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Classical gadgets |

Mimicking an interaction ~ *— ®
by others (decompose, etc.) < >]O

Quantum & gadgets

Build effective interactions: put ancillas in
a very large z-field. Treat interactions with the
target spins as a perturbation. HA—H4+V

desired actual low spectrum

The approximation: |\j(Hey) — Nj(H-)| < €
Eigenvectors: e-close to H.4's, with 0’s on ancillas.

Condition 1: the perturbation can’t bring the
energy of tormer high-energy states too low

(the subspace condition). L_NLy = {0}

Condition 2: the self-energy is related to some
etfective Hamiltonian.
”Z_(Z) — Heﬁ”“ <€

Resolvent:  G(z) = (21 — H) ™!
>

Self-energy: ©_(z) = 21 — (G_(z))~!
Perturbation
expansion: Y _(z)=H_+V_

T V__}_G_}_ (Z)V+_
+ VG (2)V3 G (2) Vi

@ The standard 2-body gadget

Target H,;: a Pauli interaction A®B.
Tools: indirect interaction with an ancilla.

A®B —XeB
‘L‘ fl'()m & *
A/2 A/2 A/2

The cost: A=0(e™') for e-approximation.

The self-energy expansion
for z < A (2n order):

A high non-o
\/ 5 (A® 0) ( 1]) energies ancilla
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perturbative gadgets without

STRONG

mmteractions

Perturbative gadgets let us find a Hamiltonian whose low-energy subspace approximates a given quantum Hamiltonian
up to some absolute error &. Typically, gadget constructions have terms with large interaction strengths O(poly(e 4).

We present a 2-body gadget construction for approximating a target many-body Hamiltonian with O(1) interactions
up to absolute error € with one that has much weaker interactions O(e). It relies on a new condition for the convergence
of the perturbation series, allowing us to apply gadgets in parallel on multiple many-body terms without costly overhead.

The price we pay for avoiding strong interactions is a large overhead in the number of ancilla qubits, and the number
of interaction terms per particle, both of which scale as O(poly(e ™).

Building our weak-interaction gadget

core l! ‘;‘ E“ t

Replace the strong tield
by coupling to a core
(size C, ferromagnetic).

Replace the strong interaction

by coupling target spins

to many (R) ancillas,

each of which is connected to the core.

R

The gadget works: convergence

We bound the higher-order terms in the perturbation series
by counting ancilla flips & their contributions.

- flip an ancilla bit

4 unflip an ancilla

O beingin a state y with
h(y) tlipped bits costs 1/h(y)A

o> the number of flip choicesis N-/(y)

8 the number of flip choices /i(y)

k-th order = grid size k

Using the gadgets in parallel

We meet the subspace condition:
after adding the perturbation V,

the high-energy states of H alone
don’t combine into low energy states.

Essential for combining the gadgets
in parallel, not relying on | V|< A.

For VI gadgets/interactions, we can make it
work up to error ¢, with interaction strength O(¢)
and using poly(e !, M) qubits.

Conclusions & applications

QMA hardness of restricted norm/form Hamiltonians.
A generalized area law counterexample (gap amplitication).
Effective interactions using an intermediary atom cloud?

Quantum degree reduction (few interactions/spin)? < K \\Sﬁ
>
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