

Quantum speedup by quantum annealing

continuous-time, adiabatic, annealing, stoquastic, exponential

Rolando Somma LANL Daniel Nagaj Mária Kieferová

IPSAS Bratislava

IPSAS Bratislava

arXiv: 1202.6257 (soon in PRL)

LPP.QWAC, APVV.COQI, meta-QUTE, Q-ESSENCE thanks:

Quantum speedup by quantum annealing

- 1 Continuous-time quantum walks
- 2 Walking through glued trees efficiently
- 3 Adiabatic optimization & stoquastic H's
- 4 Traversing trees by quantum annealing

NICE BUT SLOW

arXiv: 1202.6257, PRL (soon) Quantum Speedup by Quantum Annealing

Continuous-time quantum walks

trying something beyond diffusion

classical diffusion: evolve probabilities

$$\frac{\mathrm{d}p_j(t)}{\mathrm{d}t} = \sum_{k \in V} L_{j,k} p_k(t)$$

Laplacian
$$L_{j,k} = \begin{cases} -\deg(j) & j = k, \\ 1 & (j,k) \in E, \\ 0 & \text{otherwise.} \end{cases}$$

$$L_{\circ_5} = \begin{vmatrix} -2 & 1 & 0 & 0 & 1\\ 1 & -2 & 1 & 0 & 0\\ 0 & 1 & -2 & 1 & 0\\ 0 & 0 & 1 & -2 & 1\\ 1 & 0 & 0 & 1 & -2 \end{vmatrix}$$

Continuous-time quantum walks

trying something beyond diffusion

classical diffusion: evolve probabilities

$$\frac{\mathrm{d}p_j(t)}{\mathrm{d}t} = \sum_{k \in V} L_{j,k} p_k(t)$$

Farhi & Gutmann, Quantum computation and decision trees (1998)

- graph structure: Laplacian, adjacency matrix, ...
- strong decoherence (measure often): back to diffusion
- quantum algorithms, universality

Childs, Gosset, Webb, Universal comp... (2012)

Efficiently walking through glued trees

finding an exit from a maze

ENTRANCE

random walk? NO stuck in the middle

Efficiently walking through glued trees

walking in superposition over columns

Efficiently walking through glued trees

walking in superposition over columns

EXIT

ENTRANCE

- random walk? **NO**
- quantum walk? YES
- recursion: YES

Efficiently walking through randomly glued trees

exponentially hard classically, polynomial for quantum walks

Efficiently walking through randomly glued trees

exponentially hard classically, polynomial for quantum walks

evolving with a time-dependent Hamiltonian

$$i\frac{\mathrm{d}|\psi(t)\rangle}{\mathrm{d}t} = H(t)|\psi(t)\rangle$$

■ fast: sudden (diabatic) approximation almost no change in the state

$$H_1 \longrightarrow H_2$$

$$|\psi\rangle \longrightarrow |\psi\rangle + \epsilon |\psi'\rangle$$

evolving with a time-dependent Hamiltonian

$$i\frac{\mathrm{d}|\psi(t)\rangle}{\mathrm{d}t} = H(t)|\psi(t)\rangle$$

slow: adiabatic approximation

$$H(0) \longrightarrow H\left(s = \frac{t}{T}\right)$$

$$\phi_i(0)\rangle \longrightarrow$$

evolving with a time-dependent Hamiltonian

$$i\frac{\mathrm{d}|\psi(t)\rangle}{\mathrm{d}t} = H(t)|\psi(t)\rangle$$

slow: adiabatic approximation
 an evolved eigenstate remains close to an eigenstate

$$H(0) \longrightarrow H\left(s = \frac{t}{T}\right)$$

$$|\phi_i(0)\rangle \longrightarrow |\phi_i(s)\rangle + \epsilon|\phi'\rangle$$

evolving with a time-dependent Hamiltonian

$$i\frac{\mathrm{d}|\psi(t)\rangle}{\mathrm{d}t} = H(t)|\psi(t)\rangle$$

slow: adiabatic approximation an evolved eigenstate remains close to an eigenstate

$$H(0) \longrightarrow H\left(s = \frac{t}{T}\right)$$
$$|\phi_i(0)\rangle \longrightarrow |\phi_i(s)\rangle + \epsilon |\phi'\rangle$$

■ which *T* makes it "slow" enough? norm of $||H(s)||, ||\dot{H}(s)||, ...$ small gaps = easy excitations)-:

preparing states utilizing the adiabatic theorem

adiabatic approximation an evolved eigenstate stays close to an eigenstate

Adiabatic Quantum Optimization

preparing ground states utilizing the adiabatic theorem

 adiabatic approximation an evolved ground state stays close to the ground state

• goal: the ground state of H_P start in a simple ground state of some H_B

Farhi +, Q. comp. by adiabat. evolut. (2000)

$$H_B \longrightarrow H_P$$
 $H\left(s\right) = (1-s)H_B + sH_P$

small gaps are bad (avoided crossings)

why do we like this approach to quantum computing

- provably good for a few easy problems
- "not discouraging" numerics for interesting ones

It doesn't work!

It doesn't work!

why do we like this approach to quantum computing

- provably good for a few easy problems
- "not discouraging" numerics for interesting ones

Choose a different H_R .

Add a little noise.

why do we like this approach to quantum computing

- provably good for a few easy problems
- "not discouraging" numerics for interesting ones
- universal for QC | Aharonov +, AQC is equiv. (2004)
- realizable: superconducting qubits

Izmalkov et al., PRL 101, 017003 (2008)

D-wave (2011)

Quantum Annealing with Stoquastic Hamiltonians a classical & a quantum method

QA: an optimization heuristic
 pick a path (Hamiltonian)
 a classical simulation
 a quantum algorithm

stoquastic: negative off-diagonal elements not universal for quantum computing used in adiabatic algorithms no sign problem: Monte Carlo? NO!

it doesn't really work with simple AQC

start at the left endpoint
 go to a superposition over columns
 the gap is exponentially small

the final state has exp-small overlap with the EXIT

it doesn't really work with simple AQC

start in a superposition over columns go to an endpoint the gap is exponentially small

it doesn't really work with simple AQC

it doesn't really work with simple AQC – the gap is exp-small!

Traversing trees by annealing

a story of two gaps – exponential and polynomial

■ a symmetric (3-component) algorithm

$$H_B = -|0\rangle\langle 0|$$
 \longrightarrow $H_M = -A$ \longrightarrow $H_P = -|E\rangle\langle E|$
 $H(s) = (1-s)H_B + s(1-s)H_M + sH_P$

The gaps still seem small... Will it necessarily jump? Could we use the first excited state?

a story of two gaps – exponential and polynomial

a story of two gaps – exponential and polynomial

jumping through the exponential and not the polynomial gaps

a story of two gaps – exponential and polynomial

■ a quantum walk solvable in the $N\to\infty$ limit

$$H(s) = (1 - s)H_B + s(1 - s)H_M + sH_P$$
$$H'(s) = \frac{1}{s}H_B + H_M + \frac{1}{1 - s}H_P$$

a story of two gaps – exponential and polynomial

■ a quantum walk solvable in the $N\to\infty$ limit

$$H(s) = (1 - s)H_B + s(1 - s)H_M + sH_P$$

$$H'(s) = \frac{1}{s}H_B + H_M + \frac{1}{1 - s}H_P$$

a story of two gaps – exponential and polynomial

■ a quantum walk solvable in the $N\to\infty$ limit

$$H(s) = (1 - s)H_B + s(1 - s)H_M + sH_P$$
$$H'(s) = \frac{1}{s}H_B + H_M + \frac{1}{1 - s}H_P$$

Rolando Somma at the Quantum Cryptography workshop in Dagsthul, 9/2012

Mária Kieferová at the Research Center for Quantum Information, Bratislava, 6/2012

c.t. quantum walks

traversing glued trees

adiabatic q. computing

■ a new QA algorithm

arXiv: 1202.6257

