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Dynamics of excitations Spin-}% systems.
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Dynamics of excitations What's the model?

(TERNAY!

allowed transitions 01 « 10

translating to spins %XJX% (1 — Zj Zk)

the XX model % (Xij; ‘|—Y}Yk)



Continuous-time quantum walks A small basis.

the subspace with
a single excitation

allowed transitions 01 « 10

a discrete basis: excitation location ‘ZE>

the XX model = (X; X + Y;Y5)



Continuous-time quantum walks A small basis.

the subspace with
a single excitation

allowed transitions 01 « 10

a discrete basis: excitation location ‘ZE>

the Hamiltonian: (minus) the adjacency matrix

Hip ==, ([z)(x + 1|+ |z + 1) (z])



A quantum walk on a line How does it move?

CTOW: square wavepacket (W=1), evolving on a cycle (L=220)

005 start: localized
il plot: probability
i&ﬂ'.ﬂl‘i
the mean distance
M grows linearly
with time
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the Hamiltonian: (minus) the adjacency matrix

Hip ==, ([z)(x + 1|+ |z + 1) (z])



traversal

search



Traversing a (d-dimensional) hypercube Superpositions.

T

m a classical random walk would be stuck in the “middle”




Traversing glued trees Find the “name” of the EXIT vertex.

ENTRANCE EXIT



Traversing glued trees Symmetry for the win.

ENTRANCE EXIT

m quantum walk
on a “line” of
column states




Traversing randomly glued trees An exponential speedup.

EXIT
m 3 weighted
quantum walk
on a line
V3 VB V3 2 V3 B B Childs, Farhi & Gutmann

o—o—90—0—o—0—0 0 QIP 1,3543 (2002)




Searching on a d-dimensional lattice One special vertex.
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Plane waves H: minus the adjacency.

B eigenstates
(plr) = e7i#7 = f°
b, = —2cosp
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A plane wave with p=mt/2 H: minus the adjacency,

B eigenstates
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a right-moving plane wave e~ *P®



A plane wave with p=mt/2 H: minus the adjacency,

B eigenstates
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a right-moving plane wave e~ *P®



A plane wave with p=mn/2

m look for an eigenstate with £ =0

an incoming plane wave e~*%%

a fully reflected plane wave e**



A plane wave with p=mn/2

m look for an eigenstate with £ =0

a fully transmitted plane wave e~ *P®



A plane wave with p=mn/2

m look for an eigenstate with £ =0

a fully transmitted plane wave



Bound states

m another eigenstate with £ = 0




Quantum walks and scattering

m infinite runways

m far away: plane waves (with momentum p)

scattering matrix

P maazl R T —ag?

reflection/transmission coefficient



Playing games

E My MOVE... your move...




Evaluating game trees

m my move... your move... can | (the first player) win?

the description of the game
. win

you

me

you

me




Evaluating game trees

m my move... your move... can | (the first player) win?

you
. loss

me

you

| should
lose

me
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Evaluating NAND trees

m my move... your move... can | (the first player) win?

you
. loss

NO.753

classically:
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Evaluating NAND trees by scattering

the first player

- I should lose



Evaluating NAND trees by scattering

the first player
4 reflected should lose



Evaluating NAND trees by scattering

the first player

‘ can win



Evaluating NAND trees by scattering

the first player

canwin transmitted mmp



Evaluating NAND trees by scattering

Farhi, Goldstone

N & Gutmann

TOC 4,8,169 (2008)

pT/2 mp



Evaluating NAND trees by scattering
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TOC 4, 8,169 (2008)
D (© © @
G ©
E =0
(0) p T2



Does a tree a transmit or reflect?

p, E(p)
—

q, E(q)

at least one
eigenvector
with a nonzero
amplitude

an eigenvector
with a nonzero
amplitude
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Universal computation by QW CNOTs.

E— 3
p=m/4
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Universal computation by QW Phase gate.

E— 3
p=m/4
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Universal computation by QW Phase gate.
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fully transmited, but delayed...



Universal computation by QW Basis-changing

E— 3
p=m/4
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m B transforms Z & Y bases (similar to Hadamard)



Universal computation by QW Basis-changing

E— 3
p=m/4
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an equal magnitude
& a phase difference




Universal computation by QW

Picking the momentum.

E=—\3
p=m/4
filter
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Universal computation by QW

E— 3
p=m/4

0o =B

filter

& delay
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Scaling it up.

01
10

o —e

B composing gates?

wide packet/long lines

11



Universal computation by QW

E— 3
p=m/4

0o =B

filter

& delay
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Scaling it up.

01
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—P

m adding more qubits?
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Universal computation by QW
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Universal computation by QW

an exponentially
large graph

I 7
T X 1%




Universal computation by QW

an exponentially
large graph

01 1 0 1
170 01 1 ?
10 10 1

010011

a sparse, 0/1 matrix
with a simple description

. P Childs
m Can you solve such scattering problems* PRL 102 (18)

You can do quantum computation (BQP). 180501 (2009)



Universal computation by multi-particle quantum walk

B dual-rail encoding o) = —
with N wavepackets - —
0/1 —
aT-ak. +ala; _—
j LWy 0/1 —
B single-qubit gates? we already have them
m 2-qubit (CPHASE)? requires interaction @;azaj A
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2 packets with different momenta meet on a line




A meeting of two walkers
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B how to get a minus sign in the “11” case?




A meeting of two walkers

B how to get a minus sign in the “11” case?



A meeting of two walkers

B how to get a minus sign in the “11” case?



A meeting of two walkers C- P HAS E




The momentum switch




The momentum switch




The momentum switch

B 3 transmitter/reflector for 2 momenta

eigenvectors

eigenvector

TIR




General transmitter/reflector design TR

at least one
eigenvector
with a nonzero
amplitude

an eigenvector
with a nonzero
amplitude

p, E(p)
N

q, E(q)




Universal computation by multi-particle

quantum walk

m dual-rail encoding 0/1 =
with N wavepackets o = H — — 7
0/1 —
ala +aTa- _—
3%k LW 0/1

B CPHASE: interaction

F o D

m very wide packets (& a big graph) ‘
sharp momentum, low error

Childs, Gosset, Webb
Science 339 (6121),
791 (2013)




correction




Dispersing wavepackets on a line

B a Gaussian's width grows M(t) = Ly|1+

CTQW: gaussi wavepacket (W=10), evolving on a cycle (L=220) CTQW: gaussi wavepacket (W=10), evolving on a cycle (L=220)
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Dispersing wavepackets on a line

2
m 3 Gaussian's width grows M(t) = L \/1 o (2(%82]9”)

squarparevepaeiaCeE IS 008bbhd g atire e Tor TTE00000E w2

a shifted packet (we would like to have this)
0.04 the evolved packet, A = 9.33032

m arectangular

packet behaves
even worse
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Dispersing wavepackets on a line

B a Gaussian's width grows

m arectangular
packet behaves
even worse

B propagation speed

v(p) = 2sinp




Dispersing wavepackets on a line

B a Gaussian's width grows

m arectangular
packet behaves
even worse

.
g

m could we develop
an anti-dispersion
gadget to “repair”
dispersed packets?




An anti-dispersion gadget for p=r/4

a plane wave p=mnt/4 traveling freely



An anti-dispersion gadget for p=r/4

B 3 “reverse” travel time/momentum dependence near /4

fully transmitted for p=n/4

B “repairs” 10 vertices’ worth of dispersion

mmmm



0.025

0.02

0.015

0.01

0.005

square wavepacket W=2500 evolving on a line (30W) for T=29886016 = W22

Rectangular packet, evolving for T=W2< on a line

the evolved packet, A = 1.3205

a shifted packet (we would like to have this)




Rectangular packet, evolving for T=W22 with correction

square wavepacket W=2500 evolving on AD10 (30W) for T=29886016 = W22

I I I I I I I
a shifted packet (we would like to have this)
the evolved packet, A = 0.91347
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Gaussian packet, evolving for T=W22 on a line

gaussi wavepacket W=2500 evolving on a line (30W) for T=29886016 = W22

0.02r- a shifted packet (we would like to have this)|
the evolved packet, A = 0.96416
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Gaussian packet, evolving for T=W?2 with correction

gaussi wavepacket W=2500 evolving on AD10 (30W) for T=29886016 = W22

0.02r- a shifted packet (we would like to have this)|
the evolved packet, A = 0.065773
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0.002
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% a powerful tool ca T ¢
-

many algorithms
computational universality

® there’s much we don't know

interesting graph properties
that we could determine?

practical applications?

% let’s research & experiment!
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