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scattering

Universal computation by multi-particle qQuantum walk
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protein folding spin glasses
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Hamiltonians and their ground states
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Frustrated systems Everybody can't be happy.

antiferromagnetic

VAW

a global find & describe it?
ground state H A R D? is it entangled?
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Quantum k-SAT Can we make
everybody happy?

[V |p) = 0



Local (k-body) Hamiltonians

B optimization
QMA-completeness

H(t) = Y ()

®m dynamics
BQP universality

local particle [0 A
dimension * ©

interaction
geometry

time
independence

translational
Invariance

promise gap,
eigenvalue gap,
energy x time cost
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[maze: Andrew Bernhardt]
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A graph isomorphism puzzle




A graph isomorphism puzzle




A cryptarithmetic puzzle







The NP protocol

Did dinosaurs exist?



The NP protocol

Did dinosaurs exist?

a withess




The class NP Yes/no questions, easy to verify solutions.

a verification
circuit

YES? Accept a good proof.

NO? Reject forgeries.



The class P Yes/no questions that we can answer.

caltulatd

- a verification

circuit

YES? Figure it out by yourself.
NO?  Figure it out by yourself.



The class NP Yes/no questions, easy to verify solutions.

a verification
circuit

YES? Accept a good proof.

NO? Reject any witness.



NP-hardness The mother of them all.

B Can you solve this problem? You just solved all of NP.

a verification Could this
circult ever




NP-hardness The mother of them all.

B Can you solve this problem? You just solved all of NP.

Could this

]@ circuit ever
| S

‘ output 17

3-local conditions
(\/\/) /\(...\/...\/...)/\...

m 3-SAT is NP-hard.
in NP.
NP-complete. [Cook, Levin]




Hamiltonian cycle (also NP-c)




Hamiltonian cycle (also NP-c)




the puzzles
of QMA
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INIST gold ion trap on alurminum-nitride backing, Y.Colombe/NIST]
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Did dinosaurs exist?

The MA protocol



The MA protocol

Did dinosaurs exist?

wooden animals: Imagination Kids Toys]



Did dinosaurs exist?

The MA protocol

YES?
Eager to be
convinced.

Imagnifying glass: hilllllall]



The MA protocol

Recognizing fakes?




The MA protocol

Recognizing fakes?

NO?
Don't be
fooled
easily.



Probabilistic checks

Accept
a fake?

Sometimes reject
a genuine proof?



The MA protocol Probabilistic checks.

probabilistic
verification

YES? Accept a good proof with p > a.

S e

NO?  Probability of acceptingp<b. L



The QMA protocol Quantum checks.

a quantum
verifier

- /) oy

YES? Accept a good proof with p> a.

S e

NO?  Probability of accepting p<b. L



The QMA protocol This is too simple.

a quantum
verifier
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The QMA protocol Ancillas are necessary.

) o/

0)

YES? Accept a good proof with p> a.

S e

NO?  Probability of accepting p<b. L



A QMA-hard question

) o/

0)

Could we feed this quantum verifier
something that likely outputs 17
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Snapshots of a computation




Locally comparing strings.

I
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Locally comparing product states.

_
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I SWAP test
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Locally comparing entangled states?

UGH!




Labeling the data

Hard to compare
directly (locally).




Labeling the data




The data & the clock
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The data & the clock




The data & the clock: locally comparing related states




Feynman’s computer The data & a pointer.




clock

Feynman's (Hamiltonian) computer <
\\\ | register

work
m The Hamiltonian register

t=1
® A quantum walk N
on a “line” o) ®0). |
Ul (:00) ® 1>c
UsUrq (,00> X 2>C 0 -
UsUaUs o) ®|3), -




Feynman'’s (Hamiltonian) computer

> Clock
OO | register
work
® The Hamiltonian register

L
Hp ==Y (U@ ) (t—1]+Uf @[t —1) ()

t=1
B A quantum walk T
on a “line” 0o) ®0). |
Ul (:00) ® 1>c
UxUs o) ®2), . e
UsU2Ui o) ® [3), 7 . -




- clock
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Feynman'’s (Hamiltonian) computer

work

® The Hamiltonian register

L
HF=—Z(Ut@:|t>(t—1|+U§®|t—1>(t|)

t=1

® A quantum walk R ——
on a “line” o) ® |0), -
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Hamiltonian QC

® Feynman’s Hamiltonian

It's a walk.

L
Hp ==Y (U@ ) (t— 1]+ Uf @ [t — 1) (t])

t=1

B The “line” of states

o) ® |0), 0 1 0

Ui |po) ® [1), 1 0 1

UxUi |po) @ [2), Hr=—-—10 1 0
UsUsUs | o) ® |3). 0 0 1
U,UsUsUy [ipo) ® [4), 0 0 0

m The eigenvectors: combinations of plane waves
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Hp

Hamiltonian QC

—Z(Ut®|t)(t—1|+Uf®|t—1)(t|)

t=1

® Feynman’s Hamiltonian

L

B The “line” of states

U1

UsUq
UsUs Uy
UsU3Us Uy

m The eigenvectors: combinations of plane waves
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Hamiltonians and their ground states
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The QMA protocol

YES?  Accept a good proof with p> a.

I the promise

NO?  Probability of accepting p< b.

S

0/1
=

0)

® |s there an acceptable quantum witness?

m |s some local Hamiltonian (nearly) frustration-free?



The QMA protocol

YES?  Accept a good proof with p> a.

I the promise

NO?  Probability of accepting p< b.

S

0/1
=

0)

® |s there an acceptable quantum witness?

m Does some local Hamiltonian have a low ground energy?



The history state: a ground state
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The history state is a ground state Local Hamiltonian

. tpu

clock encoding oY

k [OCOI state progression
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initialization _
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Checking proper computation

m uniform superpositions: zero-energy eigenstates

(It + 1)t + 1||+|[t) (¢
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Antisymmetry checks.

Eny

a projector

a nice basis
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Checking proper computation Antisymmetry checks.

1 -1 0 0 0
L 1 —1 2 —1 0 0
Zthz 0 -1 2 -1 0
t=1 0 0 -1 2 -1
positive 0 0 0 -1 1

semidefinite B

1) R |t)
lor1) ® [t + 1)

T
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a nice basis




Checking proper computation Antisymmetry checks.

1 —1 0O 0 O
L 1 —1 2 —1 0 0
Zthz 0 -1 2 -1 0
t=1 0 0 -1 2 —1
positive (0 0 0 —1 1

semidefinite

? :
locat; elgenvectors:

Zt G_ipt ‘@t> X |t> combinations of

plane waves
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an L2 eigenvalue gap



a clock workshop



Constructing local clocks

= the pulse —O-O-O-0<@-



Constructing local clocks

B the pulse —(OHOH® x(O— transitions:  2-local

® joining the states o
by projectors



Constructing local clocks

B the pulse —(OOH@ ()— transitions: 2-local

00100
: g
+00010

® joining the states
by projectors |01 —10){01 — 10|



Constructing local clocks

B the pulse

® joining the states
by projectors

n920,0.0.0n

1

1

Interaction
with the data

01 — 10)(01 — 10|

transitions:  2-local
2-qubit gates: 4-local



Constructing local clocks

B the pulse —( OO~ transitions:  2-local
2-qubit gates: 4-local

00000 e stae

Initialization!

® joining the states
by projectors |01 —10){01 — 10|



Constructing local clocks

® the domain wall —@-@~@~@-)

t) = [3)
10000)

® ?-|ocal terms
“‘compatible” with

11...1100...00

01)(01]



Constructing local clocks

® the domain wall —@—@%‘C}_—C}— transitions:  3-local

1) =13)
11000)

B joining states |1OO - 110><1OO — 110‘

by transitions?

B enforce a domain wall: fix the ends {®- ‘ O
® the ground state - - - -+ ‘2) + |3> + ...



Constructing local clocks

® the domain wall —@—@—@—O—O— transitions:  3-local
2-qubit gates: 5-local

® interacting with
work (data) qubits

Hy = 5 ([t 1){E + 1]+ [)()
—3 (Ut+1®|t+ L +U +1®]t)<t+1\)

5-local



oground state



oround state



1

lower bounad on the
ground state
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history states

non-uniform
superpositions




history states

a polynomially small gap
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history states




well badly

initialized history states



accepted
states




accepted
states




—LH and QMA verification

N, Mozes O]
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NO

YES

— f o1
2 — v =
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V'is unlikely to

accept anything (e)

promise gap L2

a well accepted
proof (1-¢)

LH

lowest eigenvalue

. (I —+e)

)

(needs e=L1)

the history state
€

— L+1




Other QMA-complete problems |Bookatz 13
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2-local Hamiltonian is QMA complete

. a global minimum
6-6-6-
006
hd4d
Oliveira, Terhal '04]

> Hii, -0-0-0-0-0-0-

‘Hallgren, N, Narayanaswami 13]



QMA,-complete problems @
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projections
& gadgets



From a 5-local to a 3-local clock [Kermpe Regey)

m the domain wall (@-®—(®<(®~)— transitions: 1-local

m transitions ‘1)(0‘ —|— ‘0><1‘

m punish mistimed transitions?

01)(01



From a 5-local to a 3-local clock [Kermpe Reoey)

m thedomainwall  —@-@<@~ ()~ transitions: 1-local

1111 2-qubit gates: 3-local

m transitions ‘10><10‘1?2 + ‘10><10‘2?3 — X5

®m punish mistimed transitions

01)(01]



The projection lemma: a useful tool for proving gaps
| | +H,

m a HIGH energy penalty for “illegal’ states?

Hils

m the low energy states live near the “legal” subspace



The projection lemma in action

Hils

e 1110000)

HH [1)(0] +]0)(1|  |1111000)
1111100)




The projection lemma: a useful tool for proving gaps

Hils

m 3-LH that works well
in the “good clock subspace”

m 2-LH from
effective interactions Kempe, Kitaev, Regev ‘03



The projection lemma: a useful tool for proving gaps

Hils

B 2-loc. H.in 2D

®+—>0

Oliveira,

o> e
[ Doaml

105

Terhal 'OFf



Further decreasing locality: a “3 from 2” gadget

m strongly coupled ancillas
(a new energy scale)

m perturbation theory

1 H]] > [[V]]

G,(Z) — (ZI[ — H,)_l S = span {|000), [111)}

[Kempe, Kitaev, Regev ‘03]



Further decreasing locality: a “3 from 2” gadget

m strongly coupled ancillas
(a new energy scale)

m perturbation theory gives us
an effective Hamiltonian 1H|| > V]|

2 3 S = span {|000), [111)}
V S V S V }S ’

projection  unwanted the effective
lemmma (subtract) 3-local term

[Kempe, Kitaev, Regev ‘03]



STRONG local fields, OK interactions  [Ceoet al, 13112555

Z>| 1) (1]a

7 X,
73X,

m strongly bound a single ancilla S ={[0)}

still needs strong interactions
m perturbation theory gives us H’ — H 1V

an effective Hamiltonian H|| > V]|

2 3
V g V g V } g special cases (Z-basis)
|
projection  unwanted the effective exact gadgets'

lemma (subtract) 3-local term |Biamonte 08013800



“Strengthening”, intermediary gadgets?

® classically easy: copy

—o

m quantumly?

*—o

N, Yudong Cao]



clock/work registers a geometric clock

OJOJOIO
OJOJOJO
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O00O

[Mizel] [Aharonov+]




clock/work registers a geometric clock

OOOO
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O00O
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geometric locality moving data on a line
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Matrix Product States

1
ﬁ__ﬁ’ 5 Cstun | STUDV)
s,t,u,v=0

®  Schmidt decomposition

mhnd

B many decompositions a local description

2 F

b=1 a=1
® low entanglement ansatz, local optimization, easy manipulation

X
Z QstR
b=1




Ground states in 1D How hard is it to find/describe them?

constant gap: OK [Landau+ "13]

history state
QMA;-comp ®_®_"‘ [AGIK '06]

very entangled @ QZQZQ [;EOOT projectors
const. entropy 9_‘_‘—‘ trans. invariant

AKLT model

trans. invariant
[Irani]

product states Q=0 O=O O=0) Q2-SATinP
[Bravyi, C+]




Ground states in 1D How hard is it to find/describe them?
constant gap: OK [Landau+ "13]

history state
QMA,-comp ®_®_"‘ [AGIK '06]

trans. invariant
[Irani]

very entangled @ QZQZQ [;EOOT projectors
. criomyiogl.  @—@—@——@ s merer

[B+12]

product states Q=0 O=O O=0) Q2-SATinP
[Bravyi, C+]



Ground states in 1D How hard is it to find/describe them?
constant gap: OK [Landau+ "13]

- 900
QMA,-comp. @—@_‘_‘ [h,Al\SéT}Z y’ Séa]te
B QMA-comp. @_‘_‘_‘ frustrated
[Hallgren+'13]
very entangled @ Q:Q:Q [?41(?100"]” projectors
B entropy: log L 9_‘_‘_‘ trans. invariant

[B+12]

trans. invariant
[Irani]

product states Q=0 O=O O=0) Q2-SATinP
[Bravyi, C+]
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B ground states?
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