improving phase detection with boson sampling

daniel nagaj

slovak academy of sciences

improving phase detection with boson sampling

daniel nagaj

slovak academy of sciences

Motes, Olson, Rabeaux, Dowling, Olson, Rohde Linear optical quantum metrology with single photons: Exploiting spontaneously generated entanglement to beat the shot-noise limit.

Phys. Rev. Lett. 114, 170802 (2015)

No good.

Pretty good.

1 quantum metrology

enhanced by entanglement

1 quantum metrology

enhanced by entanglement

2 a phase gradient

between two Fouriers [Motes et al.]

quantum metrology

enhanced by entanglement

2 a phase gradient

between two Fouriers [Motes et al.]

3 the Heisenberg limit

from higher polynomial gradients

phase detection

1 Detecting a phase: single photons

1 photon, 2 beamsplitters

1 Detecting a phase: single photons

1 photon, 2 beamsplitters

1 Detecting a phase: single photons

1 photon, 2 beamsplitters

shot noise phase sensitivity for repeated experiments

1 Detecting a phase: path entangled photons

1 photon, 2 beamsplitters

$$\Delta \varphi \propto rac{1}{\sqrt{N}}$$

NOON states $\frac{1}{\sqrt{2}}(|N,0\rangle + |0,N\rangle)$

Heisenberg sensitivity hard to make (postselect) sensitive to dephasing

$$\Delta \varphi \propto \frac{1}{N}$$

boson sampling metrology

Motes et al., PRL 114, 170802 (2015)

$$U_{11}U_{22}U_{33}U_{44}+\dots$$

$$U_{11}U_{22}U_{33}U_{44}+\dots$$

a complicated way to do nothing

a complicated way to do nothing

sensitive to phase disturbances?

a complicated way to do nothing

- sensitive to phase disturbances?
- still just one significant amplitude $\left|\operatorname{Per}\left(U^{\dagger}V_{\varphi}U\right)\right|^{2} \approx \left|\operatorname{Per}(\mathbb{I})\right|^{2} = 1$

Fourier transform, undo, check sampling

sensitive to a phase gradient

$$\Delta arphi \propto rac{1}{M^{rac{3}{4}}}$$

$$M = 1 + \frac{N(N-1)}{2}$$

Fourier transform, undo, check sampling

sensitive to a phase gradient

$$\Delta arphi \propto rac{1}{M^{rac{3}{4}}}$$

the probability of1 photon per output

$$\left| \operatorname{Per} \left(U^{\dagger} V_{\varphi} U \right) \right|^{2}$$

Fourier transform, undo, check sampling

sensitive to a phase gradient

$$\Delta arphi \propto rac{1}{M^{rac{3}{4}}}$$

my questions: analytics? why gradient?

$$\left|\operatorname{Per}\left(U^{\dagger}V_{\varphi}U\right)\right|^{2}$$

- phase sensitivity $\Delta \varphi = \frac{\sqrt{P P^2}}{\left|\frac{\partial P}{\partial \varphi}\right|} \approx \frac{1}{2\sqrt{k_N}}$ ←
- approximate the permanent by a series

$$P = \left| \operatorname{Per} \left(U^\dagger V_\varphi U \right) \right|^2 \approx 1 - \varphi^2 k_N \tag{2nd order coefficient}$$

a single phase application: no gain

- phase sensitivity $\Delta \varphi = \frac{\sqrt{P P^2}}{\left|\frac{\partial P}{\partial \varphi}\right|} \approx \frac{1}{2\sqrt{k_N}}$ ←
- approximate the permanent by a series

$$P = \left| \operatorname{Per} \left(U^{\dagger} V_{\varphi} U \right) \right|^2 \approx 1 - \varphi^2 \operatorname{const.}$$

varying the phase application: the fun stuff

varying the phase application: the fun stuff

approximate the permanent by a series

$$\underbrace{ 1 + i\varphi \sum_{x} \sum_{j} f_{j} U_{xj}^{\dagger} U_{jx} - \frac{\varphi^{2}}{2} \sum_{x} \sum_{j} f_{j}^{2} U_{xj}^{\dagger} U_{jx} - \frac{1}{2} \sum_{x \neq y} \varphi^{2} \left(\sum_{j} f_{j} U_{xj}^{\dagger} U_{jx} \right) \left(\sum_{k} f_{k} U_{yk}^{\dagger} U_{ky} \right) - \varphi^{2} \underbrace{\frac{1}{2} \sum_{x \neq y} \left(\sum_{j} f_{j} U_{xj}^{\dagger} U_{jy} \right) \left(\sum_{k} f_{k} U_{yk}^{\dagger} U_{kx} \right)}_{ \text{ using 2 off-diagonal terms} }$$

lacksquare the expansion works better in $\,z\,=\,e^{iarphi}\,-\,1\,$

varying the phase application: the fun stuff

approximate the permanent by a series

$$P = \left| \operatorname{Per} \left(U^{\dagger} V_{\varphi} U \right) \right|^{2} \approx 1 - \varphi^{2} \Theta \left(N^{2a+1} \right) \blacktriangleleft$$

varying the phase application: the fun stuff

approximate the permanent by a series

$$P = \left| \operatorname{Per} \left(U^{\dagger} V_{\varphi} U \right) \right|^{2} \approx 1 - \varphi^{2} \Theta \left(N^{2a+1} \right) \blacktriangleleft$$

 $|U_{yx}|^2 = \frac{1}{N}$ • for a well-"mixing" U (e.g. Fourier) and small $\varphi \max\{f_x\} \ll 1$

Boson sampling to detect a phase

apply the unknown phase for different "lengths"

$$f_j = j^a$$

• the phase sensitivity goes up to the H.L. with higher a

$$\Delta\varphi = \Theta\left(M^{-1+\frac{1}{2(a+1)}}\right)$$

$$M = \sum_{j} f_{j}$$
 number of "uses"

source inefficiency noise sensitivity Cramér-Rao bound Fisher information

other perturbations beyond the $U^{+}U$ arrangement the other amplitudes path entanglement applications path entanglement classification

improving phase detection with boson sampling

daniel nagaj

slovak academy of sciences