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What does nature allow us to compute? Why are some computational problems inherently harder than others? Can we 
lower bound the number of steps necessary for getting a result as the problem size grows? Can we find efficient algorithms 
for particular problems? Would their efficiency depend crucially on the model of computation that we use? These ques-
tions become even more interesting if we take quantum mechanics into account, in contrast to using only computers based 
on classical E&M. We want to know what we could (or couldn’t) do with the computers we don’t even have yet.  

Quantum computing has produced new algorithms for interesting computational problems which have been experi-
mentally tested on small problem instances. It broadened our view of computational complexity, even producing proofs of 
classical results through a quantum detour. In many cases, it promises efficient quantum simulation of quantum many-
body systems. Moreover, using a quantum information viewpoint, understanding the systems’ structure and symmetries 
allowed us to channel our resources more efficiently and get better approximation algorithms (for the energies or 
eigenstates of physical systems). I am fascinated by algorithms built on insights from quantum physics – e.g. annealing and 
sampling, or scattering in quantum walks. However, even for all the beauty of the theory, it is important not to forget to 
think about quantum computers as actual physical devices. Even though we might not see fault-tolerant, universal, scalable 
quantum computers in the nearest future (hopefully only because of technical, not fundamental issues), it makes sense to 
think about restricted, specific-purpose models. I am motivated by the possibilities of quantum simulation, in the light of 
recent results connecting quantum information to quantum chemistry or quantum field theory. Moreover, we could dis-
cover that some of these are classically simulable. The global properties of these systems derive from their local interactions. 

Local Hamiltonians – frustrated and frustration-free 

Since my thesis, Local Hamiltonians in Quantum Computation, I look at the properties of quantum many-body systems 
with local interactions. First, finding their ground states, and the ground state properties (e.g. energy) can be surprisingly 
difficult, even in systems with simple interactions. Second, we can use them to connect condensed matter physics to com-
plexity. Third, such systems can be used to build quantum computers – even without precise time-control.  

The first topic is based on a link between computational complexity and physics. If we could easily describe the ground 
states of local Hamiltonians with particular form, we would also have the power to solve tough computational and optimi-
zation problems. Together with Shay Mozes, I have looked at the variants of the Local Hamiltonian problem, showing 
QMA completeness of 3-local Hamiltonian with all terms having norm 1, without perturbation gadgets [3]. With Sean 
Hallgren and Sandeep Narayanaswami, I have shown that 2-local Hamiltonian on a line with 8-dimensional qudits is also 
QMA-complete [20]. My future goal in this area is to prepare a toolkit for translation between problems, usable in a future 
Quantum PCP theorem. I aim for proving hardness of problems that have restricted locality, geometry, local dimension, 
form of terms and large eigenvalue and promise gaps. Finally, together with David Gosset, we are now writing up our 2D 
clock construction that allowed us to finally prove that Quantum 3-SAT is QMA1 complete. 

The second line of my research of Local Hamiltonians focuses on the physical properties of such systems. Classical sta-
tistical physics of satisfiability problems has produced a wealth of new techniques. Naturally, I got interested in investigat-
ing random instances of Quantum SAT. With Antonello Scardicchio, we have looked at the Adversary SAT problem as an 
upper bound for a SAT/UNSAT transition in random Quanutm SAT. We presently work on incorporating Shearer’s 
bounds into the picture. With Ramis Movassagh and others we have looked at unfrustrated spin chains [9] and found 
interesting ground state properties already for four-dimensional qudits. Finally, with Sergey Bravyi and others, we have 
discovered an unfrustrated qutrit chain [19]  with a logarithmic scaling of entanglement entropy in the ground state with 
a polynomially large MPS description. I now want to find a family of problems related to this model, and show that they 
are decidable by a pushdown automaton or another restricted model of computation. I want to better understand 
unfrustration, area laws and quantum correlations in qudit spin chains. 

Third, I am fascinated by the possibility of running quantum computation without precise time-control, using only in-
teractions given in the system. We know this is possible in general, but I search for constructions with restricted form, 
translationally invariant interactions and efficient runtimes. One such model is the Hamiltonian Quantum Cellular Au-
tomaton in 1D we have discovered with Pawel Wocjan [10]. Recently, I started a collaboration with Andrew Childs’ 
group, making their universal multi-particle quantum walk in 2D more efficient. I have also worked on universal computa-
tion based on railroad-switches, with constant-norm, 2-local interactions [8, 17], whose requirements and runtimes of this 
model are significantly better those coming from the usual 2-local Hamiltonian problem. We can keep the evolution with-



in a preferred subspace even without the need for large-norm terms – and I want to further develop this approach to en-
coding computational problems in physical systems. 

Computational Complexity – QMA and MQA 

The local Hamiltonian problem is complete for QMA – the class of problems easily and soundly verifiable on a quan-
tum computer. Because of the inherent randomness of quantum computation, such probabilistic verification protocols 
require some margin for error. However, repeating a verification procedure can boost our confidence, as shown by Mar-
riott and Watrous. With Pawel Wocjan and Yong Zhang, we have found a faster, purely quantum version of the QMA 
amplification scheme [7]. The techniques used there were also useful for a single-copy tomography procedure [12] that 
together with Eddie Farhi and others helped us break a possible quantum money scheme. 

Derandomizing computation is a daunting task, connected to a deep question in complexity theory. Could we make the 
success probability of the QMA verification procedure be 1 exactly (in accepting cases)? Zachos and Fürer tell us this is 
possible in the classical world (MA1=MA). Together with my collaborators, we looked at MQA (QCMA), a subclass of 
QMA with a classical witness and a quantum verification procedure. We have given a proof that MQA1 with perfect com-
pleteness has the same power as MQA [14], even though an oracle separation exists. Currently, I continue thinking about 
interactive protocols with one-sided error, i.e. where we can completely convince a verifier in the acceptable cases, while 
the verifying procedure remains sound.  

Quantum Algorithms – walking, sampling and annealing 

Quantum computation allows us to use unitary evolution (or transformations) of wavefunctions that can be complicat-
ed superpositions of basis states. Quantum walks (see e.g. my review [15]) are a typical example of using superpositions for 
examining large parts of a search space. The hard part is to pick up the interesting part of the superposition. Sometimes, it 
helps to look at long-term behavior of quantum walks. With Mária Kieferová, we have looked at mixing (in a time-
averaged sense) on necklace graphs [16]. With Pawel Wocjan and collaborators I have looked at efficient implementations 
of particular quantum walks [6], and used them extensively in a sampling algorithm for approximating partition functions 
[11]. We now work on developing these ideas in a quantum algorithm for approximating the permanent of a matrix. The 
basic tool I focus on is efficient preparation of “coherent encodings” of thermal states, for the purpose of sampling, which 
we have utilized with Man-Hong Yung and others [13]. 

Adiabatic quantum optimization is a state preparation procedure based on slowly changing Hamiltonians, with jumps 
between eigenstates suppressed according to the energy gaps in the spectrum. This method is universal for quantum com-
putation, but only its restricted forms (stoquastic Hamiltoninas) are available for practical implementation at the moment. 
I am investigating the computational power of stoquastic adiabatic or quantum annealing evolutions, and together with 
Rolando Somma and Mária Kieferová, we have shown [18] an exponential speedup over classical approaches for the ran-
domly-glued trees oracle problem, matching a quantum walk result of Childs et al. Furthermore, with Eddie Farhi and 
others, we have shown how not to approach adiabatic optimization [4], as structured Hamiltonians are necessary if we 
want to hope for a quantum speedup better than for unstructured search. 

Classical numerics – tensor product states 

Finally, the insights from quantum information motivate classical algorithms. Focusing on an ansatz with low entan-
glement has produced several efficient methods for investigating many-body states. One of them, tensor product states, are 
especially suitable for systems with a tree-like structure. Motivated by the search for phase transitions in quantum versions 
of satisfiability, together with Igor Sylvester and others I have looked at various condensed-matter physics models on the 
Bethe lattice (Cayley-tree) [5] and characterized their phase transition points. These days, in collaboration with Valentin 
Murg and Frank Verstraete, I focus on using tensor product state networks in quantum chemistry applications and simula-
tion of strongly correlated systems. I use tools learned from the DMRG community (in collaboration with Andrej 
Gendiar), as well as develop adaptive methods for the underlying geometry choices. 

Conclusion 

I am deeply convinced about the necessity for a clear communication of my research results. I greatly enjoy preparing 
and giving talks for varied audiences – whether expert or popular. Communication and collaboration is a basic ingredient 
of my research – throughout my career I have been blessed with short term encounters at conferences, as well as long-term 



projects that have brought our ideas together and sparked a new research direction. After spending several years back in 
Europe (in Bratislava and Vienna), I now welcome a change of scenery and new inputs, bringing my experience in Hamil-
tonian complexity, adiabatic computation and quantum walks. I come from a theoretical physics background, but 
throughout my research career I have been fascinated by the interchange of ideas on the boundary between quantum in-
formation, condensed-matter physics and theoretical computer science. With further motivation coming from quantum 
chemistry, I seek development of quantum algorithms in simulation, classical numerics for quantum many-body systems, 
and deeper understanding of computational complexity of physical problems.   
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