
About picking colored elements from a set
Daniel Reitzner

August 6, 2009

Let's suppose we have n elements from which k are colored (target). How many elements (in
average) we have to search in order to �nd target one? In following we will prove several theorems
concerning this problem. First we will consider a very simple type of search, where, after choosing
unmarked element, we put it back to the set we search. We will call this search naïve search.

Theorem 1. Let k be the number of target elements forming a subset of a set of n elements. Then
the average number of elements to be searched by a naïve search in order to �nd marked element is

n̄naïve =
n

k
.

Proof. The proof is simple, since in every step the probability to pick marked element is p = k/n.
Hence, the probability, that we will �nd marked element on the m-th step and no sooner is Pm =
(1− p)m−1p. Using Lemma 1 from Appendix we �nd, that

n̄naïve =
∞∑

m=1

mPm =
1
p

=
n

k
.

In the next theorem the question is answered by employing a di�erent kind of search � memory
search, where every picked (non-target) element is put aside, so the number of elements is decreasing
from step to step.

Theorem 2. Let k be the number of target elements forming a subset of a set of n elements. Then
the average number of elements to be searched by a memory search in order to �nd marked element is

n̄memory =
n + 1
k + 1

. (1)

Proof. First, we will determine the probability Pm of not �nding a target element in m− 1 steps but
�nding one on the m-th step. On the �rst step the probability of not �nding target element is (n−k)/n.
In the next step the probability is (n − k − 1)/(n − 1), since the number of elements in both sets �
the set of non-target elements and the set of all elements � reduces by one by excluding previously
chosen element. In the following step the numbers are decreased again. Finally in the m-th step the
probability of �nding target element is k/(n−m + 1) since in the previous m− 1 steps the number of
all elements was reduced by m− 1 while the number of target elements k remained the same. So the
probability Pm then reads

Pm =
k

n−m + 1

m−2∏

j=0

n− k − j

n− j
.

We can rewrite the probability to have form

Pm = k
(n− k)!(n−m)!

n!(n− k −m + 1)!
.

1

The average number of elements to be searched is then

n̄memory =
n−k+1∑

m=1

mPm =
k(n− k)!

n!

n−k∑

m=0

(m + 1)
(n−m− 1)!
(n− k −m)!

,

where the range in the second sum was shifted by one. The upper boundary of the �rst sum range
comes from the fact, that after n − k unsuccessful searches, there is no unwanted element left and in
the following step we are sure to pick a target element. Furthermore, by setting m = n − k − l, l
parameter, we can rewrite the formula for n̄memory as

n̄memory =
k(n− k)!

n!

n−k∑

l=0

(n− k − l + 1)
(k + l − 1)!

l!
.

By using formula from Eq. (8) for the sum enumeration we get

n̄memory =
k(n− k)!

n!
(k − 1)!
(n− k)!

n!
(k + 1)!

(n + 1) =
n + 1
k + 1

,

which concludes the proof.

Corollary 1: If we search for a single target element (k = 1) then we have

n̄memory =
n + 1

2
, n̄naïve = n. (2)

So the complexity is of the order O(n).

Corollary 2: If we search between all elements (k = n) then we, not surprisingly, have

n̄memory = n̄naïve = 1. (3)

Corollary 3: If we search between half elements being target (k = n/2 with n even) then we have

n̄memory = 2
n + 1
n + 2

, n̄naïve = 2. (4)

In the limit of large n we get also n̄memory → 2. This means that the complexity is of the order O(1)
even though in the worst case we have to search through n/2 + 1 elements.

Remark. Conclusion of corollary 3 about limit for large n can be easily obtained also in the following
way. The probability of �nding marked element is p = 1/2, which is the same as probability of �nding
non-marked element. So �nding target element after m steps has the probability

Pm =
(

1
2

)m−1 1
2

=
(

1
2

)m

. (5)

Then the average number of steps to �nd target element is

n̄ =
∞∑

m=1

m

2m
. (6)

The sum can be evaluated in the following manner:

n̄ = 2n̄− n̄ =
∞∑

m=1

m

2m−1
−

∞∑

m=1

m

2m
= 1 +

∞∑

m=1

m + 1
2m

−
∞∑

m=1

m

2m
= 1 +

∞∑

m=1

1
2m

= 2. (7)

Corollary 4: By setting k = sn we see, that for n →∞ we have n̄naïve = n̄memory = 1/s.

2

Appendix
Lemma 1. Let Pm = (1− p)m−1p for 0 < p ≤ 1, then

n̄ =
∞∑

m=1

mPm =
1
p
.

Proof. First note, that the equation is trivial for p = 1 and so we can now restrict ourselves to 0 < p < 1.
Using the following (for 0 < q < 1)

∞∑

m=1

mqm−1 =

[∞∑

m=1

qm

]′

q

=

[
q

∞∑

m=0

qm

]′

q

=
[

q

1− q

]′

q

=
1

(1− q)2

we have that

n̄ = p
∞∑

m=1

m(1− p)m−1 =
p

[1− (1− p)]2
=

1
p
.

Lemma 2. Let

σm =
m∑

l=0

(n− k − l + 1)
(k + l − 1)!

l!
,

then

σm =
(k − 1)!

m!
(k + m)!
(k + 1)!

[(n + 1) + k(n− k −m)]. (8)

Proof. We will use mathematical induction to prove the Lemma. For m = 0 we get

σ0 = (n− k + 1)
(k − 1)!

0!
(k + 1)!
(k + 1)!

=
(k − 1)!

0!
(k + 0)!
(k + 1)!

[(n + 1) + k(n− k − 0)]

and so for m = 0, Eq. (8) holds.
Let us suppose, that Eq. (8) holds for general m, then for σm+1 we get

σm+1 = (n− k −m)
(k + m)!
(m + 1)!

+ σm

=
(k − 1)!
(m + 1)!

(k + m)!
(k + 1)!

[(n− k −m)(k + 1)k + (m + 1)(n + 1) + (m + 1)k(n− k −m)]

After short evaluation we get

σm+1 =
(k − 1)!
(m + 1)!

(k + m)!
(k + 1)!

[k + (m + 1)]{(n + 1) + k[n− k − (m + 1)]},

which is exactly Eq. (8) for m + 1.

3

