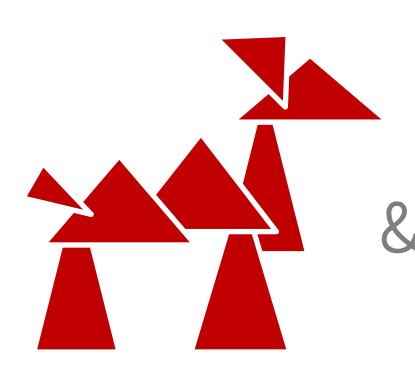


Local Hamiltonians & Quantum Complexity



Local Hamiltonians & Quantum Complexity

Hamiltonians?

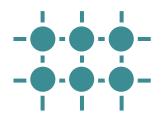
optimization & dynamics

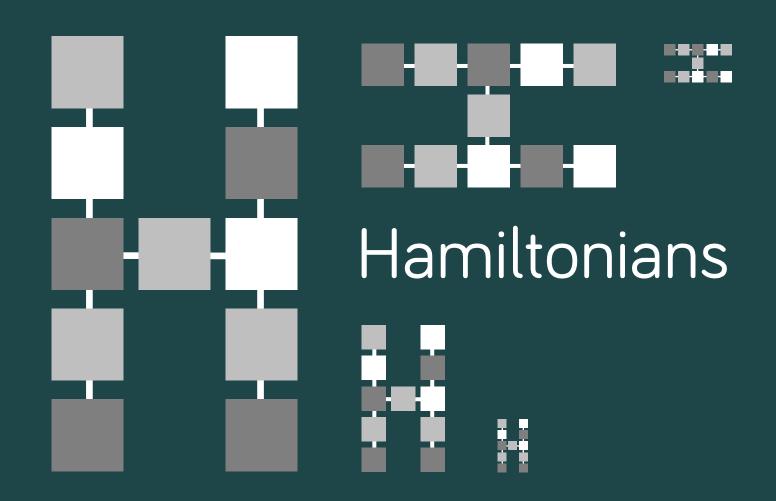
checking (quantum) proofs

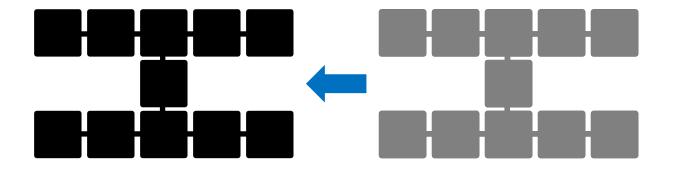
ground states?

how hard is it to find them: QMA

4 tensor networks
heuristics based on low entanglement







The state of the s

scattering

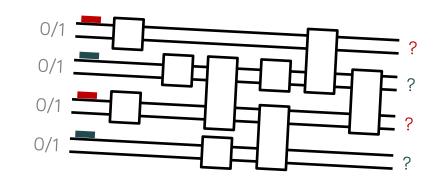
Universal computation by multi-particle quantum walk

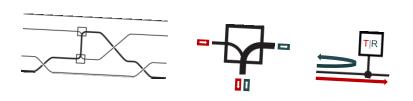
dual-rail encodingN wavepackets

$$a_j^{\dagger} a_k + a_k^{\dagger} a_j$$

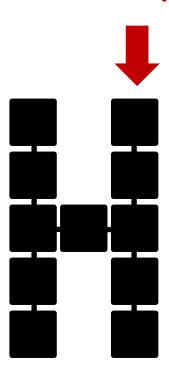
CPHASE: interaction

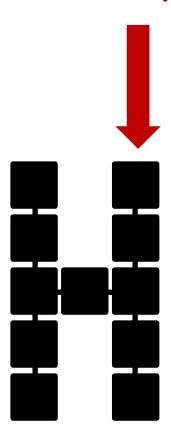
$$a_j^{\dagger} a_k^{\dagger} a_j a_k$$

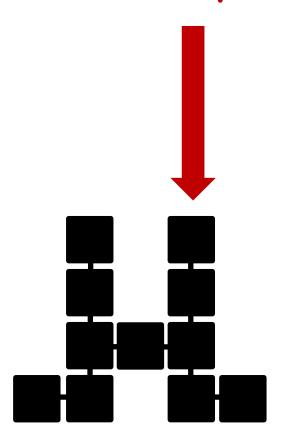


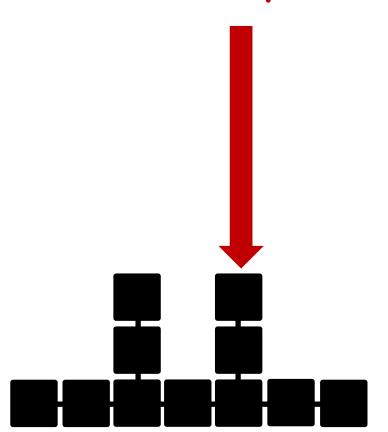


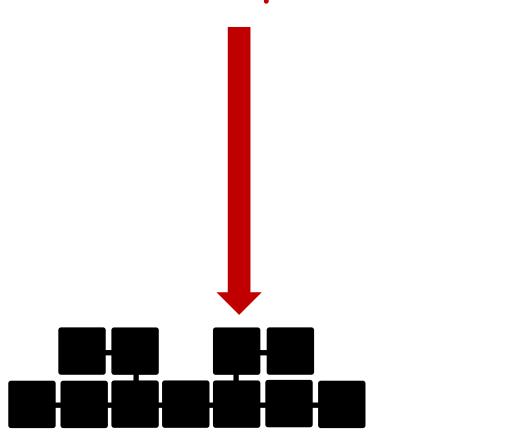
[Childs, Gosset, Webb, Science 339, 791 (2013)]





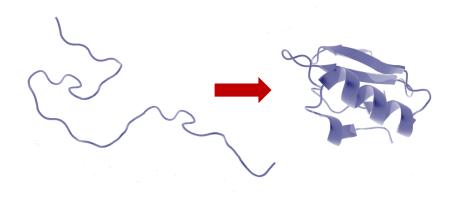


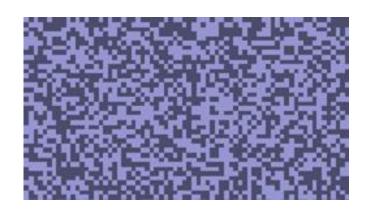




protein folding

spin glasses

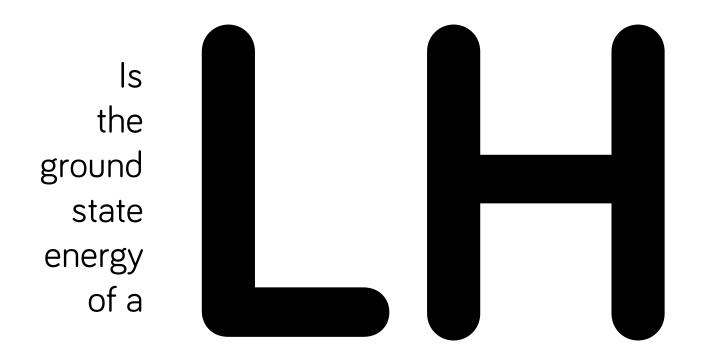




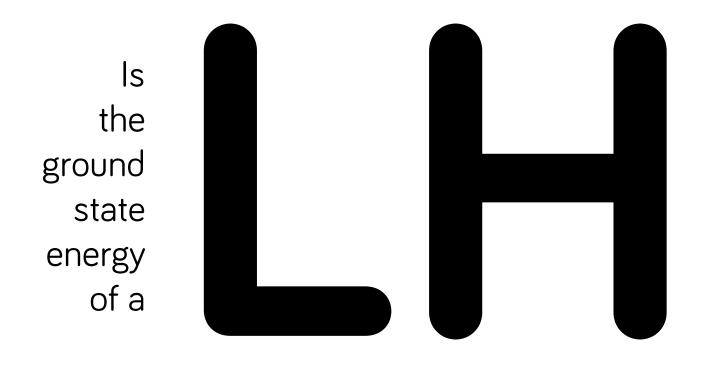
[uni-koeln.de]

local Hamiltonians

1 Hamiltonians and their ground states

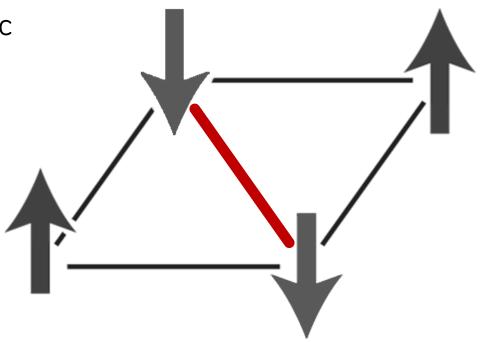


1 Hamiltonians and their ground states



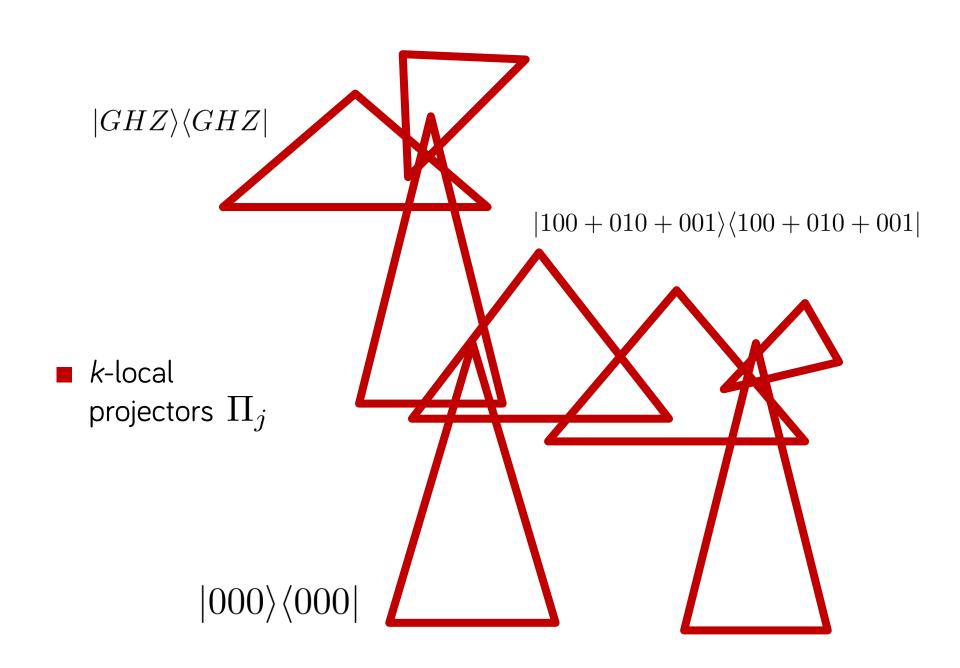
1 Frustrated systems

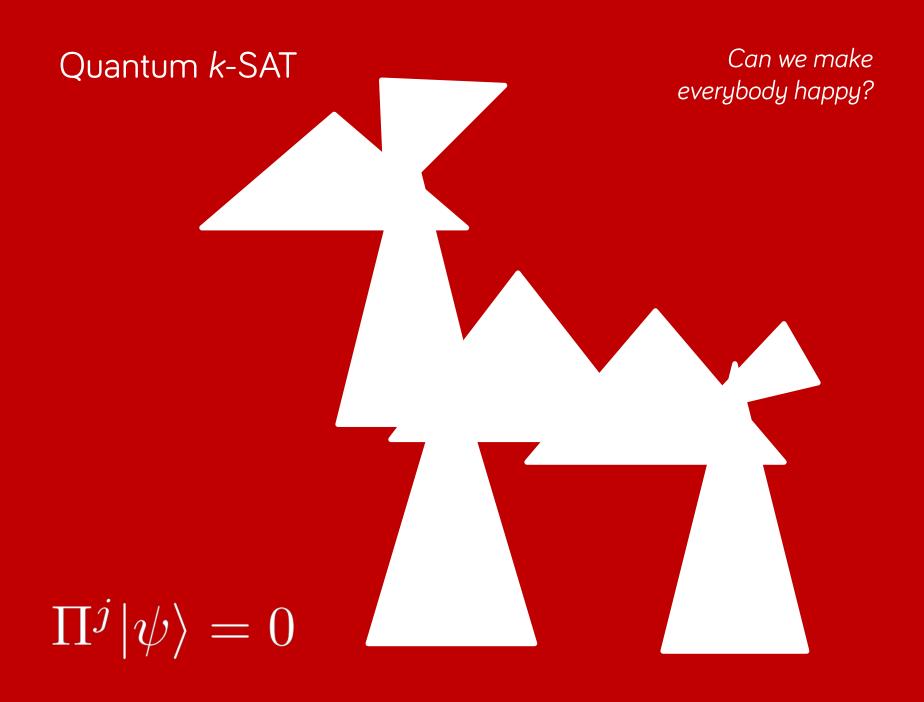
antiferromagnetic spin glass



a global ground state

find & describe it? is it entangled?





1

Local (*k*-body) Hamiltonians

optimizationQMA-completeness

$$H(t) = \sum_{j} H_j(t)$$

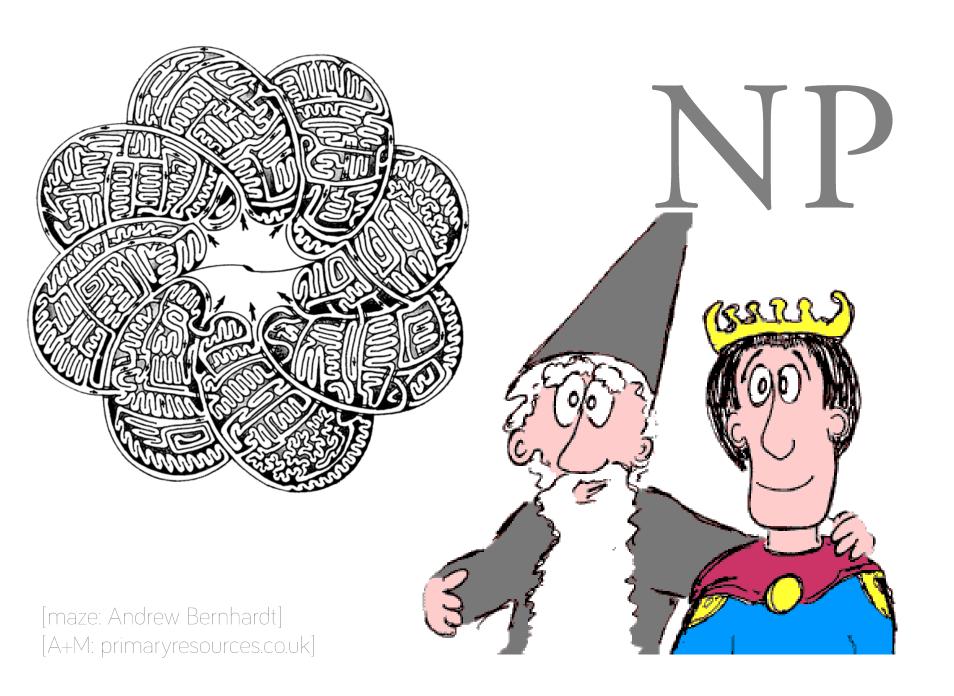
dynamicsBQP universality

- local particle dimension
- interaction geometry

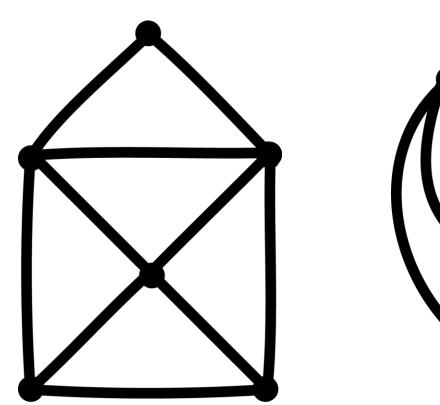
- time independence
 - translational invariance
- promise gap, eigenvalue gap, energy × time cost

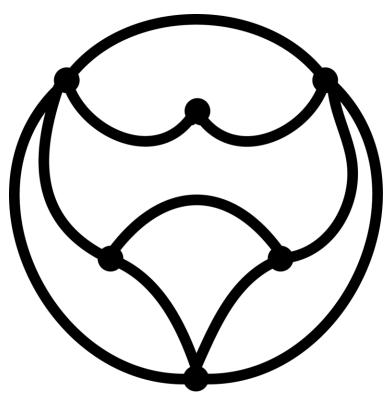
how hard is this question



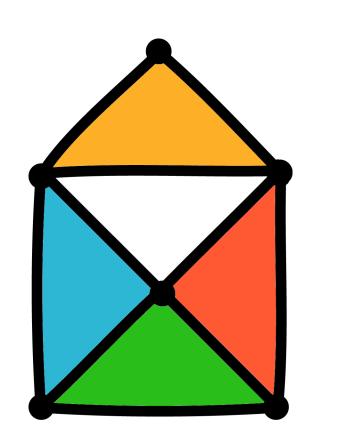


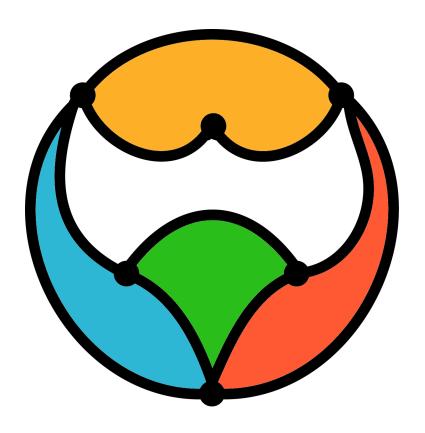
2 A graph isomorphism puzzle

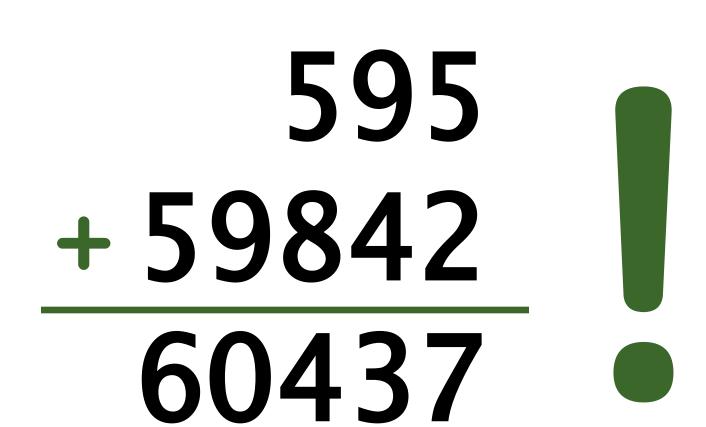


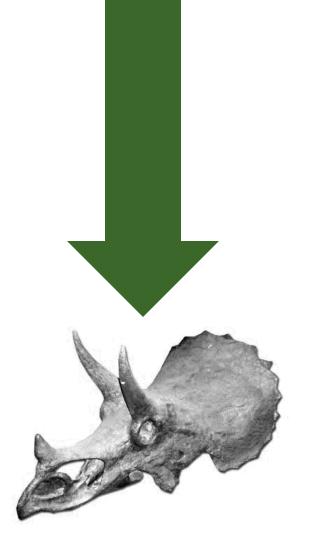


2 A graph isomorphism puzzle



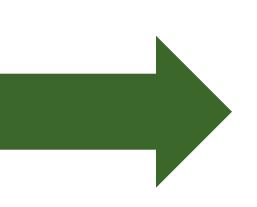






a proof

a witness

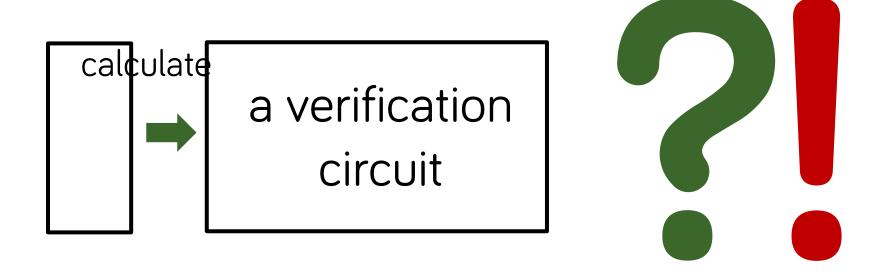


a verification circuit

from a uniform family

YES? Accept a good proof.

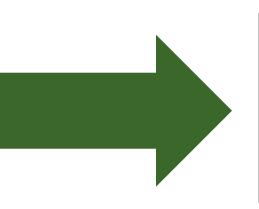
NO? Reject forgeries.



YES? Figure it out by yourself.

NO? Figure it out by yourself.

2 The class NP



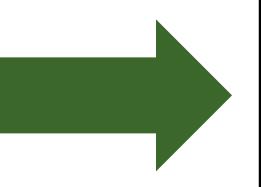
a verification circuit

from a uniform family

YES? Accept a good proof.

NO? Reject any witness.

Can you solve this problem? You just solved all of NP.

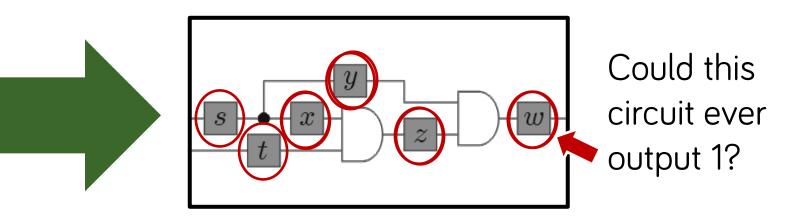


a verification circuit

Could this circuit ever output 1?

2 NP-hardness

Can you solve this problem? You just solved all of NP.



3-local conditions

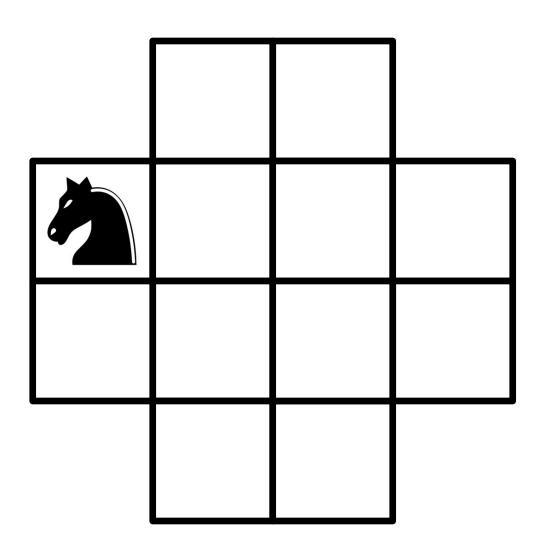
$$(\cdots \lor \cdots \lor \cdots) \land (\cdots \lor \cdots \lor \cdots) \land \cdots$$

■ 3-SAT is NP-hard.

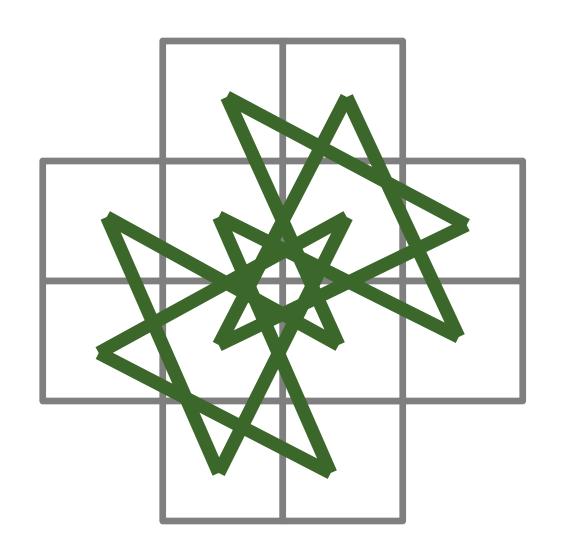
in NP.

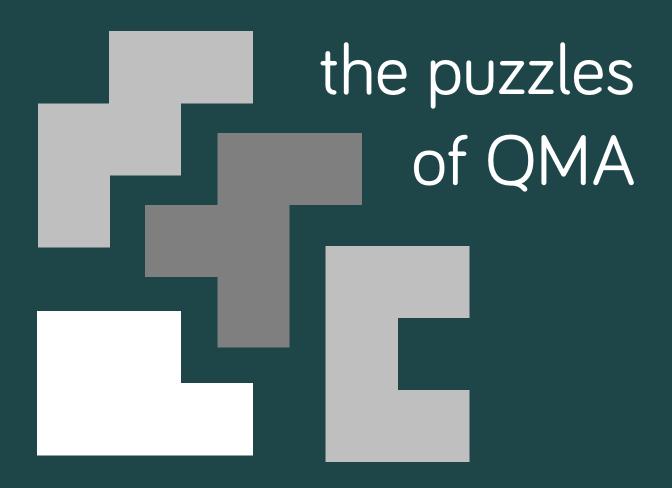
NP-complete. [Cook, Levin]

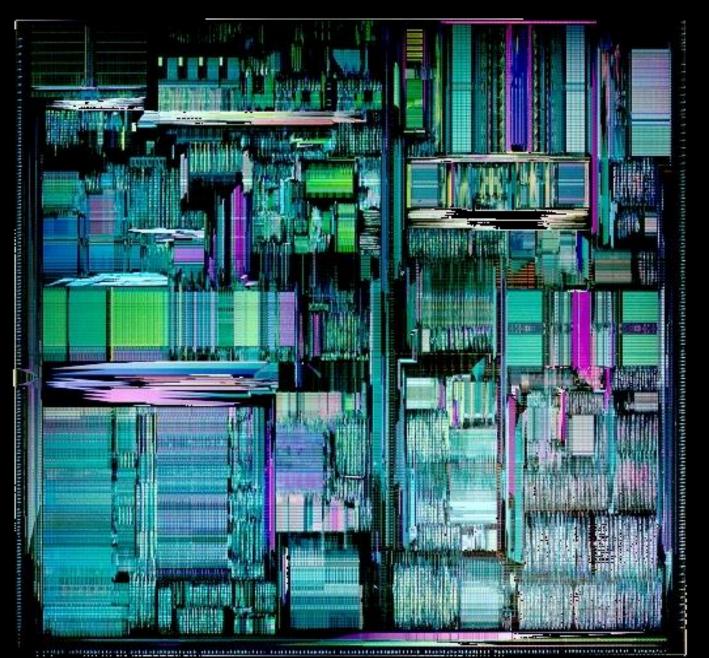
2 Hamiltonian cycle (also NP-c)



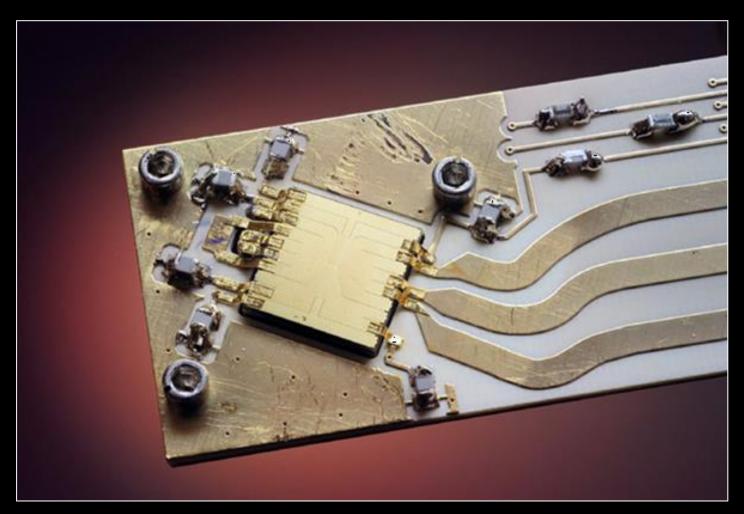
2 Hamiltonian cycle (also NP-c)



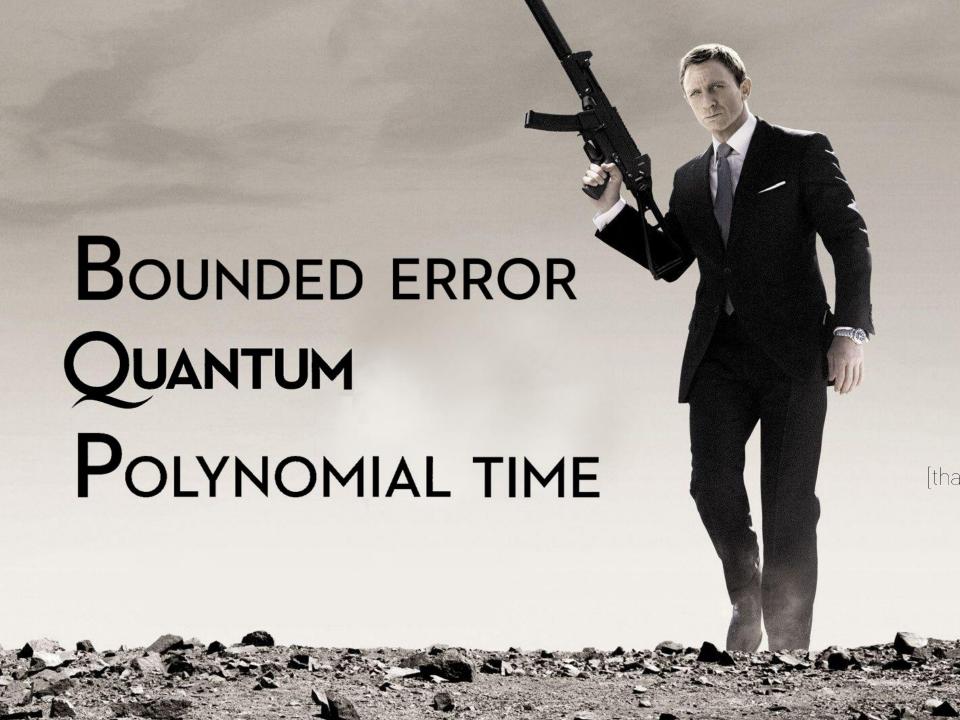


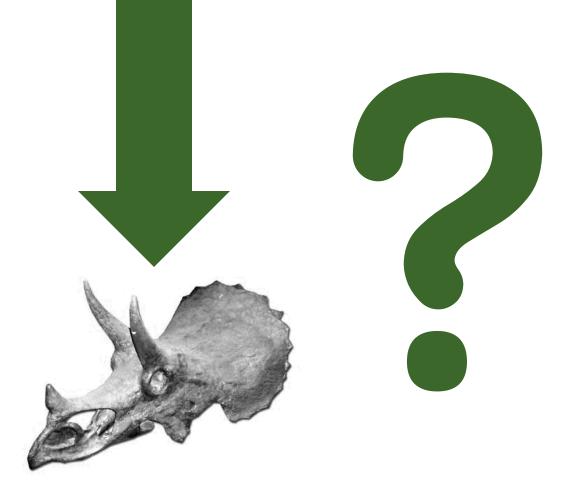


[1995 Pentium Pr

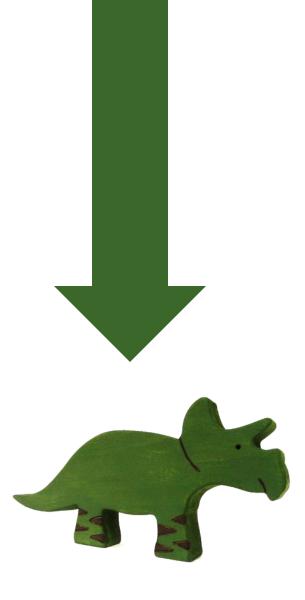


[NIST gold ion trap on aluminum-nitride backing, Y.Colombe/NIST]





Did dinosaurs exist?

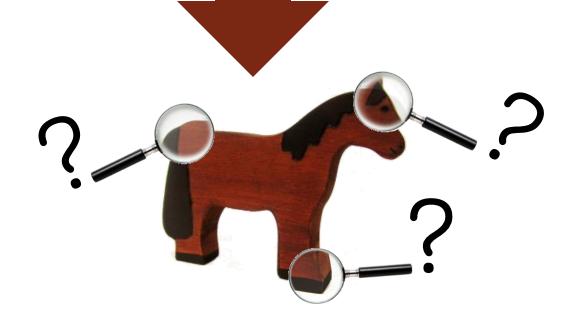


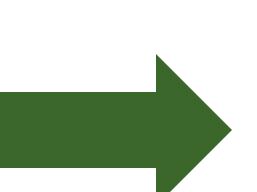
YES? Eager to be convinced.

NO? Don't be fooled easily.

Sometimes reject a genuine proof?

Accept a fake?



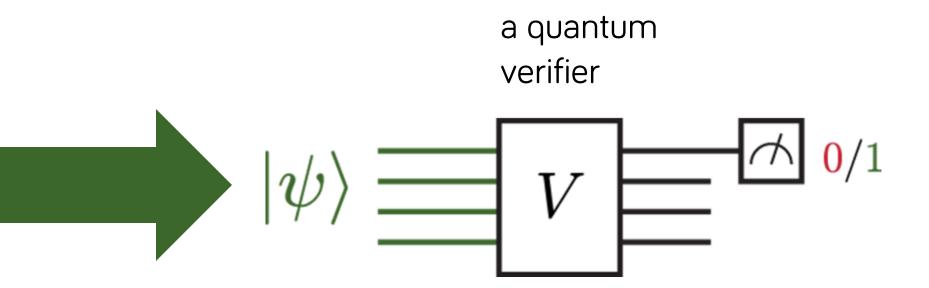


probabilistic verification

from a uniform family

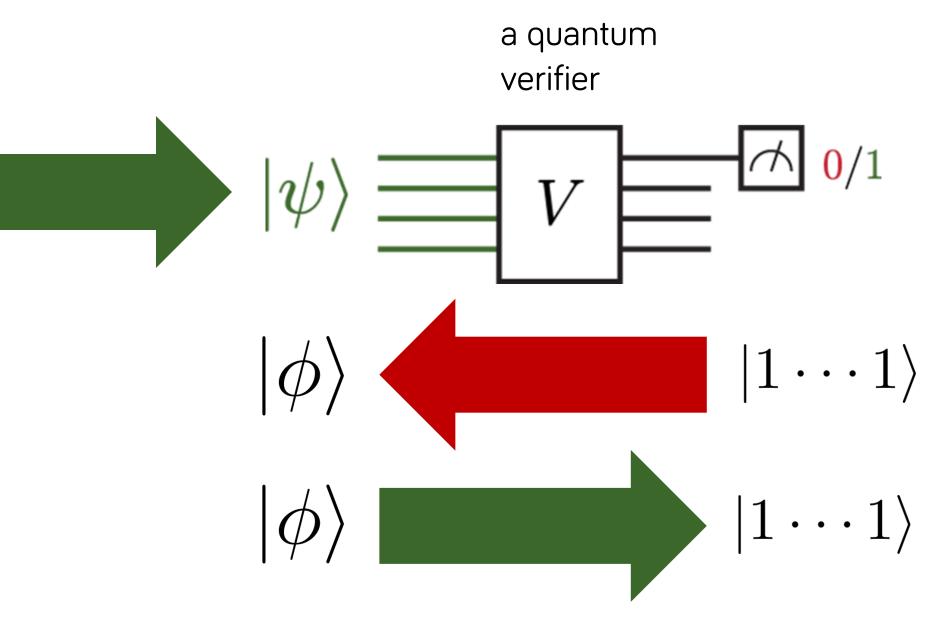
Accept a good proof with p > a. \perp

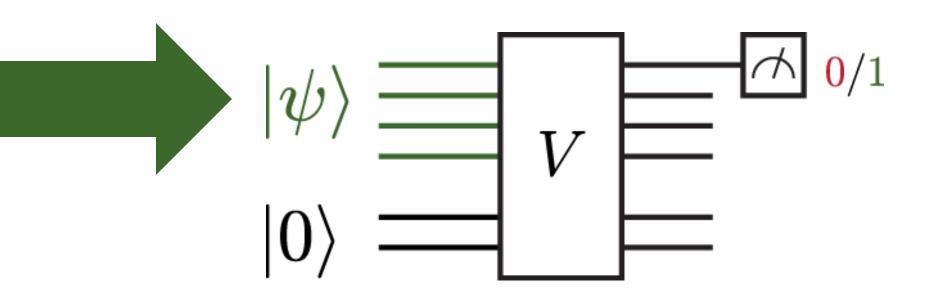
Probability of accepting p < b.



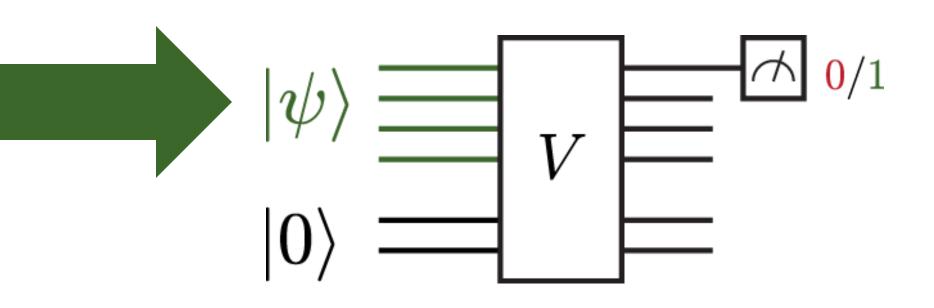
YES? Accept a good proof with p > a.

NO? Probability of accepting p < b.

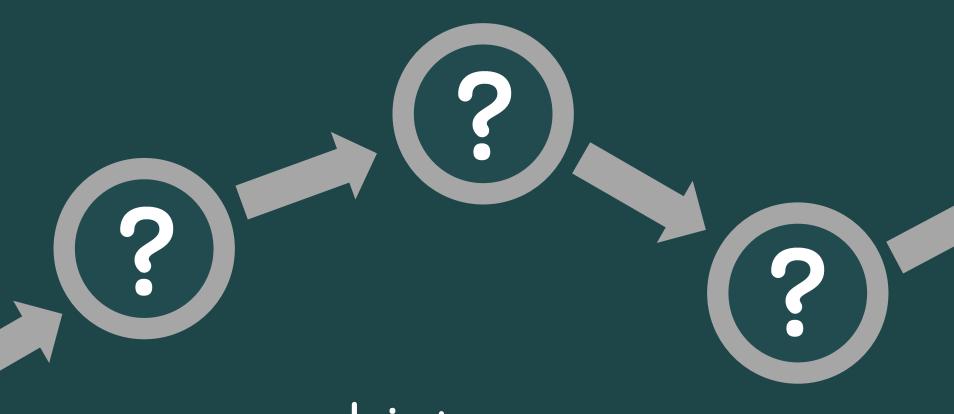




Accept a good proof with p > a. $\begin{bmatrix} a \\ b \end{bmatrix}$ Probability of accepting p < b.

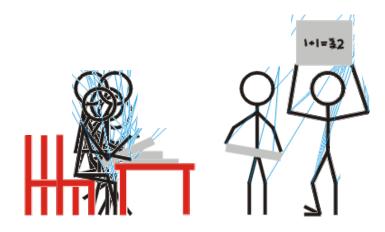


Could we feed this quantum verifier something that likely outputs 1?

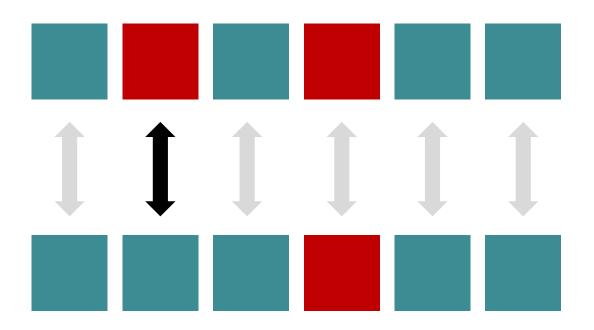


the history state ground

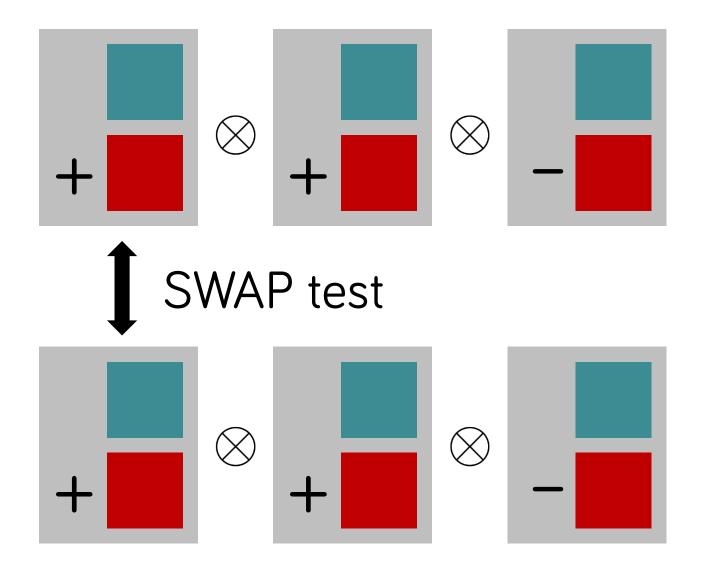
2 Snapshots of a computation



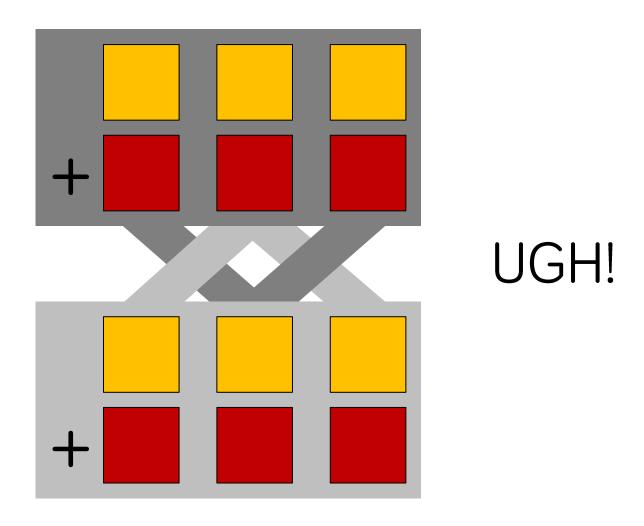
Locally comparing strings.



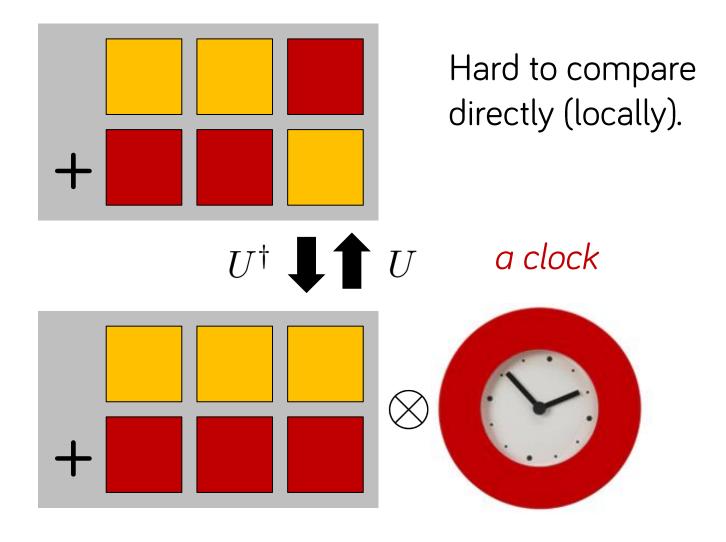
Locally comparing product states.



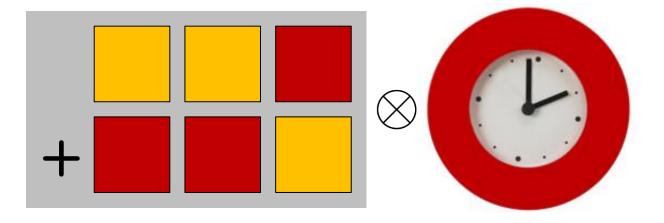
Locally comparing entangled states?



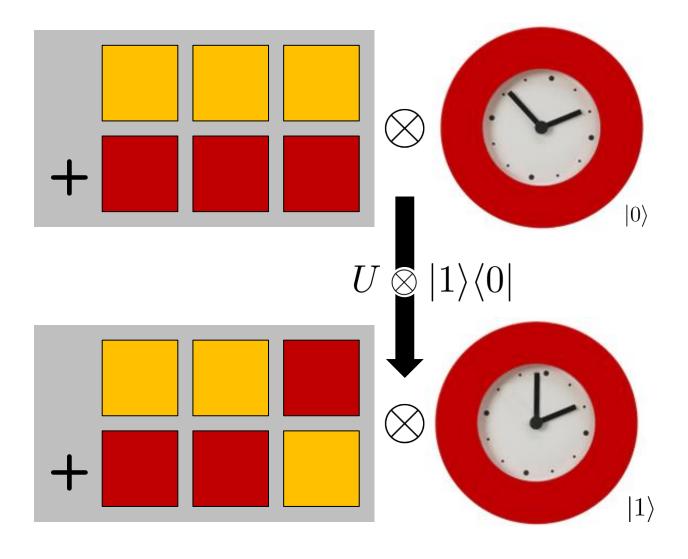
2 Labeling the data



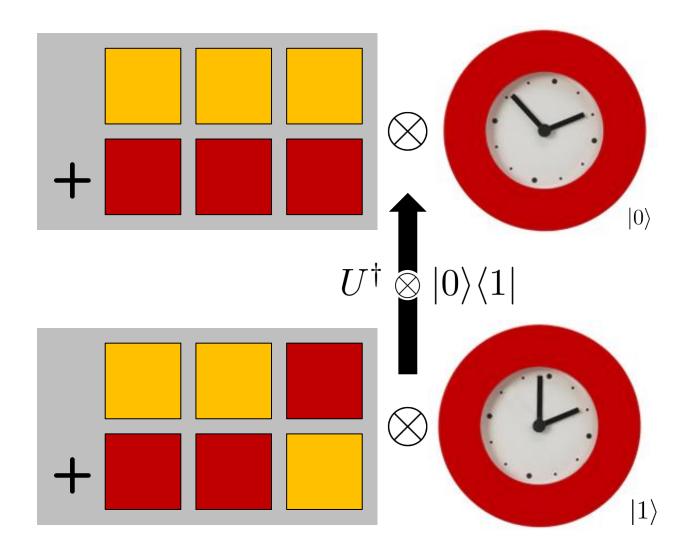
a clock



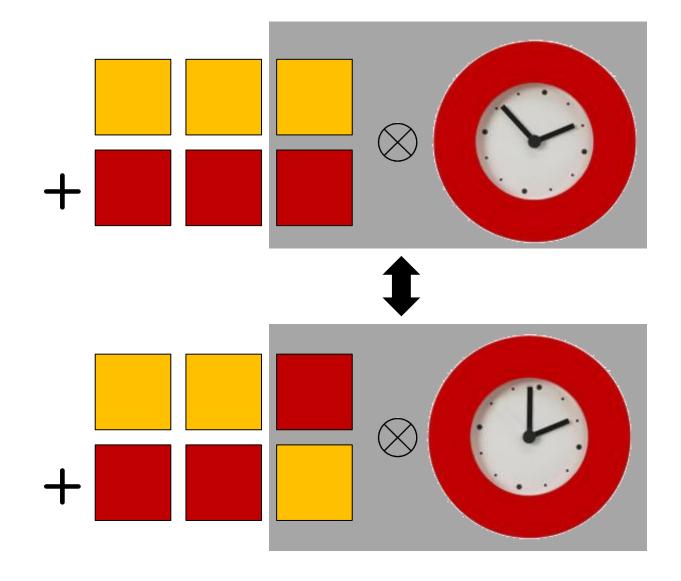
2 The data & the clock

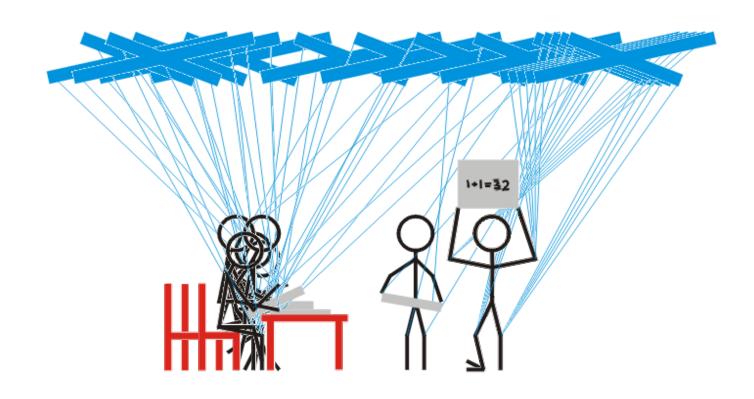


The data & the clock



The data & the clock: locally comparing related states





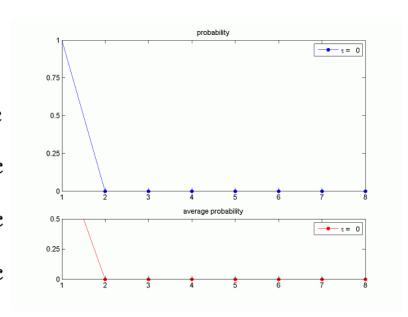
Feynman's (Hamiltonian) computer

The Hamiltonian

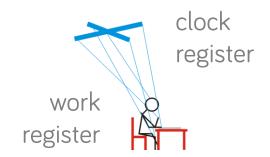
$$H_F = -\sum_{t=1}^{L} \left(U_t \otimes |t\rangle \langle t - 1| + U_t^{\dagger} \otimes |t - 1\rangle \langle t| \right)$$

A quantum walk on a "line"

$$egin{align} |arphi_0
angle\otimes|0
angle_c\ U_1\ket{arphi_0}\otimes\ket{1}_c\ U_2U_1\ket{arphi_0}\otimes\ket{2}_c\ U_3U_2U_1\ket{arphi_0}\otimes\ket{3}_c \end{aligned}$$



Feynman's (Hamiltonian) computer

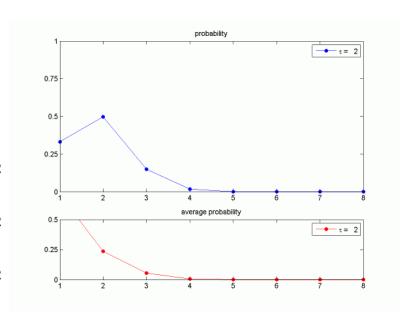


The Hamiltonian

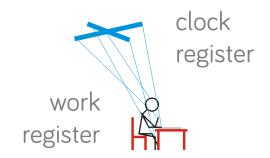
$$H_F = -\sum_{t=1}^{L} \left(U_t \otimes |t\rangle \langle t - 1| + U_t^{\dagger} \otimes |t - 1\rangle \langle t| \right)$$

A quantum walk on a "line"

$$egin{align} |arphi_0
angle\otimes|0
angle_c\ U_1\ket{arphi_0}\otimes\ket{1}_c\ U_2U_1\ket{arphi_0}\otimes\ket{2}_c\ U_3U_2U_1\ket{arphi_0}\otimes\ket{3}_c \end{aligned}$$



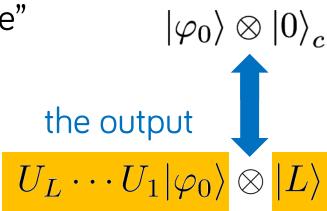
Feynman's (Hamiltonian) computer

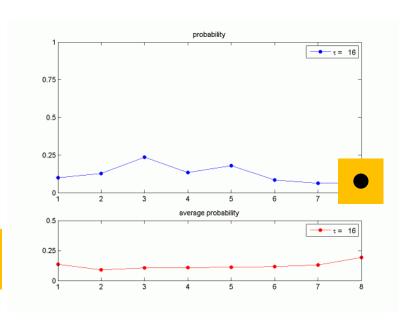


The Hamiltonian

$$H_F = -\sum_{t=1}^{L} \left(U_t \otimes |t\rangle \langle t - 1| + U_t^{\dagger} \otimes |t - 1\rangle \langle t| \right)$$

A quantum walk on a "line"





Feynman's Hamiltonian

$$H_F = -\sum_{t=1}^{L} \left(U_t \otimes |t\rangle \langle t - 1| + U_t^{\dagger} \otimes |t - 1\rangle \langle t| \right)$$

The "line" of states

$$|arphi_0
angle\otimes |0
angle_c \ U_1\,|arphi_0
angle\otimes |1
angle_c \ U_2U_1\,|arphi_0
angle\otimes |2
angle_c \ U_3U_2U_1\,|arphi_0
angle\otimes |3
angle_c \ U_4U_3U_2U_1\,|arphi_0
angle\otimes |4
angle_c \ H_F = - \left[egin{array}{cccc} 0 & 1 & 0 & 0 & 0 \ 1 & 0 & 1 & 0 & 0 \ 0 & 1 & 0 & 1 & 0 \ 0 & 0 & 1 & 0 & 1 \ 0 & 0 & 0 & 1 & 0 \ \end{array}
ight]$$

The eigenvectors: combinations of plane waves

Feynman's Hamiltonian

$$H_F = -\sum_{t=1}^{L} \left(U_t \otimes |t\rangle \langle t - 1| + U_t^{\dagger} \otimes |t - 1\rangle \langle t| \right)$$

The "line" of states

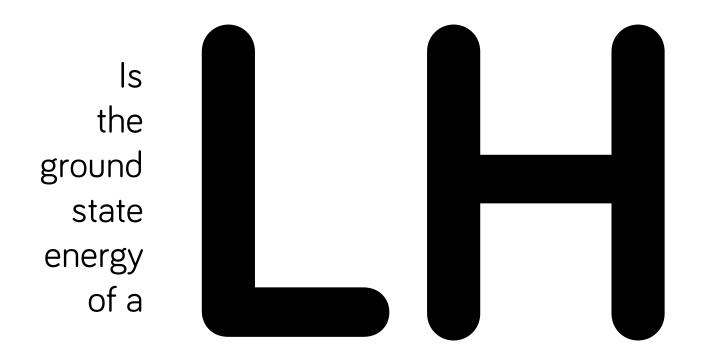
$$egin{align} |arphi_0
angle\otimes|0
angle_c\ U_1\,|arphi_0
angle\otimes|1
angle_c\ U_2U_1\,|arphi_0
angle\otimes|2
angle_c\ U_3U_2U_1\,|arphi_0
angle\otimes|3
angle_c\ U_4U_3U_2U_1\,|arphi_0
angle\otimes|4
angle_c \end{aligned}$$

a possibility: wrap around a circle

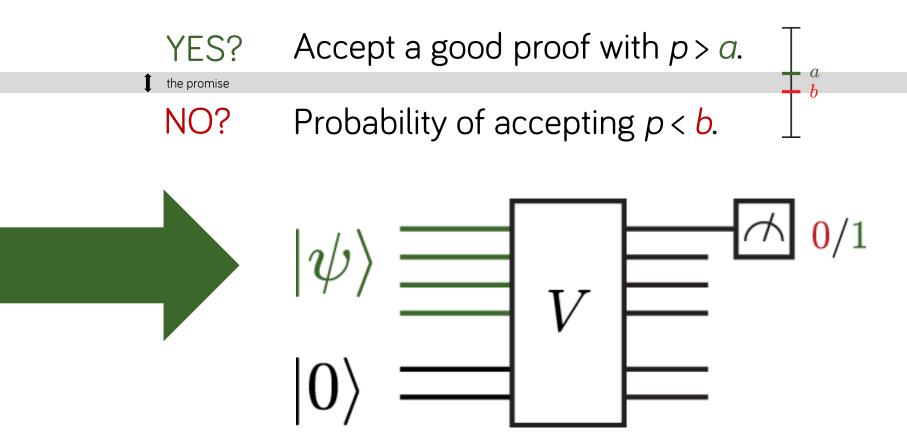
$$H_F = - egin{bmatrix} 0 & 1 & 0 & 0 & 1 \ 1 & 0 & 1 & 0 & 0 \ 0 & 1 & 0 & 1 & 0 \ 0 & 0 & 1 & 0 & 1 \ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

The eigenvectors: combinations of plane waves

1 Hamiltonians and their ground states

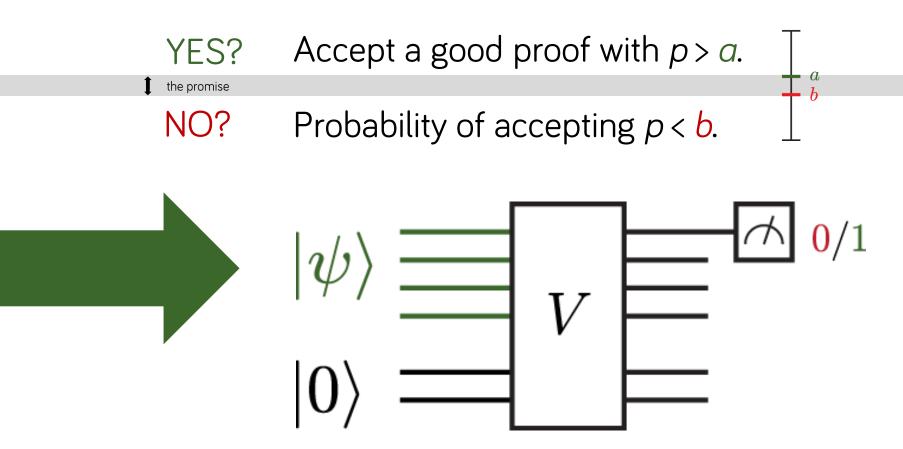


1 The QMA protocol



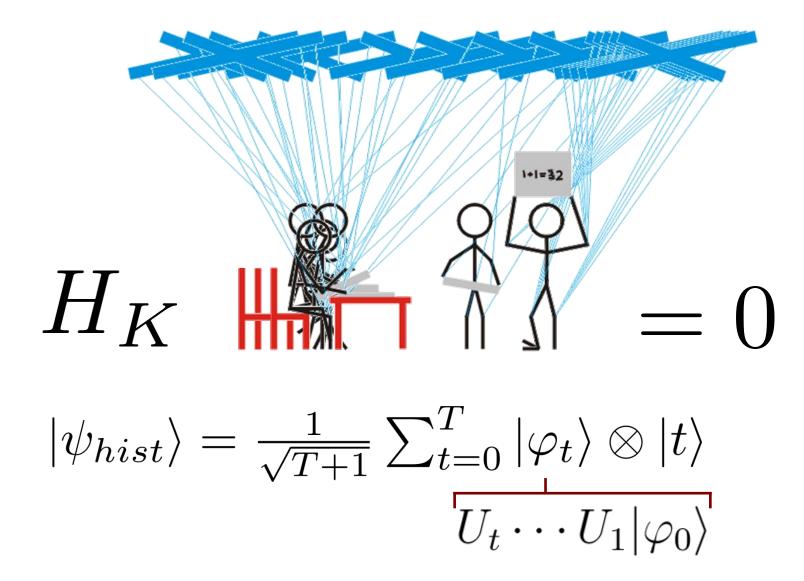
- Is there an acceptable quantum witness?
- Is some local Hamiltonian (nearly) frustration-free?

1 The QMA protocol



- Is there an acceptable quantum witness?
- Does some local Hamiltonian have a low ground energy?

The history state: a ground state



c-o-n-d-i-t-i-o-n-s

clock encoding state progression initialization

$$|\cdots 000\cdots 0\rangle \otimes |0\rangle$$

$$|arphi_t
angle\otimes|t
angle$$

$$|\varphi_{t+1}\rangle\otimes|t+1\rangle$$

$$|\psi_{hist}\rangle = \frac{1}{\sqrt{T+1}} \sum_{t=0}^{T} |\varphi_t\rangle \otimes |t\rangle$$

2 Checking proper computation

uniform superpositions: zero-energy eigenstates

$$H_{t} = \frac{1}{2} \underbrace{\left(t + 1 \right) \left\langle t + 1 \right] + \left[t \right\rangle \left\langle t \right]}_{-\frac{1}{2}} \underbrace{\left(U_{t+1} \otimes |t + 1 \rangle \left\langle t \right) + \left[U_{t+1}^{\dagger} \otimes |t \rangle \left\langle t + 1 \right] \right)}_{Feynman's Hamiltonian} = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

a nice basis

$$|\psi_{hist}\rangle = \frac{1}{\sqrt{T+1}} \sum_{t=0}^{T} |\varphi_t\rangle \otimes |t\rangle$$

2 Checking proper computation

$$\sum_{t=1}^{L} H_t = rac{1}{2} egin{bmatrix} 1 & -1 & 0 & 0 & 0 \ -1 & 2 & -1 & 0 & 0 \ 0 & -1 & 2 & -1 & 0 \ 0 & 0 & -1 & 2 & -1 \ semidefinite \end{bmatrix}$$

$$\begin{aligned} |\varphi_t\rangle \otimes |t\rangle \\ |\varphi_{t+1}\rangle \otimes |t+1\rangle \end{aligned}$$

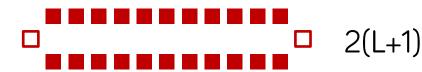
a nice basis

$$|\psi_{hist}\rangle = \frac{1}{\sqrt{T+1}} \sum_{t=0}^{T} |\varphi_t\rangle \otimes |t\rangle$$

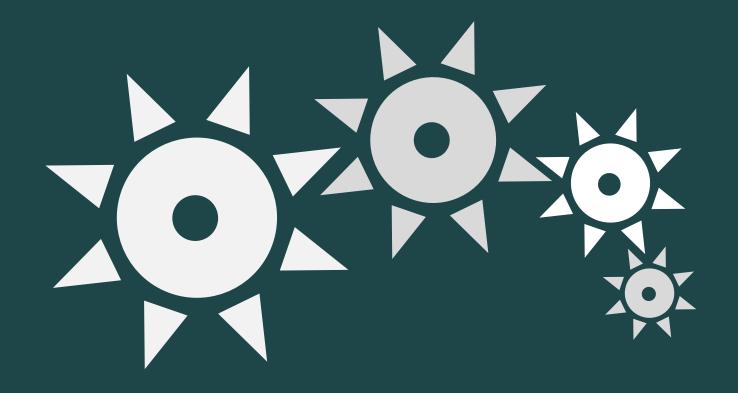
$$\sum_{t=1}^{L} H_t = rac{1}{2} egin{bmatrix} 1 & -1 & 0 & 0 & 0 \ -1 & 2 & -1 & 0 & 0 \ 0 & -1 & 2 & -1 & 0 \ 0 & 0 & -1 & 2 & -1 \ semidefinite \end{bmatrix}$$

$$\sum_{t} e^{-ipt} |\varphi_{t}\rangle \otimes \frac{|t\rangle}{|t\rangle}$$

eigenvectors: combinations of plane waves

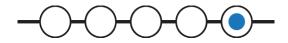


an L⁻² eigenvalue gap

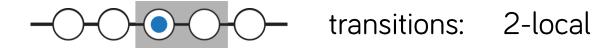


a clock workshop

the pulse



the pulse



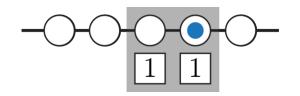
joining the states by projectors

the pulse

00100 **+**00010

 \blacksquare joining the states by projectors $|01-10\rangle\langle01-10|$

the pulse

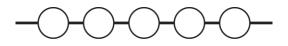


transitions: 2-local 2-qubit gates: 4-local

interaction with the data

 \blacksquare joining the states by projectors $|01-10\rangle\langle01-10|$

the pulse



transitions: 2-local 2-qubit gates: 4-local

00000

a "dead" state

Initialization!

 \blacksquare joining the states by projectors $|01-10\rangle\langle01-10|$

$$|t\rangle = |\mathbf{3}\rangle$$

$$= |\mathbf{100000}\rangle$$

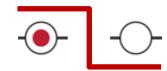
2-local terms"compatible" with

11...1100...00

 $|01\rangle\langle01|$

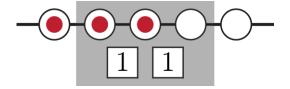
$$|t\rangle = |3\rangle = |11000\rangle$$

- by transitions? $|100-110\rangle\langle100-110|$
- enforce a domain wall: fix the ends



 \blacksquare the ground state $\cdots + |2\rangle + |3\rangle + \ldots$

the domain wall



transitions: 3-local 2-qubit gates: 5-local

interacting with work (data) qubits

$$H_t = \frac{1}{2} \left(|t+1\rangle\langle t+1| + |t\rangle\langle t| \right)$$
$$-\frac{1}{2} \left(U_{t+1} \otimes |t+1\rangle\langle t| + U_{t+1}^{\dagger} \otimes |t\rangle\langle t+1| \right)$$

5-local

YES

ground state

NO

ground state

lower bound on the ground state energy

good clock states ...01...
bad
clock
states

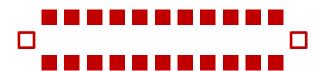
history states

non-uniform superpositions

history states

a polynomially small gap

$$\Delta = O\left(L^{-2}\right)$$



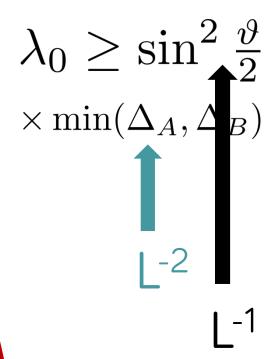
history states

well badly

initialized history states

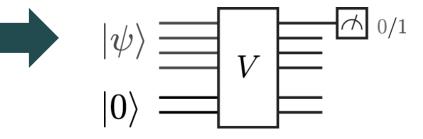
accepted states

accepted states



3 -LH and QMA verification

[N., Mozes 07]



NO V is unlikely to accept anything (ϵ)

lowest eigenvalue

$$\geq \frac{c\left(1 - \sqrt{\epsilon}\right)}{L^2}$$

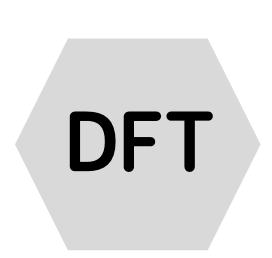
promise gap L^{-2}

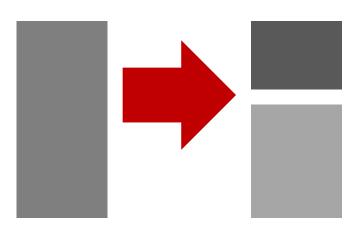
(needs $\epsilon = L^{-1}$)

YES a well accepted proof $(1-\epsilon)$

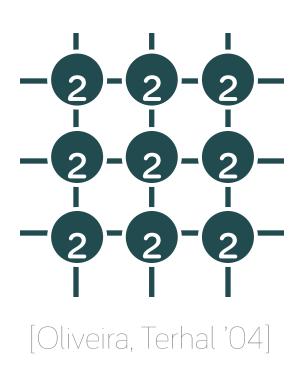
the history state

$$\leq \frac{\epsilon}{L+1}$$

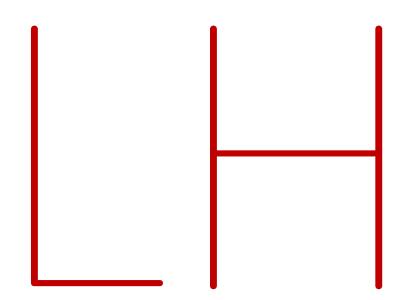




2 2-local Hamiltonian is QMA complete



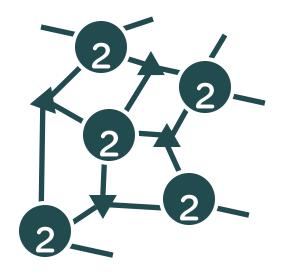
a global minimum



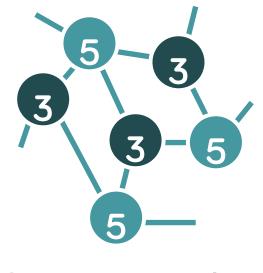
$$\sum H_{jk}$$

[Hallgren, N., Narayanaswami '13]

2 QMA₁-complete problems



[Gosset, N. '13]



[Eldar, Regev '08]

projections & gadgets

From a 5-local to a 3-local clock [Kempe, Regev]

the domain wall

transitions:

transitions

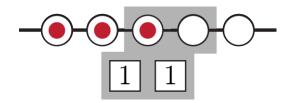
$$|1\rangle\langle 0| + |0\rangle\langle 1|$$

punish mistimed transitions?

$$|01\rangle\langle 01|$$

From a 5-local to a 3-local clock [Kempe, Regev]

■ the domain wall



transitions: 1-local 2-qubit gates: 3-local

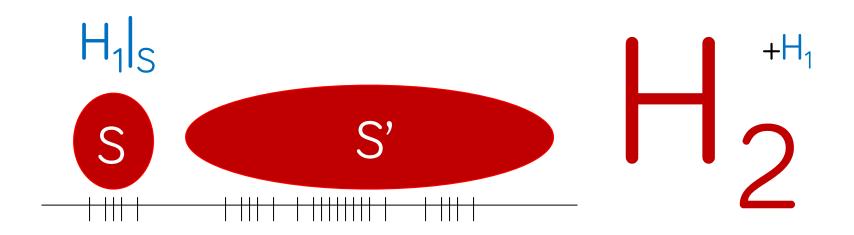
transitions

$$|10\rangle\langle 10|_{1,2} + |10\rangle\langle 10|_{2,3} - X_2$$

punish mistimed transitions

$$|01\rangle\langle 01|$$

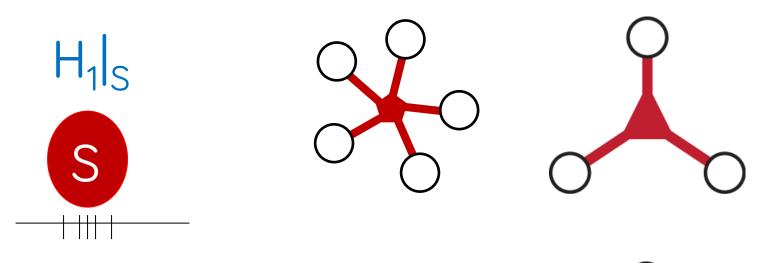
The projection lemma: a useful tool for proving gaps



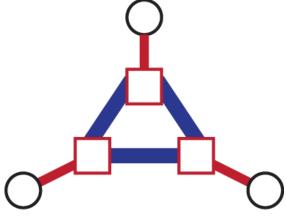
- a HIGH energy penalty for "illegal" states?
- the low energy states live near the "legal" subspace

The projection lemma in action

The projection lemma: a useful tool for proving gaps

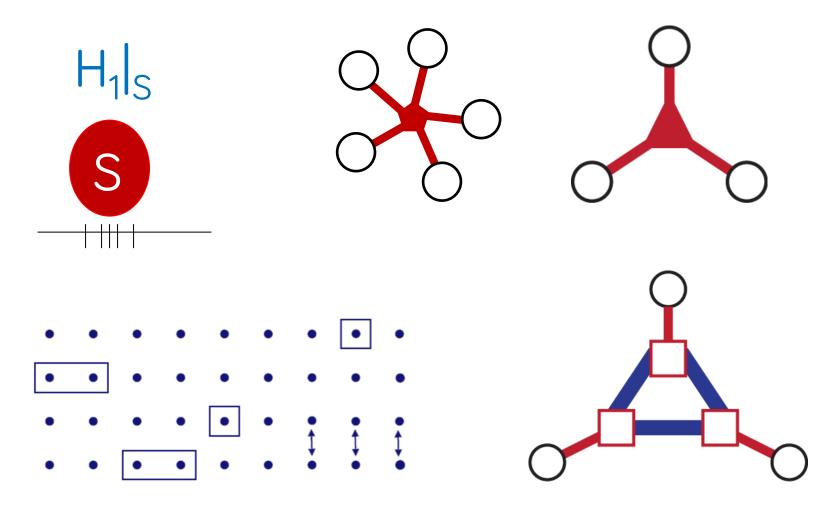


- 3-LH that works well in the "good clock subspace"
- 2-LH from effective interactions



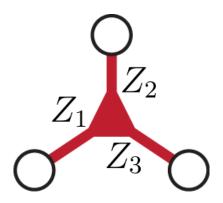
[Kempe, Kitaev, Regev '03]

The projection lemma: a useful tool for proving gaps



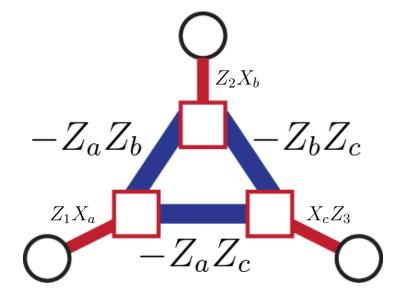
2-loc. H. in 2D [Oliveira, Terhal '05]

Further decreasing locality: a "3 from 2" gadget



- strongly coupled ancillas (a new energy scale)
- perturbation theory

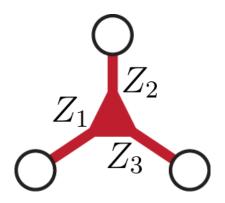
$$G'(z) = (z\mathbb{I} - H')^{-1}$$



$$H' = H + V$$

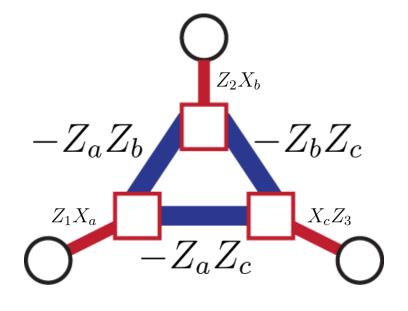
$$||H|| \gg ||V||$$
 $S = \operatorname{span} \{|000\rangle, |111\rangle\}$

Further decreasing locality: a "3 from 2" gadget



- strongly coupled ancillas (a new energy scale)
- perturbation theory gives us an effective Hamiltonian

$$V|_{S}$$
 $V^{2}|_{S}$ $V^{3}|_{S}$ projection unwanted the effective lemma (subtract) 3-local term



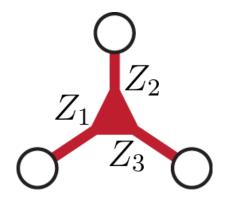
$$H' = H + V$$
 $||H|| \gg ||V||$

$$S = \operatorname{span}\{|000\rangle, |111\rangle\}$$

[Kempe, Kitaev, Regev '03]

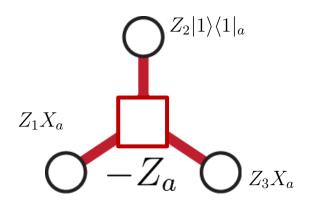
3 STRONG local fields, OK interactions

[Cao et al., 1311.2555]



- strongly bound a single ancilla still needs strong interactions
- perturbation theory gives us an effective Hamiltonian

$$\begin{array}{c|cccc} V & V^2 & V^3 & V^3 \\ \text{projection} & \text{unwanted} & \text{the effective} \\ \text{lemma} & \text{(subtract)} & \text{3-local term} \end{array}$$



$$S = \{|0\rangle\}$$

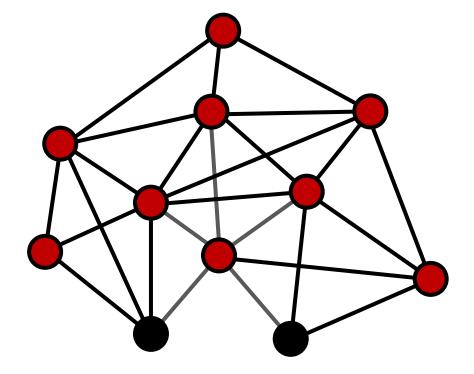
$$H' = H + V$$
 $||H|| \gg ||V||$

special cases (Z-basis) exact gadgets!

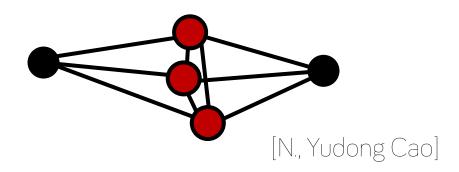
[Biamonte 0801.3800]

3 "Strengthening", intermediary gadgets?

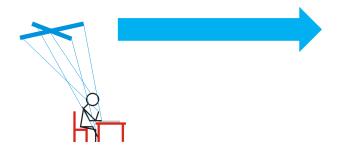
classically easy: copy



quantumly?

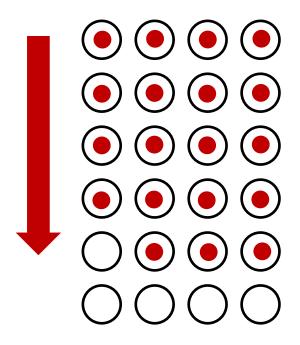


clock/work registers



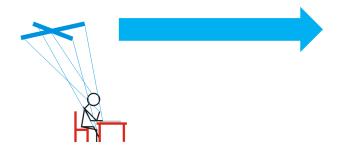
[Kempe, Kitaev, Regev]

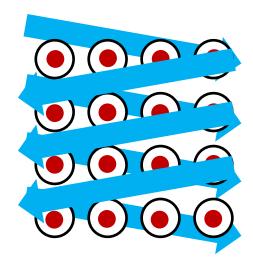
a geometric clock



[Mizel] [Aharonov+]

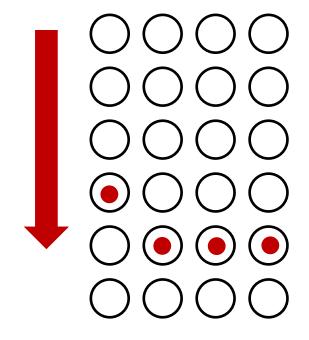
clock/work registers





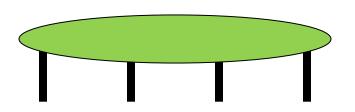
geometric locality

a geometric clock



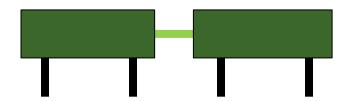
moving data on a line

l-H-a-m-i-l-t-o-n-i-a-n-s-i-n-1-D-L-o-c-a-l-H-a-m-i-l-t-o-n-i-a-n-s-i-n-1-D-L-o-c-a-l-H-a-m



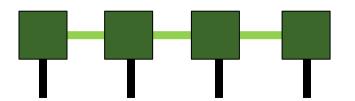
 \sum $c_{stuv}|stuv\rangle$ s,t,u,v=0

Schmidt decomposition



$$\sum_{b=1}^{\chi} Q_b^{st} R_b^{uv}$$

many decompositions

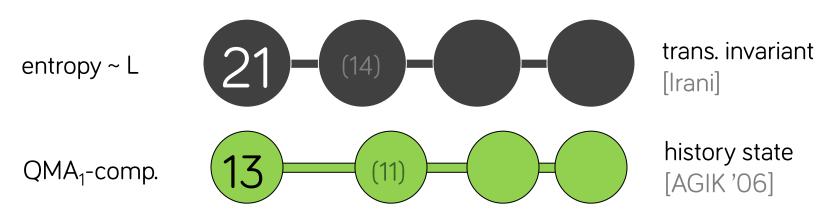


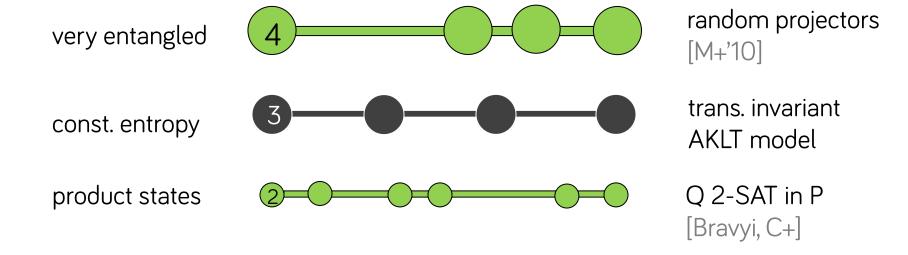
a local description

$$\sum_{b=1}^{\chi} \sum_{a=1}^{\chi} A_a^s B_{ab}^t \sum_{c=1}^{\chi} C_{bc}^u D_c^v$$

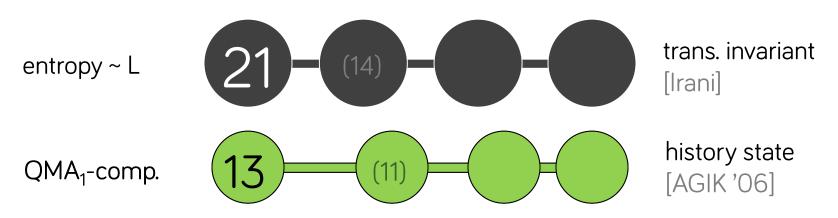
low entanglement ansatz, local optimization, easy manipulation

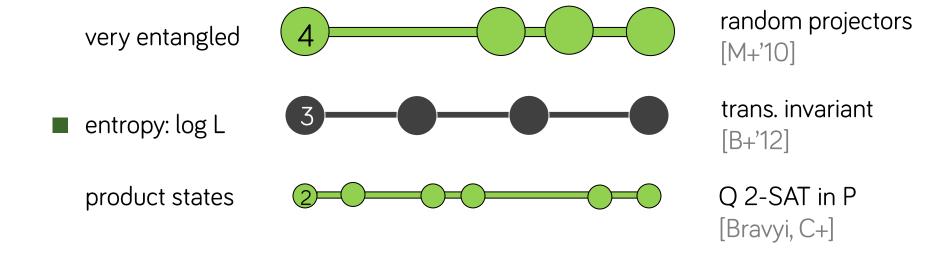
constant gap: OK [Landau+ '13]



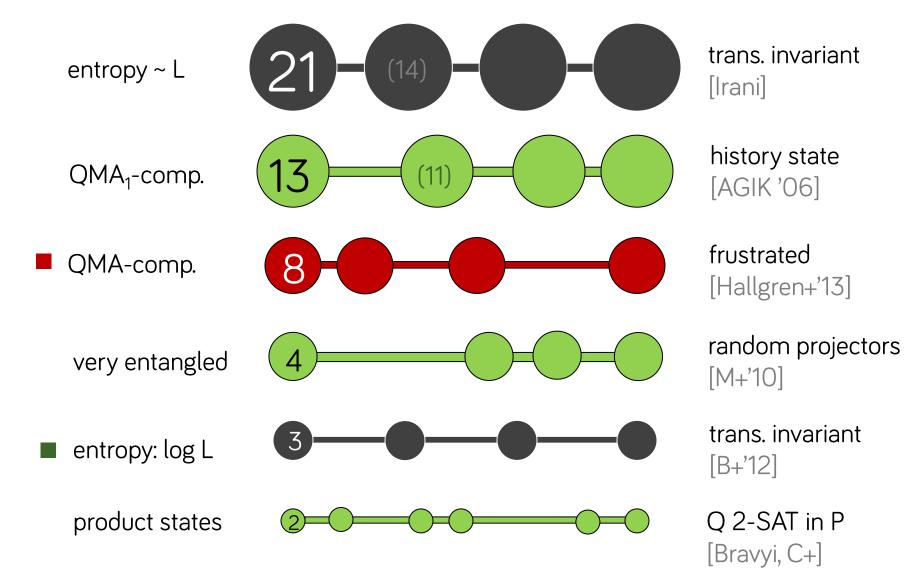


constant gap: OK [Landau+ '13]





constant gap: OK [Landau+ '13]



1 Hamiltonians?

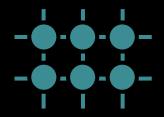
optimization & dynamics

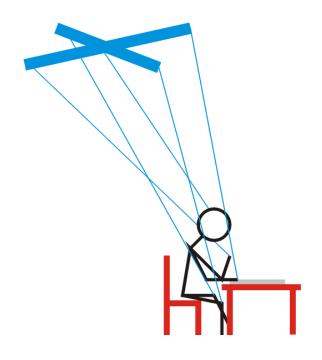
2 complexity checking (quantum) proofs

ground states?

how hard is it to find them: QMA

4 tensor networks
heuristics based on low entanglement





Local Hamiltonians & Quantum Complexity

