunneling has been observed, even the electron was in the ground state, with
a probability

α(t) = 1 − g(t) − e(t) = 1 − e−ΓSt. (26)

The visibility, for given tunneling rates, is

v(t) = 1 − α(t) − β(t), (27)

and can be optimized as a function of the duration of the probe step.
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[119] J.B. Miller, D.M. Zumbühl, C.M. Marcus, Y.B. Lyanda-Geller,
D. Goldhaber-Gordon, K. Campman, and A.C. Gossard. Gate-controlled
spin-orbit quantum interference effects in lateral transport. Phys. Rev. Lett.,
90(7):76807, 2003.

[120] G. M. Minkov, A. V. Germanenko, O. E. Rut, A. A. Sherstobitov, L. E.
Golub, B. N. Zvonkov, and M. Willander. Weak antilocalization in quantum
wells in tilted magnetic fields. Phys. Rev. B, 70:155323, 2004.

[121] Warren Nagourney, Jon Sandberg, and Hans Dehmelt. Shelved optical
electron amplifier: Observation of a quantum jumps. Phys. Rev. Lett.,
56(26):2797, 1986.

[122] J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki. Gate control of spin-
orbit interaction in an inverted InGaAs/InAlAs heterostructure. Phys. Rev.
Lett., 78:1335, 1997.

[123] O. Olendski and T. V. Shahbazyan. Anisotropic spin relaxation in quantum
dots. cond-mat/0611065, unpublished.



Bibliography 135

[124] K. Ono and S. Tarucha. Nuclear-spin-induced oscillatory current in spin-
blockaded quantum dots. Phys. Rev. Lett., 92:256803, 2004.

[125] Masaru Onoda and Naoto Nagaosa. Dynamics of localized spins coupled to
the conduction electrons with charge and spin currents. Phys. Rev. Lett.,
96:66603, 2006.

[126] T. H. Oosterkamp, T. Fujisawa, W. G. van der Wiel, K. Ishibashi, R. V.
Hijman, S. Tarucha, and L. P. Kouwenhoven. Microwave spectroscopy of a
quantum-dot molecule. Nature, 395:873, 1998.

[127] J. R. Petta, A. C. Johnson, A. Jacoby, C. M. Marcus, M. P. Hanson, and
A. C. Gossard. Pulsed-gate measurement of the singlet-triplet relaxation
time in a two-electron double quantum dot. cond-mat/0412048, unpub-
lished.

[128] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D.
Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard. Coherent manip-
ulation of coupled electron spins in semiconductor quatum dots. Science,
309:2180, 2005.

[129] P. Pfeffer and W. Zawadzki. Spin splitting of conduction subbands in III-V
heterostructures due to inversion asymmetry. Phys. Rev. B, 59(8):R5312,
1999.

[130] P. Pfeffer and W. Zawadzki. Theory of spin splitting in GaAlAs parabolic
quantum wells controlled by electric field. Phys. Rev. B, 72:35325, 2005.

[131] Craig E. Pryor and Michael E. Flatté. Landé g factors and orbital momen-
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[154] Manuel Vaĺın-Rodŕıguez. Renormalization of spin-orbit coupling in quan-
tum dots due to the Zeeman interaction. Phys. Rev. B, 70:033306, 2004.
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