

perturbative gadgets without

interactions

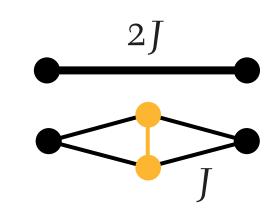
Perturbative gadgets let us find a Hamiltonian whose low-energy subspace approximates a given quantum Hamiltonian up to some absolute error ϵ . Typically, gadget constructions have terms with large interaction strengths O(poly(ϵ^{-1})).

We present a 2-body gadget construction for approximating a target many-body Hamiltonian with O(1) interactions up to absolute error ϵ with one that has much weaker interactions $O(\epsilon)$. It relies on a new condition for the convergence of the perturbation series, allowing us to apply gadgets in parallel on multiple many-body terms without costly overhead.

The price we pay for avoiding strong interactions is a large overhead in the number of ancilla qubits, and the number of interaction terms per particle, both of which scale as $O(poly(\epsilon^{-1}))$.

Classical gadgets

Mimicking an interaction by others (decompose, etc.)



UniWien, Simons Institute

Quantum pertur gadgets

Build effective interactions: put ancillas in a very large z-field. Treat interactions with the target spins as a perturbation. $\tilde{H} = H + V$

The approximation: $|\lambda_j(H_{eff}) - \lambda_j(\tilde{H}_-)| \leq \epsilon$ Eigenvectors: ϵ -close to H_{eff} 's, with 0's on ancillas.

Condition 1: the perturbation can't bring the energy of former high-energy states too low (the subspace condition). $\tilde{\mathcal{L}}_- \cap \mathcal{L}_+ = \{0\}$

Condition 2: the self-energy is related to some effective Hamiltonian. $\|\Sigma_{-}(z) - H_{eff}\| \leq \epsilon$

Resolvent: $\tilde{G}(z) = (z\mathbb{I} - \tilde{H})^{-1}$ Self-energy: $\Sigma_{-}(z) = z\mathbb{I} - (\tilde{G}_{-}(z))^{-1}$ Perturbation

expansion: $\Sigma_{-}(z) = H_{-} + V_{-}$ $+ V_{-+}G_{+}(z)V_{+-}$

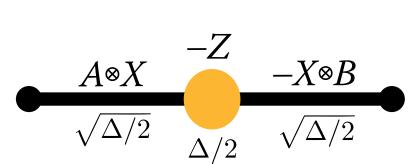
 $+ V_{-+}G_{+}(z)V_{+}G_{+}(z)V_{+-}$

The standard 2-body gadget

Target H_{eff} : a Pauli interaction $A \otimes B$. Tools: indirect interaction with an ancilla.

$$\bullet$$
 $A \otimes B$

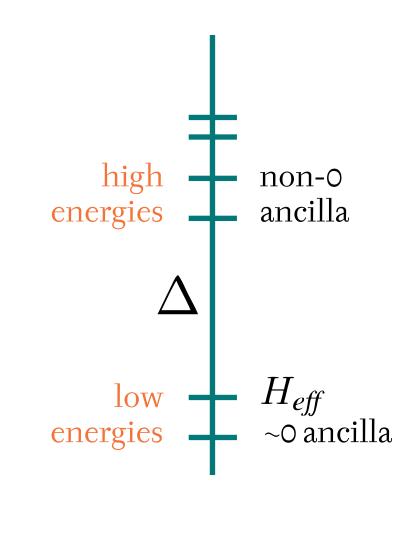
from



The cost: $\Delta = \Theta(\epsilon^{-1})$ for ϵ -approximation.

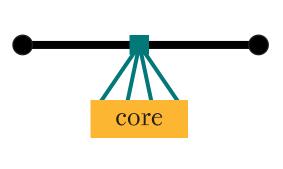
for $z \ll \Delta$ (2nd order): $\sqrt{rac{\Delta}{2}}\left(A\otimes|0
angle\langle1|
ight)$ $\sqrt{\frac{\Delta}{2}} (|1\rangle\langle 0| \otimes B)$ + a term with A/B switched

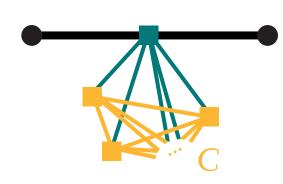
The self-energy expansion



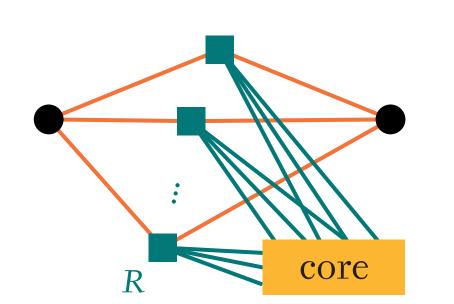
Building our weak-interaction gadget

Replace the strong field by coupling to a core (size C, ferromagnetic).



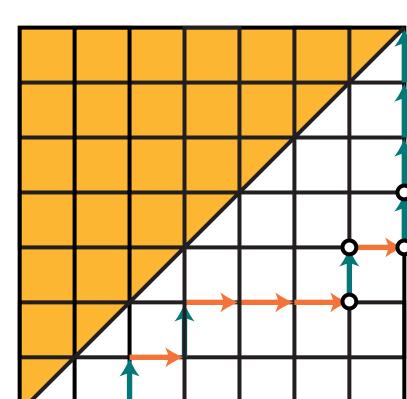


Replace the strong interaction by coupling target spins to many (R) ancillas, each of which is connected to the core.



The gadget works: convergence

We bound the higher-order terms in the perturbation series by counting ancilla flips & their contributions.



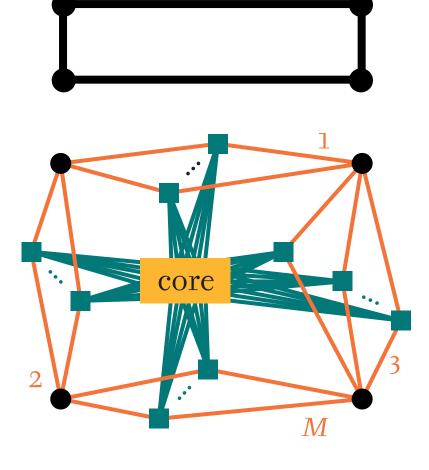
k-th order = grid size k

- → flip an ancilla bit
- ↑ unflip an ancilla
- being in a state *y* with h(y) flipped bits costs $1/h(y)\Delta$
- \bullet the number of flip choices is N-h(y)
- δ the number of flip choices h(y)

Using the gadgets in parallel

We meet the subspace condition: after adding the perturbation *V*, the high-energy states of H alone don't combine into low energy states.

Essential for combining the gadgets in parallel, not relying on $|V| \ll \Delta$.



For M gadgets/interactions, we can make it work up to error ϵ , with interaction strength $O(\epsilon)$ and using poly(ϵ^{-1} , M) qubits.

Conclusions & applications

QMA hardness of restricted norm/form Hamiltonians. A generalized area law counterexample (gap amplification). Effective interactions using an intermediary atom cloud?

Quantum degree reduction (few interactions/spin)?

