local tests of global entanglement

and a counterexample to the generalized area law

1 q. expanders maximally entangled states

2 entanglement

testing and communication

3 area law

gaps, connections, correlations

Expanders Everywhere!

1-5 December 2014 Neuchâtel

Ragnar Freij, Acto University
Camilla Hollanti, Acto University
Pierre-Nicolas Jolissaint, Uni. de Neuchâtel
Emmanuel Kowalski, ETH Zurich
Damian Osajda, IMPAN und Universitet octaushi
Hervé Oyono-Oyono, Université de Corraine
Joachim Rosenthal, University of Zürich
Alina Vdovina, University of Newcastle

Organisers:

Ana Khukhro, Université de Neuchâtel Alain Valette, Université de Neuchâtel

https://sites.google.com/site/expanderseverywhere/

(part of the Swiss Doctoral Program in Mathematics supported by Choo)

1 Classical expanders

Aram Harrow's talk, QHC workshop at the [youtube Harrow quantum expanders]

graphs that "mix" well divide in two? cut a lot (fraction) of edges!

examples: Cayley graphs

1 Classical expanders

Aram Harrow's talk, QHC workshop at the [youtube Harrow quantum expanders]

graphs that "mix" well divide in two? cut a lot (fraction) of edges!

examples: Cayley graphs

normalized adjacency matrix
 second largest eigenvalue 1–λ

 classical expanders: constant-degree approximations to the full graph

Mixing up something quantum

applying random unitaries

$$\mathcal{E}(X) = \frac{1}{k} \sum_{i=1}^{n} U_i X U_i^{\dagger}$$

 classical expanders: constant-degree approximations to the full graph

 applying random unitaries from a set a discrete approximation to the Haar measure

$$\mathcal{E}(X) = \frac{1}{k} \sum_{i=1}^{k} U_i X U_i^{\dagger}$$

 classical expanders: constant-degree approximations to the full graph

applying random unitaries from a set a discrete approximation to the Haar measure

$$\mathcal{E}(X) = \frac{1}{k} \sum_{i=1}^{k} U_i X U_i^{\dagger}$$

transform N×N matrices

 \blacksquare a small second largest singular value λ not far from the depolarizing channel $\|\hat{\mathcal{E}} - |\phi_D\rangle\langle\phi_D|\| = \lambda$

$$\|\hat{\mathcal{E}} - |\phi_D\rangle\langle\phi_D|\| = \lambda$$

• q. expander constructions, also for fixed k (=8. =3?)[Ben-Arroya+ 07, Hastings '07 , Gross & Eisert '08, Hastings & Harrow '09]

■ transform N×N matrices

$$\mathcal{E}(X) = \frac{1}{k} \sum_{i=1}^{k} U_i X U_i^{\dagger}$$

a matrix that doesn't change?

$$X = \mathbb{I}$$

$$U_i X = X U_i$$

■ transform *N*×*N* matrices

$$\mathcal{E}(X) = \frac{1}{k} \sum_{i=1}^{n} U_i X U_i^{\dagger}$$

a matrix that doesn't change?

$$X = \mathbb{I}$$

interpreting matrices as 2-register states

$$\sum_{a,b} X_{ab} |a
angle \langle b|$$
density matrix

■ transform *N*×*N* matrices

$$\mathcal{E}(X) = \frac{1}{k} \sum_{i=1}^{\kappa} U_i X U_i^{\dagger}$$

a matrix that doesn't change?

 $X = \mathbb{I}$

interpreting matrices as 2-register states

stationary?

$$\sum_{a,b} X_{ab} |a\rangle |b\rangle$$

■ transform *N*×*N* matrices

$$\mathcal{E}(X) = \frac{1}{k} \sum_{i=1}^{\kappa} U_i X U_i^{\dagger}$$

a matrix that doesn't change?

 $X = \mathbb{I}$

interpreting matrices as 2-register states

$$\frac{1}{k} \sum_{i=1}^{k} (U_i \otimes U_i^*) \sum_{a,b} X_{ab} |a\rangle |b\rangle$$

distributively applying an expander

stationary? X=I ... max. entangled! $|\Phi_N\rangle = \frac{1}{\sqrt{N}} \sum_{x=1}^{N} |x\rangle |x\rangle$

2 EPR testing

how costly is it to certify that we share a maximally entangled state?

$$\frac{1}{\sqrt{N}} \sum_{x=1}^{N} |x\rangle |x\rangle$$

2 EPR testing

- how costly is it to certify that we share a maximally entangled state?
- apply a quantum expander distributively

$$\frac{1}{\sqrt{N}} \sum_{x=1}^{N} |x\rangle |x\rangle$$

$$U_i \otimes U_i^*$$

2 EPR testing

- action on states
- does the qutrit remain uniform? when X commutes with all U_i
- quantum expander property ... soundness

$$\frac{1}{\sqrt{k}} \sum_{i=1}^{k} |i\rangle \left(U_i \otimes U_i^* \right) |X\rangle$$
$$\sum X_{ab} |a\rangle |b\rangle$$

 U_{i}

X

 U_i^{\dagger}

Area law: ground states of (gapped) q. spin systems

entanglement entropy

$$S = -\mathrm{Tr}(
ho_A \ln
ho_A) \sim \mathrm{volume}$$
 area

$$\rho_A = \text{Tr}_B \rho$$

a gapped system ... a simple ground state?

3 Gapped Hamiltonians

Are there any states close to the ground state when we take the thermodynamic limit?

 \blacksquare local, O(1) norm terms

an inverse-poly gap?
$$\Delta=rac{c}{N} o 0$$

without a gap, the entropy can be large

[Verstraete, Latorre+]

Area law: ground states of (gapped) q. spin systems

entanglement entropy

$$S = -\mathrm{Tr}(\rho_A \ln \rho_A) \sim \mathrm{volume}$$
 area

Schmidt coeff's fall off

$$\rho_A = \text{Tr}_B \rho$$

a gapped system ... a simple ground state?

3

Area law: ground states of (gapped) q. spin systems

entanglement entropy

$$S = -\mathrm{Tr}(\rho_A \ln \rho_A) \sim \mathrm{volume}$$
 area

Schmidt coeff's fall off

$$\rho_A = \text{Tr}_B \rho$$

- 1D ... algorithms [White 92, Vidal 03, Landau+ 13] theorems [Hastings 07, Arad+ 13]
- 2D ... we're close small gap? large local dimension?

a gapped system ... a simple ground state?

Area law: ground states of (gapped) q. spin systems

entanglement entropy

$$S = -\mathrm{Tr}(\rho_A \ln \rho_A) \sim \mathrm{volume}$$
 area

Schmidt coeff's fall off

$$\rho_A = \text{Tr}_B \rho$$

- 1D ... algorithms [White 92, Vidal 03, Landau+ 13] theorems [Hastings 07, Arad+ 13]
- 2D ... we're close small gap? large local dimension?
- generalized area conjecture entropy ~ cut size

Not true.

a gap a few links O(1) terms

not much entanglement (a "simple" ground state)

generalized area conjecture entropy ~ cut size

Our counterexample to the generalized area conjecture

- \blacksquare an $N \times 3 \times 3 \times N$ dimensional system
- a frustration-free, gapped, Hamiltonian
- \blacksquare a single O(1) interaction of two 3×3 subsystems
- a unique, very entangled ground state with O(N) entanglement entropy across the cut

lacksquare a projector P_L with ground states

$$\frac{1}{\sqrt{3}}\left(|1\rangle|x\rangle + |2\rangle A|x\rangle + |3\rangle B|x\rangle\right)$$

as a vector

 \mathcal{X}

as a matrix

 X_1

 X_2

 X_3

 $|Ax| \otimes |j\rangle \otimes |y\rangle$

 AX_1

 AX_2

 AX_3

Bx

 BX_1

 BX_2

 BX_3

lacksquare a projector P_R with ground states

$$\frac{1}{\sqrt{3}}\left(|1\rangle|y\rangle + |2\rangle A|y\rangle + |3\rangle B|y\rangle\right)$$

as a vector

$$|i\rangle\otimes|x\rangle\otimes$$

y

yA

yB

as a matrix

lacksquare a projector P_L a projector P_R

$$(|1\rangle|x\rangle + |2\rangle A|x\rangle + |3\rangle B|x\rangle)/\sqrt{3}$$
$$(|1\rangle|y\rangle + |2\rangle A|y\rangle + |3\rangle B|y\rangle)/\sqrt{3}$$

lacksquare a projector P_L a projector P_R a projector P_M

$$(|1\rangle|x\rangle + |2\rangle A|x\rangle + |3\rangle B|x\rangle) / \sqrt{3}$$
$$(|1\rangle|y\rangle + |2\rangle A|y\rangle + |3\rangle B|y\rangle) / \sqrt{3}$$

$$\begin{array}{c|cccc} X & XA & XB \\ \hline AX & AXA & AXB \\ \hline BX & BXA & BXB \\ \end{array}$$

 P_{M}

- lacksquare a projector P_L a projector P_R a projector P_M
- who commutes with A and B?
 only the identity, as [I, A, B] are a q. expander

$$(|1\rangle|x\rangle + |2\rangle A|x\rangle + |3\rangle B|x\rangle) / \sqrt{3}$$
$$(|1\rangle|y\rangle + |2\rangle A|y\rangle + |3\rangle B|y\rangle) / \sqrt{3}$$

enforce symmetry

for 12 & 21 for 13 & 31

 P_M

 P_L

 P_R

- lacksquare a projector P_L a projector P_R a projector P_M
- who commutes with A and B? only the identity, as [I, A, B] are a q. expander

$$(|1\rangle|x\rangle + |2\rangle A|x\rangle + |3\rangle B|x\rangle) / \sqrt{3}$$
$$(|1\rangle|y\rangle + |2\rangle A|y\rangle + |3\rangle B|y\rangle) / \sqrt{3}$$

enforce symmetry

for 12 & 21 for 13 & 31

ground state: unique very entangled

Hamiltonian: frustration free gapped

$$\sum_{x=1}^{N} |x\rangle |x\rangle$$

 P_M

 P_L

 P_R

Making the counterexample local

- quantum expander [I, A, B] ... quantum circuits ... nonlocal projectors ... Kitaev's LH & history states an approximate groundstate, a very small gap
- rescale P_L , P_R (not the middle!) huge, nonphysical couplings
- use new "strengthening gadgets" [N., Cao]
 large interaction strength ... extra particles, high degree

A local Hamiltonian, $(N+n) \times 3 \times 3 \times (N+n)$

frustrated, but still gappedO(1) norm terms

a unique and still very entangled ground state $\approx |w\rangle \otimes \begin{vmatrix} A & AA & AB \end{vmatrix}$ $\Rightarrow |BA & BB \end{vmatrix}$

A

B

3 Implementing circuits locally: Feynman's computer

The history state: a ground state

The history state: a ground state

idling

A local Hamiltonian, $(N+n) \times 3 \times 3 \times (N+n)$

frustrated, but still gappedO(1) norm terms

a unique and still very entangled ground state $\approx |w\rangle \otimes \begin{vmatrix} A & AA & AB \end{vmatrix}$ $\Rightarrow BA \Rightarrow BB$

A

B

1 q. expanders
maximally entangled states

2 entanglement

testing and communication

3 area law gaps, connections, correlations

local tests of global entanglement and a counterexample to the generalized area law

