Quantum speedup by quantum annealing

continuous-time, adiabatic, annealing, stoquastic, exponential
$\begin{array}{ll}\text { Rolando Somma } & \text { Lomamos } \\ \text { DANL } \\ \text { Daniel Nagaj } & \text { LigSAS Bratislava } \\ \text { Mária Kieferová } & \text { IPSAS Bratislava }\end{array}$
arXiv: 1202.6257 (soon in PRL)
thanks: LPP.QWAC, APVV.COQI, meta-QUTE, Q-ESSENCE

Quantum speedup by quantum annealing

1 Continuous-time quantum walks
2 Walking through glued trees efficiently
3 Adiabatic optimization \& stoquastic H's
4 Traversing trees by quantum annealing

NICE BUT SLOW

arXiv: 1202.6257, PRL (soon)
 Quantum Speedup by Quantum Annealing

1 Continuous-time quantum walks

trying something beyond diffusion

classical diffusion: evolve probabilities

$$
\frac{\mathrm{d} p_{j}(t)}{\mathrm{d} t}=\sum_{k \in V} L_{j, k} p_{k}(t)
$$

Laplacian $\quad L_{j, k}= \begin{cases}-\operatorname{deg}(j) & j=k, \\ 1 & (j, k) \in E, \\ 0 & \text { otherwise } .\end{cases}$

$$
L_{0_{5}}=\left[\begin{array}{rrrrr}
-2 & 1 & 0 & 0 & 1 \\
1 & -2 & 1 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 \\
0 & 0 & 1 & -2 & 1 \\
1 & 0 & 0 & 1 & -2
\end{array}\right]
$$

trying something beyond diffusion
classical diffusion: evolve probabilities

$$
\frac{\mathrm{d} p_{j}(t)}{\mathrm{d} t}=\sum_{k \in V} L_{j, k} p_{k}(t)
$$

Schrödinger equation: evolve amplitudes

$$
i \frac{\mathrm{~d}}{\mathrm{~d} t}|\psi(t)\rangle=L|\psi(t)\rangle
$$

Farhi \& Gutmann,
Quantum computation and decision trees (1998)

- graph structure: Laplacian, adjacency matrix, ...

■ strong decoherence (measure often): back to diffusion

- quantum algorithms, universality

Childs, Gosset, Webb,
Universal comp... (2012)

2 Efficiently walking through glued trees finding an exit from a maze

2 Efficiently walking through glued trees walking in superposition over columns

ENTRANCE

■ random walk? NO

- quantum walk? YES

EXIT

2 Efficiently walking through glued trees walking in superposition over columns

■ random walk? NO

- quantum walk? YES
- recursion: YES

EXIT

2 Efficiently walking through randomly glued trees exponentially hard classically, polynomial for quantum walks

- quantum walk? YES

2 Efficiently walking through randomly glued trees exponentially hard classically, polynomial for quantum walks

ENTRANCE

- quantum walk? YES
- classical algorithms? NO

Childs, Farhi \& Gutmann
QIP 1, 3543 (2002)

3 Adiabatic Quantum Computation
evolving with a time-dependent Hamiltonian

$$
i \frac{\mathrm{~d}|\psi(t)\rangle}{\mathrm{d} t}=H(t)|\psi(t)\rangle
$$

- fast: sudden (diabatic) approximation almost no change in the state

$$
\begin{aligned}
& H_{1} \Longrightarrow H_{2} \\
& |\psi\rangle \Longrightarrow|\psi\rangle+\epsilon\left|\psi^{\prime}\right\rangle
\end{aligned}
$$

3 Adiabatic Quantum Computation
evolving with a time-dependent Hamiltonian

$$
i \frac{\mathrm{~d}|\psi(t)\rangle}{\mathrm{d} t}=H(t)|\psi(t)\rangle
$$

- slow: adiabatic approximation

$$
\begin{aligned}
H(0) & \longrightarrow H\left(s=\frac{t}{T}\right) \\
\left|\phi_{i}(0)\right\rangle & \Longleftrightarrow
\end{aligned}
$$

3 Adiabatic Quantum Computation
evolving with a time-dependent Hamiltonian

$$
i \frac{\mathrm{~d}|\psi(t)\rangle}{\mathrm{d} t}=H(t)|\psi(t)\rangle
$$

- slow: adiabatic approximation an evolved eigenstate remains close to an eigenstate

$$
\begin{aligned}
H(0) & \hookrightarrow H\left(s=\frac{t}{T}\right) \\
\left|\phi_{i}(0)\right\rangle & \Longleftrightarrow\left|\phi_{i}(s)\right\rangle+\epsilon\left|\phi^{\prime}\right\rangle
\end{aligned}
$$

3 Adiabatic Quantum Computation
evolving with a time-dependent Hamiltonian

$$
i \frac{\mathrm{~d}|\psi(t)\rangle}{\mathrm{d} t}=H(t)|\psi(t)\rangle
$$

- slow: adiabatic approximation an evolved eigenstate remains close to an eigenstate

$$
\begin{aligned}
H(0) & \Longleftrightarrow H\left(s=\frac{t}{T}\right) \\
\left|\phi_{i}(0)\right\rangle & \Longleftrightarrow\left|\phi_{i}(s)\right\rangle+\epsilon\left|\phi^{\prime}\right\rangle
\end{aligned}
$$

- which T makes it "slow" enough? norm of $\|H(s)\|,\|\dot{H}(s)\|, \ldots$ small gaps = easy excitations)-:

3 Adiabatic Quantum Computation
preparing states utilizing the adiabatic theorem

- adiabatic approximation
an evolved eigenstate stays
close to an eigenstate

3 Adiabatic Quantum Optimization
preparing ground states utilizing the adiabatic theorem

- adiabatic approximation an evolved ground state stays close to the ground state

tunneling
- goal: the ground state of H_{P} start in a simple ground state of some H_{B}

Farhi + , Q. comp. by
adiabat. evolut. (2000)

$H_{B} \rightarrow H_{P}$
$H(s)=\widehat{(1-s)} H_{B} \widehat{s H_{P}}$ small gaps are bad (avoided crossings)

3 Adiabatic Quantum Computation why do we like this approach to quantum computing

- provably good for a few easy problems

■ "not discouraging" numerics for interesting ones

It doesn't work!

 It doesn't work!3 Adiabatic Quantum Computation
why do we like this approach to quantum computing

- provably good for a few easy problems
- "not discouraging" numerics for interesting ones

Choose a different H_{B}.

Add a little noise.

3 Adiabatic Quantum Computation
why do we like this approach to quantum computing

- provably good for a few easy problems
- "not discouraging" numerics for interesting ones
- universal for QC | Aharonov + , AQC is equiv. (2004)
- realizable: superconducting qubits

D-wave (2011)

3 Quantum Annealing with Stoquastic Hamiltonians a classical $\&$ a quantum method

- QA: an optimization heuristic pick a path (Hamiltonian)
a classical simulation
a quantum algorithm

tunneling
- stoquastic: negative off-diagonal elements not universal for quantum computing used in adiabatic algorithms no sign problem: Monte Carlo? NO !

4 Traversing trees adiabatically it doesn't really work with simple AQC

$$
H_{P}=-A
$$

- start at the left endpoint go to a superposition over columns the gap is exponentially small the final state has exp-small overlap with the EXIT

4 Traversing trees adiabatically it doesn't really work with simple AQC

$$
H_{B}=-|0\rangle\langle 0|
$$

$$
H_{P}=-A
$$

■ start in a superposition over columns go to an endpoint
the gap is exponentially small

4 Traversing trees adiabatically
it doesn't really work with simple AQC

4 Traversing trees adiabatically
it doesn't really work with simple AQC - the gap is exp-small!

4 Traversing trees by annealing
a story of two gaps - exponential and polynomial

- a symmetric (3-component) algorithm

$$
H_{B}=-|0\rangle\langle 0| \quad \Longrightarrow \quad H_{M}=-A \quad \Longrightarrow \quad H_{P}=-|E\rangle\langle E|
$$

$H(s)=(1-s) H_{B}+s(1-s) H_{M}+s H_{P}$
The gaps still seem small... Will it necessarily jump?
Could we use the first excited state?

4 Traversing trees by annealing
a story of two gaps - exponential

4 Traversing trees by annealing
a story of two gaps - exponential

4 Traversing trees by annealing
a story of two gaps - exponential

4 Traversing trees by annealing
a story of two gaps - exponential

4 Traversing trees by annealing
a story of two gaps - exponential

4 Traversing trees by annealing
a story of two gaps - exponential and polynomial

4 Traversing trees by annealing
a story of two gaps - exponential and polynomial

4 Traversing trees by annealing
jumping through the exponential and not the polynomial gaps

4 Traversing trees by annealing
a story of two gaps - exponential and polynomial

- a quantum walk solvable in the $\mathrm{N} \rightarrow \infty$ limit

$$
\begin{aligned}
H(s) & =(1-s) H_{B}+s(1-s) H_{M}+s H_{P} \\
H^{\prime}(s) & =\frac{1}{s} H_{B}+H_{M}+\frac{1}{1-s} H_{P}
\end{aligned}
$$

4 Traversing trees by annealing
a story of two gaps - exponential and polynomial

- a quantum walk solvable in the $\mathrm{N} \rightarrow \infty$ limit

$$
\begin{aligned}
H(s) & =(1-s) H_{B}+s(1-s) H_{M}+s H_{P} \\
H^{\prime}(s) & =\frac{1}{s} H_{B}+H_{M}+\frac{1}{1-s} H_{P}
\end{aligned}
$$

4 Traversing trees by annealing
a story of two gaps - exponential and polynomial

- a quantum walk solvable in the $\mathrm{N} \rightarrow \infty$ limit

$$
\begin{aligned}
H(s) & =(1-s) H_{B}+s(1-s) H_{M}+s H_{P} \\
H^{\prime}(s) & =\frac{1}{s} H_{B}+H_{M}+\frac{1}{1-s} H_{P}
\end{aligned}
$$

Rolando Somma at the Quantum Cryptography workshop in Dagsthul, 9/2012

Mária Kieferová at the Research Center for Quantum Information, Bratislava, 6/2012

- c.t. quantum walks

- adiabatic q. computing

- traversing glued trees

- a new QA algorithm

